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I. INTRODUCTION 
Recent research is focussing on using shelled microbubbles as a mechanism for localised drug delivery [1–

6]. There are several types of commercial shelled microbubbles, also known as ultrasound contrast 

agents (UCAs). The shelled microbubbles have a typical radius of several microns thus allowing 

them to move through the capillaries and a shell thickness of several nanometres [7]. Shelled 

microbubbles resonate with frequencies of the order of several megahertz and display higher 

harmonic signals [8]. There has been a significant growth in recent years into using UCAs for 

localised drug delivery [9]. We intend to develop simulation tools to better understand the 

challenges involved. 

 Current shelled microbubble models use a Rayleigh-Plesset equation which is derived by 

applying pressure balances to the inner and outside of the shelled microbubble’s surface and the 

surrounding liquid [10–12]. Our Rayleigh-Plesset equation assumes that the microbubble oscillations  

are  radially  directed  and that the surrounding Newtonian liquid is incompressible.  We  assume that 
the  gas in the shelled microbubble behaves adiabatically [12]. We have  accounted  for the viscous 

damping associated with the microbubble shell but have not considered thermal and acoustic 

dissipation. 

 Thin monolipid microbubbles have shells that are viscoelastic in nature, and behave more 

ABSTRACT: Premanufactured shelled microbubbles are currently used in the medical 
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model for a liquid-crystalline shelled microbubble. For the very first time, using Leslie-
Erikson theory, a theoretical model is developed for a gas loaded shelled microbubble that 

is composed of a nematic liquid-crystalline material. Current mathematical models assume 

that the shells are viscoelastic in nature and are typically modelled as a Maxwell fluid. 

However, this approach is totally inappropriate for a liquid-crystalline material which is 

non-Newtonian in nature. We show that liquid-crystalline shelled microbubbles possess 

different physical properties from commercial shelled microbubbles. We have found that 

nematic liquid-crystalline shelled microbubbles have a relaxation time that is 10 times 

longer than certain commercial shelled microbubbles. The authors propose that these 

significantly different physical properties may enhance localised drug delivery via 

sonoporation. This is due to their longer relaxation time which enhances acoustic 

microstreaming and significantly increases the magnitude of the wall shear stress. 
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like a fluid than a solid shell [12]. This fluid like behaviour has inspired us to consider one 

specific type of mesophase material, nematic liquid crystals. We propose an entirely new type of 
shelled microbubble which is composed of a thin nematic liquid-crystalline shell. This type of 

shelled microbubble has a different material composition from all existing commercial shelled 

microbubbles. This paper uses the Leslie-Erikson continuum theory ([13], p133-159) for liquid 

crystals to model the dynamic behaviour of a gas loaded, shelled microbubble. This is the first 

study that has used nematic liquid crystal theory to model UCAs. Note that all the previous 

published literature pertaining to the modelling of shelled microbubbles focusses solely on the use 

of Newtonian viscoelastic models. The use of models such as Kelvin-Voigt and the Maxwell fluid 

model is wholly inappropriate for the modelling of a liquid-crystalline shell. Nematic liquid crystals 

are non-Newtonian fluids and typically exhibit anisotropic behaviour. We show that nematic 

liquid-crystalline shells display significantly different physical characteristics from commercial 

shells: these physical characteristics, namely the longer relaxation time and the significantly lower 
damping term are highly advantageous to the mechanism of sonoporation [14]. 

 The paper is structured in the following way: Section 2 deals with the generic Rayleigh-

Plesset equation then Section 3 focusses on the evaluation of the stress of the liquid crystal’s shell 

with Section 4 considering the elastic energy density of the shell. Section 5 determines the 

linearised Rayleigh-Plesset model and Section 6 compares a liquid-crystalline shelled 

microbubble to a commercial UCA. 

 

II. THE RAYLEIGH-PLESSET MODEL 
 Consider a shelled microbubble with inner and outer radii given by R1 and R2 
respectively, where the radii are functions of time only and the density of the shell is denoted by 

ρS . This article uses a dot notation above a physical quantity to represent differentiation of that 

quantity with respect to time. In terms of tensor notation, let xi represent the positional coordinate 

and r = |x| where r2 = xixi. We shall denote the radial unit vector as er and the speed and 

acceleration of the inner radius of the microbubble as   and  respectively.  Let ρL denote the 

density of the surrounding incompressible liquid where σ represents the Cauchy stress. 

