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I. INTRODUCTION  
Next-level wireless communication systems, particularly those designed for the sixth generation (6G) 

networks, are expected to set new standards in connectivity characterized by high reliability, extremely fast data 

rates, and minimal latency. RIS and UAV assisted communication systems are identified as crucial components 

contributing to this significant advancement [1]. In such a scenario, NOMA is high- lighted as an impactful access 

method intended to enhance spectral efficiency and cater to the increasing demand for wireless connectivity [2]. 

RIS have emerged as a strategic approach to alter the propagation environment. Through the use of programmable 

meta surfaces containing numerous passive reflecting elements, RISs can manipulate the phase and amplitude of 

in- coming signals in order to tailor propagation paths according to specific communication needs [3]. The 

inclusion of this technology in UAV-assisted wireless networks is particularly promising due to its ability to 

provide a flexible and responsive solution for achieving comprehensive network coverage [4]. UAV introduce an 

additional level of dynamism to the telecommunications ecosystem. Their ability to be positioned and move in 

the air allows for rapid and specific deployment, making them extremely valuable tools for im- proving coverage, 
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capacity, and addressing service gaps in ground-based networks [5]. When combined with RIS and aided by 

NOMA protocols [6], UAVs can further enhance 

resource allocation efficiency and enhance user experiences throughout the network. The emergence of 

RIS as a cornerstone technology has marked a significant milestone in the progression of PLS, providing a 

dynamic and controllable domain for wireless communications [7]. RIS is architected from an assortment of 

passive components that are not only cost-efficient but also have the capacity for electromagnetic modulation, 

thanks to integrated PIN diodes [8]. With the strategic modulation of signal phases orchestrated by an advanced 

control system, RIS enhances signal integrity for approved receivers while concurrently disrupting those 

designated for unauthorized interceptors.  

When compared to conventional PLS methodologies that utilize artificial noise [9] or advanced multi-

antenna beamforming [10], RIS stands out for its passive operational nature, which bypasses the high costs 

associated with RF chains. Moreover, the flexible nature of RIS facilitates its straightforward incorporation into 

prevailing network systems and makes it ideal for attachment to a variety of structures within urban landscapes, 

as well as to wearable technology [11]. Nevertheless, the growing interconnections and complexity of systems 

also increase the risk of security breaches. The physical layer of wireless communication systems is particularly 

vulnerable to eavesdropping and other cyber threats, highlighting the need for new protective strategies [12]. In 

this respect RIS offer a valuable means to enhance the security of the physical layer. Through strategic 

manipulation of signal reflections [13], RISs can reduce signal reception at potential eavesdropper locations while 

strengthening it for authorized recipients, establishing a secure communication environment. 

The field of industrial automation is experiencing a dynamic evolution due to the rise of innovative AI 

algorithm frameworks like RL, DL, and particularly DRL. These technologies are streamlining the path toward 

real- time automation and sustained advancement. DRL is at the forefront, distinguished by its capability to 

effectively process the intricate flow of data within communication systems and to navigate the complex 

management of system and resource control, often presented in non-linear and challenging non-convex scenarios. 

This level of adeptness is achieved even in the computationally rigorous task of de- ciphering and network 

formation for understanding wireless channels, conducted without reliance on established channel models or 

documented patterns of user movements [14]. Moreover, DRL’s strength lies in its strategic identification of 

optimal solutions for complex optimization issues, a skill honed by analyzing the patterns of rewards obtained 

from interactions in a wireless context, thus contributing vitally to the advancement of cutting-edge algorithmic 

designs [11]. 

 

A. Related Work 

RIS have rapidly emerged as a transformative technology within wireless networks gaining prominence 

in fields such as NOMA [15], [16], CoMP [17], [18], and UAV-based communications [19], [20], primarily due 

to their capacity to markedly enhance network functionalities. This development was made possible by the 

innovative research of [15], which provided an effective method for integrating RIS into NOMA systems while 

effectively managing the conflict between sum rate and power efficiency. This was achieved by carefully applying 

the SCA technique, which made it possible to improve beamforming and phase shifts on a periodic schedule. 

Expanding on this research [16] extended the study to evaluate how RIS affects the performance of semi-

grant- free NOMA systems, proposing algorithms that are adapted for various RIS setups. The investigation went 

on [17], who examined the role of RIS in CoMP communications, considering a spectrum of scenarios from ideal 

to less than ideal, and applying the dual close approach to optimize reflection coefficients. Simultaneously [18], 

focused on enhancing the long-term energy efficiency in STAR-RIS- facilitated CoMP networks by combining 

methods for active and passive beamforming optimization with a combination of partial programming and DRL 

approaches to achieve close to optimal results. 

