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I. INTRODUCTION 
The coupling of diff erent scales can be found in many mathematical models in science and engineering 

problems [1], which may often cause the relaxation oscillations, called also bursting oscillations, characterised by 

the combination of large-amplitude oscillations (spiking states, SP s ) and small-amplitude oscillations or at rest 

(quiescent states, Q S s ) [2]. The earliest work may date back to discovery of the relaxation oscillations of singular 

Van der Pol equation at the end of 19th century [3]. However, it was until the Hodgkin-Huxley model was 

established, the slow-fast dynamics receives much attention, since the H-H model can exhibit the bursting 

activities in neurons [4]. 

Since no valid analytical method exists to explore the interaction between diff erent scales [5], in the first 

stage of the related study, researchers focused on the approximated solutions and presented a few approaches, 

such as the quasi-steady state method and singular perturbation method [6]. 

Oscillations with clearly separated amplitudes have been observed in many application areas [7]. How to 

explain the transitions between them becomes one of the hot topics in the systems with multiple time scales [8]. 
Dynamical system theory studies qualitative properties of the solutions of diff erential equations, especially the 

bifurcations of equilibria and periodic orbits [9]. Bursting oscillations may be periodic orbit, but we then ask the 

questions that how can we apply the dynamical system theory to reveal the transitions. Beginning with the work of 

Takens on constrained vector field [10], geometric methods have been used to study the generic 

multiple-time-scale systems with slow and fast state variables [11]. Fenichel’s seminal work on invariant 

manifolds was an initial foundation of the geometric singular perturbation theory [12], which takes a geometric 

point of view and focuses on invariant manifolds, normal forms for singularities, and analysis of their unfoldings 

[13]. 

The main idea of geometric singular perturbation theory is to consider the behaviors of slow and fast 

subsystem separately, in which a typical autonomous slow-fast system can be expressed in the form [14] 

 

Abstract: 

The dynamics of the autonomous systems with multiple time scales can be explored by the geometric 

singular perturbation theory, which however cannot be used to investigate the mechanism of the relaxation 

oscillations in non-autonomous oscillators. For the periodic excited systems, when the exciting frequency 

is far less than the natural frequency, which implies the coupling of two time scales in frequency involves 

the dynamics, relaxation oscillations, called also the bursting oscillations, can often be observed. Here we 

refer to the geometric singular perturbation theory, and propose a method to reveal the mechanism of the 

behaviors of periodically excited vector fields. Furthermore, for a symmetric system with the coupling of 

different time scales, multi-stability may lead to more complicated behaviors when the slow-varying 

periodic excitation is introduced. Here we consider a typical chaotic oscillator with slow-varying external 
excitation. With the variation of the exciting amplitude, different types of bursting oscillations are 

presented, the mechanism of which is explored by the proposed method. It is found that, the multi-stability 

in the system can not only lead to different attractors, but also cause the dynamics to alternate between a 

symmetric attractor and a pair of coexisted asymmetric attractors, depending on the particular attracting 

basins of the stable equilibrium branches the trajectory visits. 
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where , , ,
M N K

x R y R R   while 0 1  describes the ratio between the fast and slow scales. The 

functions ,f g  are assumed to be sufficiently smooth. The state variables x  are fast and the variables y  are 

slow. 

As 0,   the trajectories of (1) converge during the fast epochs to the solution of the fast subsystem [15] 
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During slow epochs, on the other hand, the trajectories of (1) converge to the solution of 
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which is diff erential-algebraic equation called the slow flow or reduced system [16]. One goal of Geo-metric 

singular perturbation theory is to use the fast and slow subsystems (2) and (3) to understand the dynamics of the 
full system (1). The algebraic equation in (3) defines the critical manifold [17] 

                                       : ( , ) ( , , ) = 0
m n

S x y R R f x y    ，                                   

(4) 

the points of which are equilibrium points for the fast subsystem. By the characteristic analysis of the equilibrium 

points of the fast subsystem, the branch S  can be divided into three types of subsets, corresponding to repelling, 

attracting and saddle types, respectively [18]. Hyperbolicity of the fast subsystem fails at the points on S  where 

its projections onto the space of slow variables is singular. From the implicit function theorem, equilibrium branch 

S implies  y h x . Therefore, the behaviors of the trajectory at the singular points on S  may be described by 

[19] 

 
1
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                                        

(5) 

By regarding the slow state variables y  as slow-varying parameters, the equilibrium branches as well 

as their bifurcations of the fast subsystem with the variation of y  can be derived. The mechanism of the bursting 

oscillations can then be obtained by overlapping the phase portrait and equilibrium branches on the ( , )x y  plane 

[20], in which the fast subsystem can be used to determine the quiescent states and the spiking states and the 

bifurcations at the alternations, while the slow subsystem can be employed to investigate the modulation by the 

slow process [21]. 

