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I. INTRODUCTION 

The vacuum created by the conventional search method of developing a product by selecting materials 

based on its properties from existing databases has necessitated recent development in material and product search 

methodologies. The conventional search method cannot meet up with these demands. It is widely known that 

within a selected alloy system, the variation in microstructure results in a large range of material properties. There 

is a shift in material design in present dispensation where material design and modeling are microstructurally 

sensitive and it is crucial to identify the very microstructure within an allow system, out of a system of large 

candidate that ensured desired property for the product function. Mathematical search-based approach to material 

design explore the hypothetical infinitely large space and presented the freedom of unknown microstructure. With 

the rapid growth rate of candidate space where microstructure can be represented by thousands of dimensions, the 

mathematical approach deteriorates. Machine learning has proven to be very efficient in material and product 

design. Researchers have employed several machine leaning methods to model material design and this include 

but not limited to Artificial Neural Network (ANN), Support Vector Machine (SVM), Bayesian Network and so 

on. These set-based approaches provide a satisfactory system-wide solution to complex engineering design 

problems and meet the increased demand for a specific product function. We explore advanced data-oriented 

techniques to enhance material design approach by statistical heuristics through implementation of Random Forest 

(RF) method with Monte Carlo simulation to model a time-temperature-transformation (TTT) curve for the design 

of steel within specified performance requirements. This is demonstrated as a predictive approach to modeling the 

TTT curve which investigate the effect of uncertainty propagation within the model structure and identify 

predictive capability of the machine learning approach. 

This paper is categorized as follows; section one described the general knowledge of Machine Learning 

in relation to material design and the importance of TTT diagram in material design. Section two presents previous 

works by researchers and gave a gap analysis in this field of study. Section three discusses the approaching 

methods for this analysis. Results and discussion from our approaching methods are presented in section four 

while section five contains the concluding remarks.  

 

II. LITERATURE REVIEW 
The exact and suitable materials properties that satisfy the required technical requirements are often not 

feasible to satisfy the design need of most engineering material design. This consequently limits the performance 

capabilities of many systems and available products. Hence, the need for improved system performance has led 

to the concurrent design of material microstructure and composition alongside system level design to provide 

materials that meet product and performance requirements. The set-based design approach has yielded more robust 

solutions over several multidisplinary design optimization methods which include (Analytical Target Cascading 

(ATC), concurrent subspace optimization, etc.) requires an expensive iterative simulation analysis among design 

levels [1]. Set-based method performs better on discrete variables and discontinuous output responses that often 

characterize material design problems. The mechanical properties of a product have been widely known to be 

affected by the constituent’s microstructure that evolve during the design process of steel. The variation in 

composition elements results in different phase formation. These variations along the process chain have been 

graphically presented in a continuous cooling transformation (CCT) or TTT curve diagram to better understand 

how microstructure varies along the process path. TTT diagrams are a practical tool for choosing and interpreting 

the effects of heat treatments. They are condensed graphical representations of phase transformation behavior over 

a wide range of cooling rates for a given steel composition and initial microstructure, containing a large amount 
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of information on transformation behavior, resulting microstructures and properties such as hardness. Due to the 

complexity of the steel transformation behavior, a measured CCT diagram is valid for the composition, thermal 

and deformational history for which it has been determined only; small differences in initial conditions may result 

in relatively large changes in the diagram. Since this is the case, CCT-diagrams have been measured for most of 

the common steel compositions in the last 50years. Unfortunately, CCT-diagrams are difficult to determine 

accurately. In most cases they are determined using a combination of dilatometry, metallography and hardness 

testing, where accurate measurements require good experimental skills, the interpretation of the dilatometric and 

metallographic data is often far from straightforward. Consequently, when CCT-diagrams are measured by 

different researchers, the resulting diagrams may be markedly different. Errors in the measurements are large, but 

rarely quantified. Up to now alternative approaches have been followed, where a database of TTT-diagrams can 

be queried for a specific composition, and diagrams with more or less matching compositions can be retrieved. 

Such systems have two limitations: they do not allow the effects of alloying elements to be investigated separately 

since diagrams in neatly measured, compositional series are rare, and they do not average out errors in 

measurement of the TTT-diagrams. An example of TTT diagram is shown in Figure 1. 