The discussion expands much more to include UAV communications, as [19], addressing the challenge 

of enhancing sum rates within RIS-supported multi-UAV NOMA frameworks. This entailed a holistic 

optimization strategy that encompassed UAV positioning, power management, RIS reflection matrix 

configurations, and the sequencing of NOMA decoding, all resolved through a BCD iterative methodology. 

Complementary to this [20], pioneered a novel DRRL algorithm designed to optimize both UAV flight patterns 

and beamforming processes active at the UAV and passive at the STAR-RIS simultaneously thus showcasing the 

expansive utility and significant advantages of RIS in advancing the capabilities of contemporary wireless 

communication systems. 

Recent research incorporating RIS has significantly advanced the topic of Physical Layer Security (PLS). 

Important advancements include the [21], novel RIS configuration that protects downlink NOMA systems from 

attackers and the [22], method that enhances beamforming in secure wireless systems that use RIS. Robust 

optimization strategies were proposed by [23], to address the problem of imperfect eavesdropper CSI. By 

combining STAR-RIS with NOMA in a novel way. [24], improved security by creating artificial noise [25], 
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explored the use of RIS to optimize secure energy efficiency in the context of UAVs and [26], used aerial RIS to 

adjust signal distributions for NOMA systems in order to improve secrecy rates, highlighting the revolutionary 

effect of RIS on improving wireless communication security. 

 

B. Motivation and Contribution 

This work is motivated by the critical role that RIS play in the development of 6G wireless 

communication technology. We are at the beginning of a new age in wireless communications, and with it comes 

a growing need for improved energy efficiency, cost reduction and spectrum utilization. RIS presents a fresh 

solution to these problems because of its capacity to reorganize electromagnetic wave propagation especially in 

situations where direct communication routes are restricted. 

Moreover, the escalating concerns regarding security breaches in wireless communications highlight the 

urgency of integrating robust PLS measures. RIS technology presents an innovative way to secure data 

transmission against illegal access and eavesdropping, while simultaneously enhancing service quality through 

innovative non-line-of-sight connections. By carefully modifying RIS elements one can boost QoS and strengthen 

security while simultaneously leveraging the unique spatial selectivity that comes with RIS to optimize signal 

confidentiality for authorized users and restrict it for potential eavesdroppers. 

• The integration of RIS and NOMA along with the potential integration with UAVs highlight the revolutionary 

possibilities of these technologies in establishing a more adaptable, effective and safe wireless communication 

environment. The potential to leverage these state-of-the-art technologies to tackle the challenges of dynamic 

multi-user environments where traditional optimization techniques fall short because of their non- linear nature is 

what drives this research. 

• Adaptability and Resource Efficiency: Our work employs the DDPG algorithm to simultaneously optimize 

power distribution, phase shifting, and UAV positioning allowing for dynamic adaptation to changing channel 

conditions and user requirements. With the help of this comprehensive optimization approach the system is able 

to efficiently allocate wireless resources in real-time maximizing spectrum efficiency and ensuring maximum 

performance in a variety of operational conditions. Moreover, the system may constantly im- prove its approaches 

responding to changing network dynamics and improving overall utilization of resources in wireless 

communication environments through using AI-driven learning algorithms. 

• Securing Wireless Communication: Our work presents distinctive PLS approaches that attempt to enhance the 

system’s security measures against potential eaves- dropping threats in addition to optimizing system 

performance. Our solution strengthens the security and integrity of wireless transmissions by incorporating PLS 

mechanisms like secure beamforming and trans- mission techniques into the optimization framework. This 

reduces the possibility of unauthorized access and information interception. The practical relevance and 

significance of our research in protecting wireless communication systems from malicious actors is high- lighted 

by the need of this proactive security approach which is especially important in wireless communication networks 

handling confidential information or operating in unsafe environments. 

• Our aims are to demonstrate the efficacy of the DDPG- based strategy through comprehensive computer 

simulations demonstrating its ability to strengthen the physical layer against security attacks and improve overall 

network performance. The goal of this research is to fully utilize RIS, NOMA, and UAV technologies in order to 

influence the development of secure and efficient wireless communication networks in the future. 