Many types of bursting attractors and their mechanism have been reported by the geometric singular 

perturbation theory, which can be classified by the structures, such as point-cycle, cycle-cycle bursting attractors 

[22], or by the related bifurcations, for example, the fold-fold, fold-Hopf bursting attractors [23]. However, most 

of the results are obtained based on autonomous slow-fast systems, while the bifurcations at the transitions are 

commonly codimension-one bifurcations [24]. For periodically excited dynamical systems, when the exciting 

frequency is far less than the natural frequency, relaxation oscillations can also be observed, how to explore the 

mechanism of such bursting attractors is still an open problem [25]. Meanwhile, when the multi-stability involves 

the vector fields, the bifurcations may lead to a set of behaviors, which therefore result in diff erent forms of 
bursting oscillations, seeing the bursting attractor with cusp bifurcation [26]. 

Here we proposed a method to explore the mechanism of bursting oscillations in periodically excited 

dynamical systems. The method is then used to analyze the dynamical evolution of a para-metrically excited 

vector field with pitchfork-Hopf bifurcation. 

 

II. SLOW-FAST ANALYSIS METHOD FOR TWO SCALES IN FREQUENCY DOMAIN 
Here we consider periodically excited system, written in the form 

                                              , , s in ( ,x f x A t   ）                                   (6)  

where , , ,
M N K

x R y R R    while 0 1.  Two scales in frequency exist, corresponding to the natural 

frequency and the exciting frequency, respectively. Since no obvious slow and fast subsystems can be defined, 
new method need to be developed to investigate the mechanism of the dynamics. For the purpose, we refer to the 

geometric singular perturbation theory and rewrite (6) as 
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Generalize autonomous system. Similar to the method by Rinzel, we regard the whole exciting term w  as a 

generalized slow state variable, like y  in (1). The fast subsystem is then expressed in the generalized 

autonomous system, while the slow subsystem is described by a slow-varying function of time. 

The critical manifold is defined as 

                                      : ( , ) ( , , ) 0
m

S x w R R f x w    ，                                    

(8) 

the points of which are equilibrium points for the fast subsystem. We call a normally hyperbolic subset M S  

attracting if all eigenvalues of ( )( , )
x

D f p u  have negative real parts for p M ； similarly, M  is called 

repelling if all eigenvalues have positive real parts. If M  is normally hyperbolic and neither attracting nor 

repelling, we say it is of saddle type. 

Away from the singular points on the S , the implicit function theorem implies that S  is locally graph of a 

function ( ),w h x  which leads to 
2 2
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x
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For the fixed parameters  , we can derive not only the equilibrium branch ( ),x v w  but also the bifurcation 

points * * *
( , ) .p x w S  

 

Transformed phase portrait. Since the equilibrium branch and the dynamics of the fast generalized autonomous 

system may change with the variation of w , here we introduce the conception of the transformed phase portrait, 

defined by   ( , ) , s in ( ) ,
G

x w t R x A t t R       
   in which w  is regarded as a generalized state variable, 

like y  in (1). 

The corresponding relationship between the proposed method and the geometric singular perturbation theory is 

listed in Table 1. 

The overlap of the phase portrait and the equilibrium branches on the ( , )y x  plane can be used to reveal the 

mechanism of the bursting oscillations in autonomous slow-fast systems. Accordingly, regarding w  as a 

generalized state variable, we can find the mechanism of the bursting oscillations in non-autonomous systems 
with slow-varying periodic excitations by overlapping the transformed phase portrait and the equilibrium 

branches and their bifurcations of the fast subsystem with the variation of the slow-varying parameter w . Based 

on the method, serval types of bursting oscillations and their mechanism with codimension-1 bifurcations in 

parametrically or externally excited systems is presented, which exhibits quite diff erence comparing with the 

bursting oscillations in autonomous systems [27]. 

In the following, we focus on the eff ect of two scales in the frequency domain on the dynamics of a modified 

symmetric R ossler  system by introducing a slow-varying periodic excitation to investigate the influence of 

multi-stability on the bursting evolution. Several new types of bursting oscillations exhibiting a few special 

interesting phenomena are obtained, the mechanism of which is presented by the proposed method. 