 

 

 

 
Figure 1. TTT diagram for cold working tool A8 steel (a) shows the time temperature curve with the emerging 

phases, and (b) relates the Austenite temperature together with hardness and grain size 
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This paper makes use of cold working tool steel AISI A8 which is of air hardening grade with high 

content of chromium and carbon. The evolving microstructure during heat treatment of this steel is of immense 

importance as the final mechanical properties of this steel depend solely on the microstructural changes during 

the process. The transformation process is complex in nature but to a very large extent depends on temperature 

and time [2]. Thus, understanding of the time temperature transformation of phases, which varies for different 

material due to its microstructure constituents, is of relative importance. The engineering need for this material is 

related to its performance requirement in metal forming and cutting applications. These mechanical applications 

have created an increase demand especially in the manufacturing and operation industries such as automotive. 

The high hardenability and toughness among other mechanical properties of the A8 steel resulted in its widespread 

use for cold work processes. 

Machine learning (ML) approach to material modeling is now been implemented due to the advantage it 

presents to material design approach for material and product development. R. Arroyave and co-author [3] 

implemented Support Vector Domain Description (SVDD) as an approximation to the infinite solution set to 

determine the feasibility range of data set while considering some set of thermodynamic conditions for a phase 

stability problem. Jordan Matthews and co-authors [4], applied the Naïve Bayesian Network classifier which is a 

fully disconnected Bayesian network in which no edges existed between design variables to provide mappings 

between multiscale levels (micro-meso model, and meso-macro model) in the design of Negative Stiffness 

Metamaterials. The effectiveness of Artificial Neural Network in predicting the CCT diagram for the precision 

forged tempering steel 50CrMo4 was shown by considering deformation CCT diagrams for several tempering 

steels as input data for predicting microstructural transformation [5]. Machine Learning technique in general has 

been seen to eliminate the challenges faced by previous approaches to material design and modeling. It is time 

efficient and relatively affordable compared to performing physical experiments that are cumbersome and costly. 

It eliminates the complexities and technicalities that arises from mathematical formulations and analysis and 

eliminate propagated uncertainties in the model.  

For our design problem, we utilize the application of machine learning algorithm to material processing 

and design as a demonstration problem.  

Random Forest method was implemented to successfully predict a A8 steel. The robust nature of the 

process helps in mitigating propagated uncertainties which tends to arise from the material models due to 

idealization or simplification of models.  

 
III. APPROACHING METHOD 

Machine Learning refers to the automated detection of meaningful patterns in data [5]. It is the 

application of artificial intelligence that enables systems to learn and substantiate future decisions from experience 

without being explicitly programmed. Machine learning algorithms can be divided into three broad categories —

 supervised learning, unsupervised learning, and reinforcement learning. Supervised learning is useful in cases 

where a property (label) is available for a certain dataset (training set) but is missing and needs to be predicted 

for other instances. That is, the computer is presented with ranged set of input and output dataset. The objective 

of supervised learning is to learn the rule that maps input space to an output space. Unsupervised learning is useful 

in cases where the challenge is to discover implicit relationships in a given unlabeled dataset (items are not pre-

assigned). Reinforcement learning falls between these two extremes. There is some form of feedback available 

for each predictive step or action, but no precise label or error message. 

Supervised learning is categorized based on the expected output of the algorithm. These are broadly in 

two categories; classification and regression model. In classification model, new predictions are identified to a set 

of categories that are subset of the same class. Classification model is considered on the instances of supervised 

learning. When the focus of simulation is on the relationship between dependent variable and sets of independent 

variables or predictors, a regression model is used. This analysis presents the response of a dependent variable 

when there is a change in any one of the independent variables while other variables are held constant. 

There are several machine learning algorithms in use to carry out training and testing of data set for a 

required output. The random forest (RF) method, classified under supervised learning as proposed by [6] is made 

up of nearest neighbor whereas “Ni–Mn” indicates an alloy of some composition NixMn1-x. algorithm. It is an 

ensemble of trees that easily captures nonlinear relationships between an input dataset and a target set by using 

ensemble of regression trees.  This predictive model is composed of a weighted combination of multiple regression 

trees. These models are useful in several prediction tasks where the features are more or less self-evident. In 

general, the model combines multiple regression trees to increase predictive performance. ML predictive 

modelling was used in [7] to predict the microstructure of a machined titanium alloy. Experimental results were 

used as an input data set for the predictive modelling of micro hardness and grain size. Sixteen (16) samples were 