Momentum balance results in the following equation to describe the dynamics of the UCA 

[10,15,16] 

 

 
 where a pressure balance has to be applied in order to determine the right hand side of 

equation (1). The pressure of the gas phase inside the shell and the surrounding ambient fluid 

pressure have to be considered as do the surface tensions and the shell and fluid viscosities. The 

divergence of the stress σ can be expressed as 

∇ · σ = −∇P + ∇ · τ, 

 where P denotes a pressure term and τ represents both the stress in the shell and the stress 

due to the surrounding Newtonian fluid. Rewriting the right hand side of equation (1) and 

integrating over the various media leads to 
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 where PS, PL and P∞ are the pressures in the shell, the surrounding Newtonian fluid, and at 

infinity, respectively. The stresses in the shell and the stress associated with the viscosity of the 
surrounding fluid are denoted by τS and τL respectively. Let R01 and R02 denote the equilibrium 

(unperturbed) inner and outer radius of the shelled microbubble. The boundary conditions at the 

inner and outer radii of the shell’s surface respectively are found by applying the momentum 

balance law [10] which leads to 

 

  
 

where κ denotes the polytropic index which is a dimensionless parameter [10,  17] and τS,rr denotes the 

stress in the radial direction. The terms γ1 and γ2 denote the interfacial surface tension (gas-shell 

interface) and the surface tension between the outer shell and the surrounding liquid respectively. 
The gas pressure Pg in equation (3) is obtained by balancing the pressures at the equilibrium radii 

R01 and R02 to give 

 
 

 where P0 represents the surrounding ambient liquid pressure and S is the stress associated 

with the elastic energy density of the liquid crystal and is given by equation (23) in Section 4. 

Note that P∞ in equation (2) describes the atmospheric pressure plus any external applied 

pressures (such as those created by an ultrasound probe) and is represented by P∞ = P0+PA sin ωt 

where PA and ω represent the externally applied pressure and angular frequency respectively. 

Substituting equations (3) and (4) into equation (2) gives 

 
 
The stress due to the viscosity µL of the surrounding Newtonian fluid is denoted by τL(R2, t) where 

([10], [18] p50) 

 
 

III. CALCULATING THE STRESS OF A LIQUID CRYSTAL SHELL 
 This section focusses on deriving an expression for the viscous stress of an incompressible 

liquid-crystal shell of known inner and outer radii. It is assumed that the shell’s composition is a liquid 

crystal that can be described dynamically using the nematic theory developed by Leslie and Ericksen 

([13], p133-159) where five independent Leslie viscosities [20] are required to determine the stress in 
the shell.  The sixth Leslie viscosity can be written as a linear combination of some of the other five 

independent Leslie viscosities. Some proteins [21] exhibit the characteristic behaviour of a liquid 

crystal where the molecules are arranged in layers ([13], p6). This paper will use nematic theory to 
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∂r r 

model the mesophase behaviour of proteins [22]. Continuum modelling of liquid-crystal theory 

assumes that the molecules are rod like in nature and are described by a unit vector n which is 
called the director. The molecules are arranged in layers with the director aligning perpendicular 

to the layers and parallel to the layer normal ([13],p6). We shall assume spherical symmetry of the 

liquid-crystalline shell with the director pointing radially outward everywhere and the layers 

consisting of concentric spheres. The director describes the local direction of the average 

molecular alignment and is a unit vector (so n = eixi/r) ([13],p6), where xi represents the positional 

coordinate and r = |x|. The viscous stress τij for a nematic liquid-crystal is given by 

 
where α1, α2, α3, α4, α5 and α6 are the Leslie viscosities, Aij is the rate of strain tensor and Ni is the 

co-rotational time flux of the director n. The corotational time flux is a measure of the rotation of 

the director, n, relative to the fluid. These terms are explicitly defined as ni = xi/r, Aik = (vi,k + vk,i)/2,         

 where the superposed dot signifies the material time derivative n i=∂ni/∂t + vj∂ni/∂xj 

and Wij = (vi,j − vj,i)/2 is the vorticity tensor. For the spherically symmetric case we have a 

velocity profile given by v = ver which is rewritten as 

 
with Ni = 0 and Wi,j = 0. Substituting into equation (9) gives 

 