 

Table 1: Comparison between the proposed method and the geometric singular perturbation theory 
 Geometric singular perturbation theory Proposed method 

Fast subsystem ( , , )x f x y   ( , , )x f x w   

Slow subsystem ( , , ),y g x y   sin ( )w A t   

Slow variable y   w  

Critical manifold ( , , ) 0f x y    ( , , ) 0f x w    

Reduced equation 1
( ( )) [ , ( ), )]

x
x D h x g x h x 


  2 2 1

( ) ( ( ) )
x

x A h x D h x


    
 

 

Equilibrium branch ( , )x h y    ( , )x h w   

Phase portrait ( , )y x   ( , )w x  
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III. MATHEMATICAL MODEL 
Unlike many famous symmetric chaotic systems such as Lorenz oscillator [28] and Chen’s system[29], 

the chaotic R o ssler  system with multi-stability is asymmetric, since only quadratic nonlinear terms exist, 

which can be modified to appear in the symmetric form [30], 

2

/ ,

/ ,

/ ( ) ,

d x d t y y z

d y d t x a y w

d z d t b z h x c

  

  
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(10) 

where sin (w A t  ） represents the external periodic excitation. 

When 0A  , the multi-stability in the symmetric system may lead to the strange attractor oscillating around 

diff erent stable equilibrium points [31]. When 0, 1,A   for a regular   value, the dynamics may evolve 

from limit cycle to chaotic oscillations via sequence of period-doubling bifurcations [32]. However, when 

0 1 , implying the coupling of two scales in frequency domain exists, bursting oscillations may appear 

observed, characterised by the combination of large- amplitude oscillations, called the repetitive spiking state 

( )S P , and the small-amplitude oscillations or at rest, represented by the quiescent state ( )Q S . 

Obviously, the vector field still keeps its symmetry since it remains unchanged with the transformations 

( , , , ) ( , , , / ).x y z t x y z t       Note that the natural frequency of (1) can be computed by the related 

autonomous system by setting 0,A   which may change with the dynamical behaviors [33]. For example, when 

the trajectory oscillates around a focus, the natural frequency may be defined by the imaginary parts of the 

conjugate eigenvalues related to the equilibrium point, while when the trajectory oscillates according to a limit 

cycle, the corresponding frequency can be regarded as the natural frequency. 

In the following, we will use the proposed method to investigate the mechanism of the dynamical evolution 

of the system, and reveal the influence of multi-stability on the bursting attractors. We first turn to the bifurcation 

analysis of the fast subsystem, i. e., the generalized autonomous system. 

 

IV. BIFURCATION OF THE GENERALIZED AUTONOMOUS SYSTEM 

Since the exciting frequency   is far less than the natural frequency, denoted by 
N

 , the whole 

exciting term w  can be regarded as a slow-varying bifurcation parameter, resulting in a generalized autonomous 

system, expressed also in the form (10). 

The critical manifold can then be expressed by 

2

0 ,

0 ,
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y y z
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  

  

  

                                           

(11) 

corresponding to the equilibrium points of the fast subsystem. Obviously, two types of equilibrium points can be 

observed. The first type of the equilibrium point can be expressed as 2

0
( , , ) [ , 0 , / ( )],E x y z w b h w c     the stability 

of which can be determined by the related characteristic equation, written as 
3 2

2 1 0
0 ,a a a                                              

(12) 
with 

2 2 2 2

0

2 2

1

2

2

/ ( ) / ( ) ,

/ ( ) 1,

,

a h w b h w c h w c b h w c c

a a h w a c b h w c
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        
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(13) 

0
E  is stable when 

0 2
0, 0a a   and 

0 1 2
0 .a a a   It may lose the stability on two sets, one of which can be 

expressed by 

FB: 2 2 2 2
/ ( ) / ( ) = 0 ,h w b h w c h w cb h w c c                                     

(14) 

with 
2 0 1 2

0, 0 ,a a a a    leading the jumping phenomenon between diff erent equilibrium points via fold 

bifurcation, while the other of which can be defined by 
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resulting in limit cycle via Hopf bifurcation. 