generated by varying cutting conditions. These were machined, hardness and microstructure analysis of grain size 

evolution and volume fraction was conducted by using SEM scanning Electron Microscope imaging together with 
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a proprietary image processing program written in MATLAB. The temperature field was simulated by using 3D 

finite element simulations of machining the alloy. This temperature set serves as input dataset to predict hardness 

using the machine learning. The problem structure for our analysis consists of continuous variable that are more 

than two with several observations. A regression analysis was suitable for this problem because of the continuous 

nature of the design problem. ANOVA method implementation into random forest is the metrics on which 

feasibility check was performed. ANOVA, known as analysis of variance method, basically is a statistical 

methodology that determines the variation data points from the mean response of the desired variable. 

Mathematically, ANOVA is used to analyze the importance of one or more factors by comparing the mean of the 

response variable at the different factor levels. Analysis of variance requires a continuous response variable and 

at least a categorical factor with two or more levels. ANOVA require data from approximately normally 

distributed populations with equal variances between factor levels. However, ANOVA procedures work quite 

well even if the normality assumption has been violated, unless one or more of the distributions are highly skewed 

or if the variances are quite different. Transformations of the original dataset may correct these violations. 

ANOVA was applied to random forest algorithm to determine at what point the individual tree splits to classify 

each variable into feasible points or infeasible points. Figure 2 below shows a general regression tree structure for 

the analysis considered. The target variable is the dependent variable. Each branch of the tree is created at the 

point when the decision is made according to the splitting criteria at each branch node. The response variable for 

this analysis is continuous and does not belong to any class, thus a regression model is fit to each of the 

independent variables by isolating these variables as nodes to decrease error.  

 

 
Figure2. A schematic of the regression model 

 
Random forest forms a family of methods that consist in building an ensemble of decision trees that are 

grown from a randomized variant of the tree induction algorithm. This predictor ensemble of decision tree grows 

in a randomly selected space [6]. Various empirical studies have shown that random forests are fast and easy to 

implement, generate high prediction accuracy and can handle large number of input data set without the possibility 

of over fitting. An interesting feature is the built—in possibility of using left out sample to form estimates of 

important statistics (out of bag estimate) [6].  Random forest maintains high level of accuracy even with 

inconsistent data and gives a correlation plot to indicate important variables for the analysis. This algorithm can 

be used for either classification or regression model. Random Forest has been classified as a combination of 

decision trees (classification or regression) with great noise elimination ability that combines weak classifier of 

the sample type to produce a strong classifier. It provides an accurate and robust tool for solving many machine 

learning tasks ranging from regression, classification, density estimation, manifold learning [7]. Breiman’s 

Random Forest was based on the early work of Amit and Greman [8] based on the geometric feature selection, 

combined with the random space method of Ho [9] and the random split selection method of Dietterich [10]. 

Random Forest method is fast and easy to implement with high prediction accuracy and it is built with capacity 

to handle high volumes of input variables as well as small sample sizes and high-dimensional feature spaces 
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without overfitting. It can be easily parallelized, thus having the capacity to deal with real-life systems. These 

attributes make it one of the preferred among other machine learning methods [11, 12, 13, 14, 15]. Random Forest 

operates according to a “divide and conquer” principle by sampling a fraction of input data, grow a tree predictor 

on each small fraction of data randomly, then aggregate each predictor.  

Random Forest as a robust model can deal with both supervised classification and regression analysis. 

However, we focus on the regression analysis for our study. Categorizing Random Forest into classification or 

regression analysis is based on the desired output for the specified analysis. If the desired output is categorical, 

Random Forest classification method is used, and the classifier is given by the expression Ѱ: 𝑋 ⟼ 𝑌, where Y is 

a finite set of classes denoted by {c1, c2, c3, …..., ck}. 

While Random Forest regression model is used when the response variable is numerical and the regressor 

is a function 

𝜓: 𝑋 → 𝑌        where     𝑌 = ℝ                                     (1)  
 

Equation (1) indicate the relation between Ѱ 𝑎𝑛𝑑 𝑋 (independent variable) and Y (predicted variable), where Y 

belong to class of real numbers. The general framework for the regression model is nonparametric regression 

estimation in which an input random vector 𝑃𝜖 [0,1]𝑘  is observed. For Random Forest analysis, a training data 

set is of the form 

𝑇𝑛 = {(𝑋1,𝑌1), … … … . (𝑋𝑛,𝑌𝑛)}                                    (2) 

 

For a regression analysis, random forest is a predictor consisting of a collection of M regression trees. For the i-

th tree in the forest, the predicted value at the split point x is denotated by 𝑚𝑀,𝑛(𝐱; Θ1,, … . . , Θ𝑀, 𝑇𝑛) where 

Θ1,, … . . , Θ𝑀  are independent random variables, 𝑚𝑀,𝑛  is the regression error estimate, and 𝑇𝑛  is the training 

samples. Thus, the total tree estimate for the forest is the sum of individual tree estimate that makes the forest. 