 

SYSTEM MODEL AND PROBLEM FORMULATION 

 

 

Figure 1: System Model for RIS-UAV Enhanced Security Architecture for NOMA Networks 
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In a complex communication system that utilizes UAV-assisted NOMA to enhance the confidentiality 

of the physical layer, the structure consists of a Base Transmission Station responsible for sending data to a set of 

K end-users represented as {1, 2, ..., K}. A UAV with an RIS comprising N passive modulators aids in reflecting 

and directing signals for this data relay. The UAV operates independently at a predetermined altitude above the 

specified area {A}, commencing its mission from an established charging point. The system is designed for quasi-

static frequency flat-fading channels assuming perfect Channel State Information availability at both the BTS and 

the UAV-mounted IRS. Energy consumption and operational duration considerations are abstracted away for 

simplicity. This sophisticated setup is vulnerable to potential covert surveillance attempts by a group of 

eavesdroppers denoted as {E} = {1, 2, ..., E}, 

aiming to illicitly intercept communication. Notably, due to utilizing the DDPG method, the proposed algorithm 

can adjust to changing channel conditions across different time slots while maintaining consistency within each 

individual time slot ensuring resilience and dependability in dynamic communication environments. The linkage 

between the BTS and the RIS is characterized by G ∈ CN x 1, representing the propagation path of the transmitted 

signal. Concurrently, the communication channels from the RIS to each k-th end-user and e-th eavesdropper are 

denoted by hr,k ∈ CN x 1 and hr,e ∈ CN x 1, respectively, capturing the nuances of signal reflection and potential 

attenuation or enhancement due to the RIS's modulation capabilities. 

 

The reception at each k-th end-user is mathematically modeled as: 

 

 

 

where Φ = diag(ejθ1 , … , ejθN) encapsulates the RIS's phase shift capabilities. pi represents the power allocated to 

the i-th user's signal sI, and nk symbolizes the additive white Gaussian noise, inherent in wireless communication, 

at the k-th end-user's receiver. ρi denotes the BS's power allocation coefficient for the i-th user, constrained within 

the interval [0,1]. The sum of these coefficients across all K users equals 1. The transmitted signal for the i-th user 

is represented by sI, designed such that its expected power equals 1, denoted as E[si
2] =  1. The noise affecting 

the k-th user's signal, denoted as nk, follows a complex normal distribution with zero mean and variance σ2. The 

RIS, positioned on a UAV, is located at v(x, y) with a height hI, while the BS is at the origin (0,0) with height hB. 

The horizontal position of each k-th user is given by uk(xk,yk), 

The distance between the BS and RIS is calculated as  

and the distance between the RIS and the k − th user is 

dIuk  =√(x – xk)
2 + (y – yk)

2 + hI
2. 

Surveillance by the e − th eavesdropper yields the intercepted signal as: 

 

𝑦𝑒 = (𝐡𝑟,𝑒
𝐻 𝚽𝐆)∑  

𝐾

𝑖=1

 √𝑝𝑖𝑠𝑖 + 𝑛𝑒,  𝑒 ∈ ℰ (2)
 

For each legitimate user ( k ), the channel gain considering the path loss can be expressed as: 

 

𝒉𝑘 =
𝒉𝑟𝑘
𝐻 𝚽𝒈

(𝑑𝐵𝐼𝑑𝐼𝑢𝑘)
𝛼
  (3)

 

 

where α is the path loss coefficient, and dBI and dIuk
 represent the distances from the base station (BS) to the RIS 

and from the RIS to the k user respectively. 

To incorporate Eve into this model, we can extend the scenario to include the channel vector from the RIS to Eve, 

hre, and the distance from the RIS to Eve, dIe. The channel gain for Eve would then be similar to that of the 

legitimate users, adjusted for Eve's position: 

 

𝑦 = 𝐡 , 
 𝚽𝐆

 =1

 

 ∑   𝑝 𝑠 + 𝑛 ,  ∈  (1)

dBI = √x2 + y2 + (hB–  hI)
2 

𝒉𝑒 =
𝒉 𝑒
 𝚽𝒈

(𝑑  𝑑 𝑒)
 (4)
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In the SINR calculations for implementing Successive Interference Cancellation (SIC) among NOMA users, it's 

important to account for the potential interception by Eve. The SINR for a user j decoding the signal intended for 

a weaker user t is given by: 

 

 

 

 

For Eve attempting to decode the signal intended for user t the SINR would be: 

 

 

 

 