The other type of equilibrium point can be expressed as ( , , ) [ ( ) / , / ( ) / / , 1),E x y z b c h w a b c h a


      the 

properties of which can be determined by the related eigenvalues defined by 

       2 2 2 ] [  0,a b a b c w h b c                                      

(16) 

respectively. Obviously, for 0,a  or 0,b   E


 are of saddle-type. When 0a   and 0,b   E


 is stable for 

 2 2 2 0,w h b c b c     while E


 is stable for  2 2 2 0 .w h b c b c     Fold bifurcation may appear on 

the sets 

FB± :  2 2 2 = 0, ( 0 , b 0 ),w h b c b c a                                         

(17) 

possibly resulting in the jumping between diff erent equilibrium points, while Hopf bifurcation may occur on the 

sets 

HB+:  0
2 2 2 00, ( 0, ),w h bb c b ca                                          

(18) 

HB-:  2 2 2 00, ( 0 ,
0

),w h bb c b ca       

leading to periodic oscillations around E


, with the frequencies approximated at  
2

2 (2 2 ),w w h b c b c

     

respectively. 

Remark: Note that the positions of the equilibrium points may change with the variation of the slow-varying 

parameter w , which forms equilibrium branches. 

As an example, Fig.1 gives the equilibrium branches as well as the bifurcations on the ( , )w x  plane for the 

parameters fixed at 0.1, 0 .1, 0 .1, 0 .1 .a b c h         The equilibrium branch 
0

E  is divided into three 

segments by the bifurcation points, corresponding to stable focus-type (1 ) ( 3 )

0 0
,E E  in which the segments (1 ) ( 2 )

,E E
 

 

are stable focus-type and the segments ( 2 ) (1 )
,E E

 
are unstable saddle-type, shown in Fig.1. 

It can be found that when 2 ,w w


    two stable foci 
0

E  and E


 coexist with the unstable saddle 
+

E , 

while at ,w w


  
0

E  meets 
+

E , the fold bifurcation at F B


 leads the alternations of the stabilities of the 

equilibrium points, which implies that 
0

E  becomes an unstable saddle point while 
+

E  changes to a stable focus. 

When w  increases to 2 ,w w


   the saddle-type 
0

E  and the stable focus E


 collide, yielding fold 

bifurcation at F B


, at which 
0

E  changes to a stable focus, while E


 becomes an unstable saddle. 

 
Figure 1: Equilibrium branches and bifurcations of the generalized autonomous system on the ( , )w x  plane double 

arrows indicate the direction of the fast flow and single arrows that of the slow flow. 
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Therefore, for the parameters fixed above, the slow-varying parameter w  can be divided into three regions by the 

two fold bifurcation points, denoted by 
  with ( , ),w w


   0

  with +
( , )w w w


 and 

  with 

( , )w w


  , in which different types of equilibrium branches can be observed.  

It is found that, when w


  or 0
w   , there always one saddle and two stable equilibrium points with different 

attracting basins. The multi-stability may influence the dynamical behaviors of the full system, since the trajectory 

may visit different attracting basins under the effect of the fast and slow manifolds. 

Obviously, for a fixed exciting amplitude A , the slow-varying parameter w  may change between A  and 

A , i. e, [ , ],w A A   implying that the value of the exciting amplitude A  determines the extreme values of 

w . Therefore, in the following, we focus on the evolution of the system with the increase of the exciting 

amplitude to explore the influence of the branches and their bifurcations of the fast subsystem on the dynamical 

behaviors of the full system. 

 

V. DYNAMICAL EVOLUTION 
To explore the slow-fast behaviors caused by the two scales in the frequency domain, here we fix the 

exciting frequency at 0.01 with parameters at 0.01, 1 .0    , which is far smaller than the natural frequency, 

while the other parameters are taken at the values described above. All the numerical results in the following are 

obtained by the variable step size Runge-Kutta method with the initial step at 0.001. To demonstrate the validity of 

the numerical simulations, different initial conditions for the step and the state variables are taken, while the 

constant step Runge-Kutta method is introduced to check the results. 

For 2A  , no bifurcation occurs on the equilibrium branches of the generalized autonomous system. The state 

variables x  and z  settle down to the constant values at 2 , 1x z     with different initial values, 

respectively, while 5 2 [s in (0 .0 1 t) / 0 .2 0 0 5 co s (0 .0 1 t) / 4 .0 1]y A    , which can be demonstrated by numerical 

simulations. 