This is denoted by equation (3)  

𝑚𝑀,𝑛(𝐱; Θ1,, … . . , Θ𝑀 , 𝑇𝑛) =
1

𝑀
∑ 𝑚𝑛(𝐱; Θ𝑖 ,

𝑀

𝑖=1

𝑇𝑛)       (3) 

 

The random Forest in R has a default value of M (number of trees in the forest) to be 500 (that is, 𝑛𝑡𝑟𝑒𝑒 =  500. 

Though this value can be adjusted to any arbitrary value higher than the default value. In a classification domain, 

the random forest classifier is obtained by a majority vote among various classification trees and the decisions for 

classifying the classes is given by equation (4) and equation (5) 

 

𝑚𝑀,𝑛(𝐱; Θ1,, . , Θ𝑀 , 𝑇𝑛) = 1, 𝑖𝑓 
1

𝑀
∑ 𝑚𝑛(𝐱; Θ𝑖 ,

𝑀

𝑖=1

𝑇𝑛) >
1

2
   (4) 

𝑚𝑀,𝑛(𝐱; Θ1,, . , Θ𝑀 , 𝑇𝑛) = 0, 𝑖𝑓 
1

𝑀
∑ 𝑚𝑛(𝐱; Θ𝑖 ,

𝑀

𝑖=1

𝑇𝑛) <
1

2
   (5) 

 

From equation (4) and equation (5), 0 and 1 denote two different classes into which data samples are 

classified upon satisfying the indicated criteria for the case of binary classification problem. However, random 

forest can intrinsically handle multi-class problem. Random Forest has however been modified based on its 

splitting method and criteria to generate a variance from the basic principles of Breiman Random Forest [16]. This 

include the purely random forest; under which the centered forest is classified as a method of selecting a variable 

among other variables and performing a split at the center of the variable selected. The tree growing process stops 

when a full binary tree is reached to give a 2k leaves for each tree as the process is repeated k times, where k ϵℕ. 

K is a smoothing parameter of the algorithm. Another modified model is the uniform random forest which varies 

slightly from the centered random forest as split are performed uniformly at random over the selected variable 

among all variables.  

The premise of our investigation is fairly simple. Given some set of factors (𝑎1, 𝑎2, 𝑎3, … … . , 𝑎𝑛) in the 

domain A, we want to predict the outcome of interest, P. Figure 2 imply the domain of all factors associated with 

output interest P in descending order of importance. In traditional regression models, a single equation or model 

is developed to represent the entire data set. Our method provides an alternative approach to this, in which the 

data space is partitioned into smaller sections where variable interactions are better understood. This analysis uses 

this recursive partitioning to create a tree where each node T in Figure 2 represents a cell of the recursive partition. 

To each cell, a simplified model is attached. This process is similar to conditional modeling along the tree structure 

where conditions are met on a particular variable as we move down the nodes. The final split or node is often 
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referred to as the leaf node. In Figure 2, A, B, and C are each terminal nodes (leaves). The leaf node implies that 

after this split, further splitting of the data does not give enough explanation of the variance to be considered 

relevant in describing the output outcome describing P.  

Mathematically, say we need to find a function d(a) to map our domain A to our response variable P, we need to 

assume of the existence of a sample of n observations,  

 

𝛽 = [(𝑎1, 𝑝1), … … , (𝑎𝑛 , 𝑝𝑛)]                              (6) 

 

According to regression equations standard, our criterion for choosing d(a) will be the mean squared prediction 

error given by the expression, 𝐸[𝑑(𝑎) − 𝐸(𝑝|𝑎)]2. For each of the individual leaf-node l and training samples k 

in the regression tree, then, our model is given by, 

 

𝑝̂ =
𝑙

𝑘
∑ 𝑝1

𝑘

𝑘=1

                                                             (7) 

 