 
 

 

The shelled microbubble is assumed to be an incompressible shell composed of   a thin liquid crystal 

shell with a radially directed flow ([13],p139).  Since the shell is incompressible then its volume, V, 
and density will be time independent. For a shelled microbubble with an inner and outer radii 

given by R1 and R2 respectively, the following relationship holds 
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Using equations (16) and (17), the Leslie viscosities represented by equation (14) can be rewritten 

as 

 

           
To determine the Cauchy momentum represented by equation (1) we have to evaluate the 

divergence of equation (18). Writing this in component form results in 

 
 
 where the α4 contribution is zero which is consistent with Brennan ([18], p49-50). The 

stress associated with the Leslie viscosities is calculated by integrating equation (19) between the 

inner and outer radius of the shell. Our mathematical model focusses on purely radial oscillatory 

behaviour. Since the shelled microbubble moves solely in the radial direction then in spherical 

polar  coordinates r = rer, with r2 = xjxj. The jth cartesian component of er is given by 
xj/r. Evaluating the integral between R1 and R2 results in 

 
IV. THE ELASTIC ENERGY DENSITY FOR A SHELLED MICROBUBBLE 

The liquid-crystal shell has both a viscous stress associated with the Leslie viscosities and 

a stress due to the elastic energy of the liquid crystal. This latter stress will add a further term to 

equation (9) as calculated below. The following strain energy density function was proposed for a 
bilipid membrane by De Vita and Stewart [21] 
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where K1a, K1n, B0, B1 and B2 are material constants, a is the unit normal to the layer, Ψ 

defines the layer structure of a liquid crystal and |Ψ|−1 represents the current local interlayer 

distance. The first term on the right hand side of equation (21) refers to the bending energy while 

the second term represents the splay energy contribution. The B0 term represents the 

compression-expansion energy, B1 is the energy associated with the coupling between n and a, and 

B2 is the term associated with the coupling between the splay and compression- expansion of the 

layer. It is assumed that the shelled microbubble is a bilipid membrane with a typical thickness of 

4nm ([13], p4). Generally |Ψ| −1 = 1 although for an undistorted liquid-crystal such as planar layers it 

is useful to define  |∇Ψ|
−1 such that  |∇Ψ|

−1
≠ 1. There  is  no  contribution  to  the  strain energy density 

function from the B0 , B1 and B2 terms given in equation (21). There are no published values for K1a 

but K1n is known for several types of liquid-crystalline material ([13], p330).  We shall make the  

assumption  that K1a ≈ K1n such that K1a = K1n = K1. This assumption is based on the experimentally 

determined values of K1n for various types of liquid crystals, all of which are very similar in 

magnitude. Assuming that n = a then we can conclude that the contribution from the elastic energy 

density reduces to 

W = K1 (∇ · n)2. (22) 

 

The stress associated with the elastic constant arising from the splay and the bending energies given 

by K1(ni,i)2 is determined via (−∂W/∂np,j) np,i and is represented by τelastic ([13],p151) where W is given 
by equation (22). So 

 
 

The integral of the divergence of the stress associated with the elastic energy density contributions 
due to n and a is 
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V. LINEARISATION 
 The technique of linearisation is used to determine the natural frequency and relaxation 

time for the shelled microbubble whose dynamic behaviour is described by equation (26). The 

time dependent perturbations for the inner and outer radii can be written as 

 
respectively. The shell is incompressible which results in R3

2 – R3
1 = R3

02 – R3
01. Linearising R3

2– 

R3
1 = R3

02 − R3
01

 using equations (27) and (28) and assuming that |ξ|, |η| << 1, results in 
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To linearise equation (26) we have to assume that the externally applied forcing pressure PA is of 

the same order of magnitude (in some appropriate sense) as |ξ| and |η|. Then linearising equation (26) 

leads to 

 

  
 

where γd represents a damping term and ωo is the angular natural frequency of the shelled 

microbubble. The term, P(t), represents the sinusoidal, external ultrasound signal which forces the 

shelled microbubble. The damping term is given as 

 

 
 

which is related to the relaxation time by trelax = 1/γd. The natural frequency, fo = ωo/(2π), is given 

by 
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VI. COMPARISON OF A NEMATIC LIQUID-CRYSTALLINE SHELLED MICROBUBBLE 