 

5.1 Two coexisted asymmetric periodic fold/fold bursting attractors 

When A  increases to 2A  , fold bifurcations at the two points F B
  may influence the structure of 

the attractors. However, since both the two fold bifurcation points F B
  connects the stable segment and unstable 

segment of E
 , delay of the bifurcation exists because of the slow passage effect. Numerical simulations reveal 

that when A  increases to 1.8225A  , the influence of the fold bifurcations on the dynamics appears, which 

implies for (0 .0 ,1 .8 2 2 5)A  , the trajectory moves with 

( , , ) ( 2 , 5 2 [s in (0 .0 1 t) / 0 .2 0 0 5 co s(0 .0 1 t) / 4 .0 1], 1)x y z A      . When 1.8225A  , two coexisted bursting 

attractors appear, shown in Fig.2 for 3.50A  . Obviously, the two coexisted attractors are symmetric to each other, 

caused by the symmetry of the vector field. Furthermore, it can also be found that the trajectories of both the two 

attractors may oscillate around two types of equilibrium points, respectively. 

To reveal the mechanism of the bursting oscillations, we turn to the transformed phase portrait on  the ( , )w x  

plane, together with the equilibrium branches and the related time history, shown in Fig.3. The trajectory 
alternates between two segments, corresponding to the large-amplitude 
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Figure 2: Two coexisted bursting attractors for 3 .5 0A  . (a) The attractor on the ( , )x y   plane with the initial 

condition  0 .1,  0 .1,  0 .1  and the attractor on the ( , )x z  plane in (b); (c) The attractor on the ( , )x y  plane with the 

initial condition ( 0.1, 0.1, 0.1)    and the attractor on the ( , )x z  plane in (d). 

 

oscillations, denoted by S P , and small-amplitude oscillations or at rest, represented by Q S , respectively, seeing 

Fig.3.  

Assuming the trajectory starts at the point 1
P , at which the slow-varying parameter w  takes its minimum value 

with 3.50w   , it moves almost strictly along the stable equilibrium branch 0
E , behaving in quiescent state 

Q S . When the trajectory arrives at the point F B
 , it turns to move along the stable equilibrium branch +

E . 

Small-amplitude oscillations take place since the fold bifurcation causes the trajectory to move according to two 

different types of equilibrium branches. With the increase of w , the trajectory settles down to +
E  and moves 

almost strictly along +
E  until it arrives at the point 2

P  at which w  reaches its maximum value with 

3.50w   . 

 
Figure 3: The structure of the attractor in Fig.2a. (a) The related time history of x ; (b) Overlap of the transformed 

phase portrait and the equilibrium branches on the ( , )w x  plane. 
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The trajectory then turns to the left since w  decreases with the increase of time, which still moves 

almost strictly along 
+

E . Because of the slow passage effect, when the trajectory reaches the point F B


, it passes 

across the bifurcation point and turns to move almost strictly along the unstable equilibrium branch 
+

E  until the 

influence of the fold bifurcation appears. The trajectory then tries to approach the stable equilibrium branch 
0

E . 

However, since at the time the trajectory does not exactly locate on the equilibrium branch 
0

E , large-amplitude 

oscillations in spiking state S P  occur, caused by the transient process of the trajectory from the current location 

to the stable focus-type branch.  

The amplitudes of the oscillations decrease gradually and the trajectory finally settles down to 
0

E . When the 

trajectory arrives at the starting point 
1

P  on 
0

E , one period of the bursting oscillations is finished. It can be found 

the fold bifurcations cause the alternations between Q Ss  and SP s  on the trajectory. Therefore, the type of 

bursting attractor can be called asymmetric periodic fold/fold bursting oscillations.  

Remark: The frequency of the repetitive spiking oscillations can be approximated by the imaginary parts of 

conjugate complex eigenvalues of the equilibrium point on the focus-type equilibrium branch 
0

E , which may 

change slowly with the variation of w  From the related time history in Fig.3a, the frequency of the spiking 

oscillations can be approximated at 0.8925, which agrees well with the theoretical result at 0.8869, computed from 

the imaginary parts of the eigenvalues of the related equilibrium point. 

 

5.2 Symmetric periodic fold/fold/fold/fold bursting oscillations 

With the increase of the exciting amplitude, the two asymmetric attractors expand in the phase space, 
which may interact with each other to form an enlarged symmetric bursting attractor. Numerical simulations 

reveal that when 5.0478A  , a new type of symmetric bursting attractor appears, the trajectory of which may 

visit the two original asymmetric attractors in turn, seeing the attractor in Fig.4 for 5.50A  . 

 

 
Figure 4: Symmetric bursting attractor for 5 .5 0A  . (a) Phase portrait on the ( , )x y  plane; (b) Phase portrait on the 

( , )x z  plane. 