Equation (7) represents the sample mean of the response variable considered for each cell which creates 

a piecewise constant model. This feasibility criteria maximizes the decrease in impurity, and it is the principal 

driving statistical mantra behind regression analysis using regression tree. Materials discovery process can be 

significantly expedited and simplified if we can learn effectively from available knowledge and data [17]. This is 

the main principle on which machine Learning techniques operate. However, one of the challenges faced with 

machine learning approach is the limited data available for modeling. The accuracy of a machine learning 

technique relied solely on the robustness of the model. The more the dataset, the more robust the analysis and the 

more accurate the prediction. To deal with this staggering challenge, several methods have been implemented to 

improve the accuracy of a machine learning techniques. For our analysis, Monte Carlo simulation was 

implemented to deal with uncertainty propagation that arise from model parameter uncertainty. Model parameter 

uncertainty are associated with design variables or control factors as a result of incomplete knowledge of model 

parameter/input. Monte Carlo simulation performs a random sampling and conduct large numbers of simulation 

on computer in order to observe the statistical characteristics of the model output. For an experiment, the possible 

input random variables 𝑋 = (𝑋1, 𝑋2, … . , 𝑋𝑛) are sampled according to their distribution function. Then the values 

of the output variables 𝑌 are calculated through the performance function 𝑌 = 𝑔(𝑋) at the samples of input 

random variables. With several experiments performed in this manner, set of output variable samples are obtained 

for the statistical analysis used to estimates the characteristics of the output variable 𝑌. The simulation process of 

Monte Carlo is depicted in Figure 3. Three steps are required in the process: Step 1 involves sampling on random 

input variables X, step 2 involves evaluating the model output Y, and step 3 is performing statistical analysis on 

model output. 

 

Problem Analysis 

In this paper, we consider the task of predicting temperature transformation and continuous cooling transformation 

diagrams as an approximation problem by obtaining a model with known data. For this reason, we describe each 

curve, which indicates the start or end of a microstructural transformation with the function 

 

𝑇 = 𝑓𝑖(𝑡𝑖𝑚𝑒),       𝑖 = 1, 𝑛̅̅ ̅̅̅                          (8) 

 
where 𝑇 is the transformation temperature in (degree Celsius), 𝑡𝑖𝑚𝑒 is the time of initiation or completion of a 

microstructural transformation, and 𝑛 is the number of phase transformation. This model is developed by using 

Random Forest algorithms incorporated with Monte Carlo simulations. The chemical composition of A8 steel is 

shown in Table 1 below. 

 
Table 1. Chemical composition of A8 steel 

Material Carbon Manganese Silicon Chromium Molybdenum Tungsten 

% Composition 0.55 0.30 0.95 5.0 1.25 1.25 

 
The constituent materials in their percent compositions are the factors that determines its mechanical 

properties for its application as dies and punches, drift pins, pneumatic tools, hammers, chuck jaws, hot rolls, and 

so on. It has a very good toughness, wear resistance, and excellent dimensional stability in heat treatment. These 

attributes make A8 steel an excellent choice for applications that requires higher toughness than that of high-

carbon or high- Chromium steels and better wear resistance than that of shock-resistance steels. 
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Figure 3. Monte Carlo algorithm 

 
 

The carbon content in this steel significantly helps in austinite and martensite phase formation during 

microstructural transformation which helps to improve the mechanical strength and hardness respectively. In 

general, alloying elements have been found to influence the transformation kinetics and mechanism in which 

carbide forming elements such as Molybdenum and Chromium produce tremendous changes in the isothermal 

transformation process. The formation of austinite structure and the ferrite structure has been generally seen to be 

the major transformation phases effected by alloying constituents [18].Austinite grain size, alloying elements 

which tends to slow the transformation reaction and carbon content has been found to be the major contributors 

to the hardenability of the steel. The steel is hardened when it is transformed from austinite phase to martensite 

on quenching. As the steel is cooled, microstructural transformation from austinite to martensite occur. The 

martensite phase stops at a temperature where pearlite and eventually ferrite microstructure begins in fine grain 

steel. This causes a reduction in grain size and thus, there is a shift in the TTT diagram towards the left. Increase 

in percentage of carbon lowers the martensite start temperature and thus a shift in the curve towards the right is 

observed [19]. The complexity of steel transformation behavior follows directly from even the simplest physical 

analysis of the process. Steel consists of iron and carbon, and usually also contains additional alloying elements. 