WITH A COMMERCIAL UCA 
We shall compare a nematic liquid-crystalline (MBBA) shelled microbubble of thickness 

R02-R01 and outer equilibrium radius of R02 = 1µm to an equally sized commercial shelled 

microbubble discussed by Doinikov and Bouakaz [23]. Let us assume that the densities of the 

liquid-crystalline shell and the surrounding fluid are ρS = 1060 kgm−3 and ρL = 1000kgm−3 

respectively ([13], p330).  The Leslie viscosity term, the polytropic index of the gas, the 

viscosity of the surrounding fluid and the interfacial surface tension and the exterior radius’ surface 

tension are α = 0.035Pa s, κ = 1.095, µL = 10−3 Pa s, γ1 = 0.036Nm−1 and γ2 = 0.072Nm−1 respectively 

([13], p330). The damping term for a liquid-crystalline shelled microbubble was γd = 2.2 × 106s−1 
compared to γd = 3.2 × 107s−1 for the commercial shelled microbubble. This results in a relaxation 

time of trelax = 4.5 × 10−7s for a liquid-crystalline shelled microbubble compared to trelax= 3.2 × 

10−8s for a commercial shelled microbubble. Comparing the natural frequencies f0 for both types 

of shells where P0 = 105Pa gives f0 = 4.6MHz for a liquid-crystalline shell compared to f0 = 

10.8MHz for a commercial shelled microbubble. Note that f0 = 10.8MHz is the mathematically 
determined natural frequency for a single shelled microbubble. Our study does not consider a 

uniform suspension of microbubbles or a polydisperse suspension. 

 Doinikov and Bouakaz have shown that the wall shear stress due to acoustic 

microstreaming via a shelled microbubble is inversely proportional to the square of the damping 

term [23]. Cowley and McGinty have speculated that the significantly different value for the 

damping term for a liquid-crystalline shell and a commercial UCA shell strongly influence the 

mechanism of sonoporation [14]. Cowley and McGinty have proposed that a liquid-crystalline 

shelled microbubble enhances the capillary wall shear stress by two orders of magnitude 

compared to a commercial shelled microbubble. This is a consequence of the smaller damping 

term for the liquid-crystalline shell. Note that the Cowley and McGinty model is for a rigid plane 

capillary wall as is the Doinikov and Boukaz model. 

 

VII. CONCLUSION 
A modified Rayleigh-Plesset equation has been derived using Leslie-Erikson theory for a shelled 

microbubble with an incompressible shell composed of a nematic liquid-crystalline material, surrounded 

by a Newtonian fluid.  The model considered the adiabatic gas inside the shelled microbubble, the thin 

shell’s crystalline material and the surrounding Newtonian fluid.  We then linearized the model using time-

dependent perturbation theory and determined expressions for the relaxation time and the natural 

frequency of the shelled microbubble. 

Up until now there has been no published experimental data for liquid- crystalline shelled 

microbubbles. Using the values given by Doinikov and Bouakaz for commercial shelled 
microbubbles, we have found that the damping term γd for commercial microbubbles is 

approximately 10 times larger than the damping term for a nematic liquid-crystalline shelled 

microbubble. This implies that current commercial shelled microbubbles have a relaxation time 

that is approximately 10 times shorter. We have also found that the natural frequency of a liquid-

crystalline shelled microbubble is approximately 1/2 that of a commercial shelled microbubble. We 

speculate that the difference in relaxation times has profound implications for the wall shear  

stress. 

Future research will focus on the technique of sonoporation which involves using the 

shelled microbubbles in conjunction with an external ultrasound signal to temporarily enhance the 

porosity of the capillary walls. This temporary enhancement of the walls is a consequence of wall 
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shear stress and is due to several mechanisms [23]. One such mechanism is acoustic 

microstreaming which we intend to model using our liquid-crystalline shelled microbubble 
model. It has been proposed by Doinikov and Bouakaz that both the damping term and the natural 

frequency of the shell have a significant influence on the magnitude of the wall shear stress. We 

will compare and contrast the wall shear stress generated by a suspension of liquid-crystalline 

shelled microbubbles acting on a viscoelastic capillary wall to that generated by a suspension of 

commercial contrast agents. We accept that experimental data is required in order to validate the 

findings of our mathematical model. It is the authors’ hope that this journal article instigates 

future experimental work. 
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