 

From the phase portrait of the attractor on the ( , )x y  plane in Fig.4a, one may find that two jumping 

phenomena occur for the trajectory moving almost strictly along the two equilibrium branches E


 of the 

generalized autonomous system. For example, the trajectory along 
+

E  may jump to E


 at the point 
1

L  or jump 

to 
0

E  at the point 
4

L , seeing Fig.4a, while the trajectories of the two asymmetric attractors may jump only 

between E


 and 
0

E , respectively. 

Remark: With the increase of the exciting amplitude A , the inertia of the movement almost strictly along the 

two equilibrium branches E


 increases so that the trajectory may visit both the two attracting basins of the 

associated stable equilibrium branches of the generalized autonomous system, causing the collision of the two 

asymmetric attractors to form an enlarged bursting attractor. 

We now turn to the time history of x , presented in Fig.5, from which one may find that the trajectory can be 

divided into 8 segments, corresponding to four quiescent states 1, 2 , )3, 4(
i

Q S i   and four spiking states 

1, 2 , )3, 4(
i

S P i  , respectively. Though there exist oscillations in the stages of 1
Q S  and 3

Q S , which are caused 

by the jumping between E
  and 0

E , since the jumping phenomena occur at the intersection points of the 

equilibrium branches, the amplitudes of the oscillations are very small. 
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Figure 5: Time history of x  for 5 .5 0A  . 

 

To reveal the mechanism of the bursting oscillations, we also turn to the overlap of the transformed phase 

portrait and the equilibrium branches on the ( , )w x  plane, plotted in Fig.6.  

Assuming the trajectory starts at the point 1
P  with 5.50w   , it moves almost strictly along the stable 

equilibrium branch 0
E , behaving in quiescent state 1

Q S , until it arrives at the point F B
 . Fold bifurcation 

occurs, causing the trajectory to turns to move along +
E  with small-amplitude oscillations. The amplitudes of the 

oscillations gradually decrease and the trajectory finally settles down to +
E . When the trajectory reaches the 

point 3
P  with the maximum of 5.50w   , it turns to left, moving almost strictly along +

E . 

The trajectory passes across the fold bifurcation point F B


, and then moves along the unstable segment 

of 
+

E , until it arrives at the point 
1

L , at which the effect of fold bifurcation occurs, seeing in Fig.6. The trajectory 

then jumps to the stable equilibrium branch E


, yielding large-amplitude oscillations 
1

S P , the amplitudes of 

which decrease gradually, causing the trajectory to settle down to E


 at the point 
4

P  with 5.50w   .  

The trajectory then turns to the right and moves almost strictly along E


, passing across the point F B


 

and appearing in quiescent state 
2

Q S . When the trajectory arrives at the point 
2

L , the influence of the fold 

bifurcation occurs, causing the trajectory to jump to 
0

E , resulting in large-amplitude oscillations 
2

S P . The 

trajectory finally settles down to 
0

E  and moves almost strictly along 
0

E , behaving in quiescent state 
3

Q S . 

Small-amplitude oscillations take place at the interaction point of 
0

E  and E


, because of the fold bifurcation at 

the point F B


. The trajectory then approaches the stable equilibrium branch E


 to the point 
4

P , then it turns to 

the right, moving almost strictly along E


, passing across the fold bifurcation point F B


. When the trajectory 

arrives at the point 
3

L , the fold bifurcation may cause the trajectory to jump to 
+

E , resulting in spiking 

oscillations 
3

S P . The amplitudes of the oscillations decrease gradually and the trajectory tries to settle down to 

+
E . When the trajectory reaches the point 

3
P , it turns to the left, moving almost strictly along 

+
E  passing across 

the fold bifurcation point F B


.  

When the trajectory arrives at the point 4
L , it approaches stable 0

E  via fold bifurcation, leading to 

spiking oscillations 4
S P . The trajectory tries to settle down to 0

E  with gradual decrease of the oscillating 

amplitudes. Once the trajectory arrives at the starting point 1
P , one period of the bursting oscillations is finished.  

It can be found that four fold bifurcations take place, resulting in the transitions between the Q S  states 

and S P  states during each period of the bursting oscillations. Therefore, the type of movement can be called 

symmetric periodic fold/fold/fold/fold bursting oscillations.  