Pure iron in equilibrium has a body centered cubic (BCC) crystal structure called ferrite at room temperature and 

pressure, and a face centered cubic (FCC) crystal structure called austenite at temperatures between 912 oC and 

1394 oC, and again a BCC crystal structure at temperatures between 1394 ◦C and 1538 ◦C, the temperature at 

which pure iron melts. Most low alloy steels have the same equilibrium phases, yet at different temperatures, 

which depend on composition, since equilibrium phase transformations are controlled by thermodynamics: 

changes in free energy of the phases involved with temperature determine transformation temperatures. 

Furthermore, the thermodynamics determines the reaction heat of a phase transformation. The free energies of the 
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FCC and BCC phase change significantly when alloying elements are added, depending on the amount, type, and 

combination of alloying elements. In some cases, the effect of an element is even reversed when another element 

is added. Furthermore, these elements may form other phases in combination with iron, carbon, or other elements. 

Measuring the effect of a single alloying element on the free energy is already difficult; quantifying the effect of 

a number of alloying elements is progressively harder. These thermodynamics characterize the equilibrium 

structure of a steel, yet phase transformations do not proceed according to equilibrium. To be able to describe the 

structure, the thermodynamics determine the driving force for the phase transformation, and the kinetics of the 

phase transformations determine which phases actually form. The kinetic aspects of steel transformations thus 

influence the phase transformations and the resulting structure and properties greatly. During cooling, diffusion 

of alloying elements is required for the formation of equilibrium phases in most cases, notably the diffusion of 

carbon, since the solubility of alloying elements is limited in equilibrium phases. This diffusion will result in local 

compositional variations. The diffusion rate of alloying elements depends most strongly on temperature and the 

free energies of the phases occurring, yet it is also greatly affected by the presence of other alloying elements, i.e. 

the local composition. If during cooling insufficient time for diffusion is available for the equilibrium phase 

transformations to complete, then one or more other phase transformations occur resulting in metastable (non-

equilibrium) phases, such as bainite and Martensite; strictly speaking cementite and pearlite too are metastable. 

These phases each have their own free energies and transformation kinetics, again depending on composition. 

During non-equilibrium phase transformations alloying elements may remain in place in a supersaturated solution 

in the new phase, may form small particles of yet another phase (precipitates), and may affect the diffusion rate 

of other elements. An impressive number of these mechanisms is already known, yet this knowledge is far from 

conclusive. Steel is a polycrystalline material, i.e. on a microscopic level a steel specimen consists of number of 

crystals with different orientations and in many cases with12different crystal structures. The size, shape and 

distribution also have a large effect on the kinetics of the phase transformations of steels. To be able to fully 

describe the kinetics of steel transformations, the thermodynamics of the non-equilibrium phases needs to be 

known, as well as the diffusion coefficients of all alloying elements as a function of temperature, local composition 

and structure, which are all very difficult to measure. 

For this analysis, we collected TTT diagram for A8 steel in a graphical format. The statistical approach 

to modeling the TTT curve is only able to process numerical information. Therefore, TTT diagram need to be 

converted into a numerical format. Numerous conversion methods can be utilized but the one used for this model 

is an intercept method. In the intercept method, a number of fixed test lines is drawn over the diagram, where the 

intercepts of these lines with the phase boundaries in the CCT-diagrams determine coordinates describing the 

diagram. An advantage of intercept methods above grid methods is that the diagram can be represented by a 

relatively small number of data, since all data point at the relevant phase boundaries instead of describing the 

entire phase regions. These data were imported into MATLAB for Monte Carlo simulation. The Monte Carlo 

simulation uses probability distributed function (pdf) to analyze and generate random samples as depicted in 

Figure 3. 80% of the random output variables were then used to train our Random Forest model while the 

remaining 20% was used to test our model. 

 

IV. RESULTS AND DISCUSSION 
From the generated datasets for the TTT curve, the measured time and corresponding temperature values 

were imported into MATLAB for the Monte Carlo simulation. To carry out Monte Carlo simulation, constitutive 

equation is required for numerical experimentation. This is the analysis model in which the performance function 

is evaluated to generate samples of output variables. Monte Carlo simulation was to generate 100 random data 

samples as shown in figure 4 before applying the analysis model. 
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Figure 4. Random data sample generated with Monte Carlo simulation 

 

 
The applied constitutive model together with the uniform distribution function in MATLAB was used to 

extract probabilistic information from output data samples. In order to determine the constitutive equation for the 

TTT plot, several analyses were implemented in MATLAB to generate best curve fit from the measured datasets. 