This formulation allows the system to evaluate the risk posed by Eve's interception attempts and adjust the power 

allocation pi and phase shifts θn accordingly to ensure secure communication. To ensure effective SIC and 

maintain the system's security, the data rates for the legitimate users must be optimized to maximize the difference 

between their SINRs and Eve's SINR, effectively increasing the secrecy rate and making the system robust against 

eavesdropping. To ensure physical layer confidentiality, the covert communication rate or secrecy rate for each 

 k − th user, which quantifies the secure information transmission rate, is defined as: 

𝑅𝑠,𝑘 = [𝑅𝑘 −max
𝑒∈ℰ

 𝑅𝑒,𝑘]
+
(7)

 

where Rk is the legitimate communication rate to the k-th user, and Re,k is the potential information rate accessible 

to the e-th eavesdropper. These rates are articulated by: 

 

 

 

 

 

 

effectively capturing the dynamics of secure and potentially compromised communication paths. The principal 

objective in this advanced communication paradigm is to maximize the sum of all users' secrecy rates, which is 

pivotal for ensuring robust secure communication against eavesdropping threats. 

 

Problem formulation 

In our comprehensive RIS-UAV-NOMA downlink network model, focused on enhancing PLS alongside 

communication efficiency, our objective extends to not only maximizing the sum rate but also incorporating an 

aspect of security by optimizing several key parameters. These parameters include the power allocation 𝚽 at the 

Base Station (BS), the phase-shifting pi of the RIS, and the horizontal positioning v(x, y) of the UAV. The 

integration of these aspects leads to a complex optimization problem that can be articulated as follows:  

SINR → =
|𝒉 |

2 max  

 = +1

 

 ∑  |𝒉 |
2 max  + 

2

(5)

SINR →𝑒 =
|𝒉𝑒|

2 max  

 = +1

 

 ∑  |𝒉𝑒|
2 max  +  

2

(6)

𝑅 = log2  1+
|𝐡 , 

 𝚽𝐆|2𝑝 

 2 +
 ≠ 

 ∑  |𝐡 , 
 𝚽𝐆|2𝑝 

(8)

𝑅𝑒, = log2  1+
|𝐡 ,𝑒

 𝚽𝐆|2𝑝 

 2 +
 ≠ 

 ∑  |𝐡 ,𝑒
 𝚽𝐆|2𝑝 

(9)
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max
{Θ,𝜌,𝑣}

  ∑  

𝐾

𝑡=1

 𝑅𝑠,𝑡  (𝑎)

s.t.
 𝑅𝑠,𝑡 ≥ 𝑅min, ∀ ∈     (𝑏)

 𝑅𝑡→𝑗 ≥ 𝑅𝑡→𝑡, ∀ ,  ∈  ,  >     (𝑐)

 ∑  

𝐾

𝑘=1

  𝑘 ≤ 1   (𝑑)

 𝑣(𝑥, 𝑦) ∈ 𝒜  (𝑒)

 0 ≤ 𝜃𝑛 ≤ 2𝜋, 𝑛 = 1,⋯ ,𝑁   (𝑓)

 

In this formulation,  𝑅𝑠,𝑡 represents the secrecy rate for user t, enhancing the PLS by considering the 

potential eavesdropping threats. Constraint (b) ensures the Quality of Service (QoS) for all users by guaranteeing 

that the secrecy rate for each user t is above a predefined minimum Rmin. Constraint (c) is pivotal for the 

implementation of Successive Interference Cancellation (SIC), ensuring that the decoding process for NOMA can 

be executed effectively. The constraint (d) encapsulates the total transmission power limitation at the BS, ensuring 

efficient power usage. Constraint (e) specifies the operational area for the UAV, ensuring it remains within a 

designated feasible region A. Lastly, constraint (f) governs the phase shifts applied by the RIS, with each element 

θn confined within a 0 to 2π range. Given the non-convex nature of this optimization problem, primarily due to 

the intricate interplay between the variables {θ,p,v}, finding a global optimal solution presents significant 

challenges. To navigate these complexities, we propose a sophisticated and efficient solution framework based on 

Deep Reinforcement Learning (DRL), specifically utilizing DDPG. This approach is designed to tackle the non-

convexity and high dimensionality inherent in the problem, offering a robust and low complexity method to 

achieve near-optimal solutions, thereby ensuring an enhanced and secure communication network.  