Furthermore, it can be found that the period of both the asymmetric bursting attractors is equal to that of 

the external excitation, while the period of the enlarged symmetric bursting oscillations is three times the period of 

the excitation. 
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Figure 6: Overlap of the transformed phase portrait and the equilibrium branches as well as the related bifurcations 

on the ( , )w x  plane. 

 

5.3 Symmetric breaking bifurcation to the bursting attractor 

When the exciting amplitude increases to 5.9482A  , the symmetric bursting attractor splits into two 

coexisted asymmetric attractors, seeing one of which for 5.95A   in Fig.7. The structure of the attractor is the 

same as that in Fig.3, while the quiescent state Q S  from the point 2
P  along +

E  may pass across the point F B
 , 

implying the increase of the exciting amplitude may cause more delay of the influence of the bifurcation because 

of the increase of the inertia of the movement along the related equilibrium branch. Furthermore, the variation 

range of y along 2x    increases rapidly with the increase of A , seeing Fig.7a.  

The structures of the pair of bursting attractors may qualitatively change when A  increases to 

5.9993A  , seeing the two coexisted asymmetric attractors in Fig.8 for 6.0A  . 

Besides the two equilibrium points E


, the trajectories of the two attractors may oscillate around the 

other equilibrium point 
0

E  with 0x   or 0x  , respectively. 

 
Figure 7: Bursting attractor for 5 .9 5A  . (a) Phase portrait on the ( , )x y  plane; (b) Overlap of the transformed 

phase portrait and the equilibrium branches as well as the related bifurcations on the ( , )w x  plane. 

 
Figure 8: Two coexisted bursting attractors for 6 .0A   in (a) with the initial condition ( , , ) (0.1, 0.1, 0.1)x y z   and in 

(b) with the initial condition ( , , ) ( 0.1, 0.1, 0.1)x y z     . 
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Now we focus on the attractor in Fig.8a, the related time history of x  and the transformed phase portrait 

on the ( , )w x  plane are plotted in Fig.9. From Fig.9a, it can be found that the trajectory of a period can be 

approximately divided into six segments, corresponding to three quiescent states and three spiking states, denoted 

by i
Q S  and i

S P  with 1, 2, 3,i   respectively. Note that during the segment 1
Q S , small-amplitude oscillations 

appear during two rest states along two different equilibrium branches, respectively. 

For the trajectory starting from the point 1
P  with 6.0w   , it moves almost strictly along the stable 

equilibrium branch E
 , passing across the bifurcation point F B

 , behaving in quiescent state 1
Q S  until it 

arrives at the point 1
L , seeing Fig.9b. The effect of fold bifurcation at F B

  appears, causing the trajectory jumps 

to the stable equilibrium branch +
E , resulting in spiking oscillations 1

S P , seeing Fig.9c. The amplitudes of the 

oscillations decrease gradually and finally the trajectory settles down to +
E . When the trajectory reaches the 

point 2
P  with +6.0w  , it turns to the left with the evolution of time. The trajectory moves almost strictly along 

+
E  in quiescent state 2

Q S , passing across the bifurcation point F B
 , until it arrives at the point 2

L . The effect 

of fold bifurcation causes the trajectory to jump to stable E
 , resulting in repetitive spiking oscillations 2

S P , 

shown in Fig.9d.  

 

 
Figure 9: Bursting attractor in Fig.8a. (a) Time history of x ; (b) Overlap of the transformed phase portrait and the 

equilibrium branches as well as the related bifurcations on the ( , )w x  plane with locally enlarged parts in (c) and 

(d). 

 

When the trajectory moves to the point 1
P  with gradual decrease of the oscillating amplitudes, it turns to 

the right, moving almost strictly along E
  in quiescent state 3

Q S  until it reaches the point 3
L . Fold bifurcation 

causes the trajectory to the equilibrium branch 0
E , leading to spiking oscillations 3

S P . The trajectory may 

gradually settle down to 0
E , with further increase of time, until it reaches the point 3

P . Then the trajectory moves 

almost along 0
E towards the point F B

  in quiescent state 1
Q S . The fold bifurcation at the point F B

  causes 

the trajectory to turn to move along E
 , leading to small-amplitude oscillations, which may quickly disappear 

with the increase of time. 

When the trajectory moving along E
  arrives at the starting point 1

P , one period of the bursting 

oscillations is finished. The period of the oscillations can be computed exactly at 4 /  , which is two times the 
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period of the external excitation. Furthermore, the type of oscillations can be called asymmetric periodic 6-fold 

bursting attractor, since only fold bifurcations take place at the transition between Q S s  and SP s .  