The best method was achieved by dividing the TTT dataset into two, the upper bound and the lower bound as 

shown in Figure 5 and Figure 6 respectively. 

 

 

 
Figure 5. Upper bound plot with Monte Carlo method 
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Figure 6. Lower bound plot with Monte Carlo method 

 
The final CCT curve was achieved by super-imposing the two halves. The best fit for the upper bound 

after several manipulations is Power function with the number of terms as 2. For the lower bound of the CCT 

curve, power function with 2 number of terms was found to give the best fit with an R-square value of 0.999 and 

a 95% confidence interval as shown in the figure below. The above-mentioned process analysis helps in 

determining the constitutive equation to model the CCT diagram. For our case, two different equations were 

derived for the Monte Carlo simulations. Monte Carlo algorithm was implemented at this point after modifying 

the open source code to suit our analysis. To test the correctness of the constitutive equations, 100 simulations 

was performed, and the plot below shows the generated datasets and the TTT curve. This plot clearly shows the 

superposition of the upper and lower bound. This plot is similar to the one generated with measured data. 

 

 
Figure 7. Super-position of the upper and lower bound plot 

 
The output of Monte Carlo analysis was imported into R-statistical environment for regression analysis. 

The Random Forest model was trained with 90% input sample and a 10% test data samples was used to analyze 

how well our model performed. A mean square error (MSE)value of 87.5% was derived from the model. The 

model gave a Root Mean Square Error (RMSE) of 90.5%. these values indicated that our model predicted values 
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are very close to the actual data set. To validate our model, data points was digitized from [2] and used as input 

data for Monte Carlo simulation. The output data from Monte Carlo was imported into R. the input data was fitted 

to the Random Forest model and further statistical analysis was carried out to determine the performance accuracy 

of our regression model 

Figure 8 below shows the plot of the TTT curve. The model gave a very good prediction of the TTT 

curve with an accuracy matrix of 92.7%, this is approximately 100% and it indicate that the model accurately 

predicts the TTT curve. Residual standard error and multiple regression error of the model are shown in Table 2. 

 

 
Figure 8. Plot of a TTT diagram with Random Forest model 

 

 
Table 2. Statistical components of the Random Forest algorithm 

Residuals: 
   Min     1Q Median     3Q    Max  
-6.265 -3.922 -1.401  2.277 30.627  
 
Coefficients: 
              Estimate Std. Error t value Pr(>|t|)     
(Intercept)  6.601e+02  6.277e+01  10.517   <2e-16 *** 
x1          -1.133e-03  7.185e-05 -15.775   <2e-16 *** 
x            1.072e-04  8.673e-05   1.236    0.219     
y           -2.818e-02  8.040e-02  -0.350    0.727     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 6.207 on 96 degrees of freedom 
Multiple R-squared:  0.7244, Adjusted R-squared:  0.7157  
F-statistic: 84.09 on 3 and 96 DF, p-value: < 2.2e-16 
 

 
V. CONCLUDING REMARKS 

A TTT diagram of cold working steel A8 steel that contains the microstructural changes during heat 

treatment was observed in this paper. Digitized diagrams were used as input data for Monte Carlo simulation. 

Monte Carlo simulation provides a framework for model robustness and deals with uncertainty propagation due 

to limited data set. The Random Forest method was utilized to predict the TTT curve. From the results, our 

regression model gave a good prediction of the curves. However, our model prediction accuracy is limited to the 

type of steel to which it was trained. Use of different steel types could give a poor prediction due to the different 

percentage of constituent elements which affect the mechanism and kinetics of steel transformation during heat 

treatment. 
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NOMENCLATURE 
  

𝑘 Smoothing Parameter 

M Number of trees in the forest 

𝑚𝑀,𝑛 Regression Error Estimate 

ℕ Set of Natural Numbers 

𝑇 Temperature 

𝑇𝑛 Training Samples 

𝑌 Predicted (output) Variable 

𝛼1, 𝛼2, ⋯ , 𝛼𝑛 Set of factors 

Θ1, ⋯ , Θ𝑀 , 𝜓, 𝑋 Independent Variables 

𝛽 Sample of n Observations 
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