With the increase of the exciting amplitude, both the two asymmetric attractors may evolve to a 

symmetric bursting attractor, seeing Fig.10. Comparing the two cases with 6.0A   and 6.045A  , respectively, 

one may find that for 6.0A  , the part 1
D  in Fig.10a along with the stable equilibrium branch 

(1 )

0
E  or 

( 3 )

0
E  in 

Fig.1 preserves, implying the trajectory from 
(1 )

0
E  or 

( 3 )

0
E  may return to the same equilibrium branch. However, 

for 6.045A  , the part 1
D  in Fig.10b and Fig.10d corresponds to the transient, which may finally disappear, 

leading to the steady time history of x  in Fig.10c, which can also be demonstrated by the phase portrait presented 

in Fig.11a.  

It can also be understood that for 6.0A  , the trajectory may visit the attracting basins related to stable 
(1 )

0
E , 

(1 ) ( 2 )
E E

 
, or those associated with 

( 3 )

0
E , 

(1 ) ( 2 )
E E

 
, respectively, while for 6.045A  , the trajectory only 

alternates between stable segments of E
 .  

Now we turn to the steady state of the attractor, of which the related phase portrait on the ( , )x y  plane 

and the transformed phase portrait on the ( , )w x plane are given in Fig.11. From the phase portrait in Fig.11a, one 

may find that the trajectory oscillating down to one equilibrium branch of E


, may jump to approach the other 

equilibrium branch of E


 via fold bifurcations.  

 
Figure 10: (a) Time history of x  for 6 .0A  ; (b) Time history of x  for 6 .0 4 5A  ; (c) Steady part of the time 

history for 6 .0 4 5A  ; (d) Phase portrait on the ( , )x y  plane for 6 .0 4 5A  . 

 

The trajectory, starting from the point 1
P  with 6.045w   , moves almost strictly along stable 

(1 )
E


,passing across the bifurcation point F B

 , and turns to move almost strictly along the unstable 
( 2 )

E


 in 

quiescent state 1
Q S  because of the delay effect of the bifurcation. When the trajectory arrives at the point 1

L , it 

jumps to stable 
( 2 )

E


 via fold bifurcation, resulting in the repetitive spiking oscillations 1
S P  around 

( 2 )
E


. With 

the gradual decrease of the oscillating amplitude, the trajectory finally settles down to 
( 2 )

E


 at the point 2
P  with 

6.045w   . Half period of the bursting oscillations is finished, while the other half period of the oscillations is 

omitted here for simplicity because of the symmetry. The type of oscillations can be called symmetric periodic 
fold/fold bursting attractor with the same period as that of the external excitation.  

Further increase of the exciting amplitude may cause the bursting oscillations to alternate among those 

bursting attractors described above. Furthermore, the attractor may expand along the equilibrium branches on the 
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( , )w x  plane, seeing Fig.12 for example. It can be found that the mechanism of the bursting is the same as that in 

Fig.6, while the structure of the attractor expands greatly in the phase space, causing the amplitudes of the spiking 

oscillations to increase dramatically.  

 

 
Figure 11: Symmetric bursting oscillations for 6 .0 4 5A  . (a) Phase portrait on the ( , )x y  plane; (b) Overlap of the 

transformed phase portrait and the equilibrium branches. 

 

 
Figure 12: Symmetric bursting oscillations for 1 5 .0A  . (a) Phase portrait on the ( , )x y  plane; (b) Overlap of the 

transformed phase portrait and the equilibrium branches. 
 

In summary, for the generalized autonomous system, there exist multiple stable segments on the 

equilibrium branches. With the increase of the exciting amplitude, the bursting attractors may oscillate around 

different groups of these stable segments, which, therefore, results in different types of bursting attractors. 

 

VI. CONCLUSIONS 
When the exciting frequency is far less than the natural frequency, bursting oscillations may occur, the 

mechanism of which can be investigated by the proposed method. With the variation of the slow-varying 

parameter, defined by the whole exciting term, the multi-stability may cause coexisted stable equilibrium 
branches in the generalized autonomous system. The trajectory may visit different groups of the related attracting 

basins of the stable equilibrium branches, which may result in different forms of the bursting attractors. 

Furthermore, the dynamics may alternate between a symmetric attractor and a pair of coexisted asymmetric 

attractors with the variation of the exciting amplitude, depending on the particular attracting basins the trajectory 

visits. 
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