 

Proposed DDPG 

The use of the DDPG algorithm is essential in the setting of the integrated RIS-equipped UAV-assisted 

NOMA downlink system with a focus on improving PLS [27]. This section begins with a brief overview of DDPG 

and then goes into great detail into how the DDPG framework was modified to fit the given optimization 

challenge. 

 

 

Figure 2: DDPG Diagram for RIS-UAV Enhanced Security Architecture for NOMA Networks 

 

Introduction to DDPG : Since conventional algorithms such Deep Q-Networks (DQN), are mostly designed to 

operate in discrete action spaces they are constrained in their application to continuous action spaces. In order to 

solve our stated problem, this constraint compels us to look into alternative strategies such DDPG. Using deep 

function approximators, DDPG which is characterized by its model free off-policy actor-critic mechanism 

efficiently explores the high-dimensional continuous action space [28]. The deterministic policy gradient 
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technique which is a fundamental component of DDPG maps a particular action α systematically and assesses its 

effectiveness using a Ǫ function, Ǫ(s,a,θq) where θq stands for the parameters of the critic network. Optimizing 

the output Ǫ value is the main goal of DDPG, which also improves system performance overall. Experience replay 

is a key component of DDPG, since it solves the problem of non-i.i.d. (independently and identically distributed) 

data that result from environment exploration in sequence [29]. To maintain stability and reduce variation in the 

learning process this is combined with the use of soft update approaches. The soft update technique uses the 

following equation to gradually adjust the target network parameters θ`, to match the learned evaluation network: 

 

Where τ is significantly less than 1, ensuring a conservative update approach. Moreover the investigation in the 

continuous action space presents an important challenge that 

DDPG successfully resolves by introducing noise N into the policy. The following equation describes this 

approach: 

 

 

where N is the environment dependent noise and μ′(st) is the target policy with extra noise encouraging exploration 

and helping in the identification of optimal policies. This comprehensive approach makes use of DDPG's 

capabilities to provide a solid basis for addressing the challenges of PLS optimization in the RIS-UAV-NOMA 

downlink system ensuring effective and secure network connectivity [30]. After introducing the DDPG algorithm 

and implementing it in a secure RIS-equipped UAV-assisted NOMA downlink communication system we then 

explore the details of processing Deep Reinforcement Learning (DRL) in this complicated environment. 

 

The DRL Processing: In our advanced RIS-enhanced UAV-supported NOMA downlink system, the dynamic 

nature of wireless channels constitutes the environment in which our system operates. The collaborative setup of 

the RIS coupled with an UAV act as the central agent within this scenario, tasked with the dual objectives of 

maximizing transmission efficiency and ensuring robust security at the physical layer. Our deep reinforcement 

learning (DRL) framework is crafted to mirror the unique features and goals of our setup through several key 

elements: 

• State Space Definition 

For each discrete interval, labeled as t, the state space is meticulously defined to capture an exhaustive view of 

the system’s present condition, incorporating aspects such as: 

Prior timestep secrecy metrics (Rs,k
(t−1)) for individual users k, underscoring the emphasis on safeguarding data 

confidentiality. 

Last known RIS modulation phases (θ) and power distribution profiles (ρ), key parameters for optimizing signal 

propagation and energy consumption. 

The UAV’s most recent positioning coordinates (x and y), vital for optimal aerial relay positioning and 

interference management. This state is mathematically captured as: 
 

• Action Space Configuration 

Aligned with the state st, the action set at includes a suite of strategic decisions enacted by the RIS- 

UAV duo, designed to navigate the intricacies of the prevailing wireless communication landscape and user 

requirements. These actions encompass: 

Fine-tuning of RIS reflective properties (θ) to enhance signal directionality and strength.  

Strategic adjustments in transmission power allocations (ρ) to users, ensuring optimal energy utilization.  

Real-time repositioning of the UAV (x, y) to maintain superior signal quality and reduce potential interference. 

𝑎𝑡 = [𝜃1
(𝑡),⋯ , 𝜃2𝑁

(𝑡),  1
(𝑡), ⋯ ,  𝑘

(𝑡), 𝑥(𝑡), 𝑦(𝑡)] (13)  

 

• Reward Function 

At each interval t, the reward metric rt is ingeniously formulated to resonate with the system’s 

overarching aims of enhancing throughput and reinforcing data security across the wireless network. It 

amalgamates the total system throughput and the collective secrecy performance across all users: 

 

𝜃′ ← 𝜃 +(1 − )𝜃′ (10)

 ′(𝑠 )=  (𝑠 ; 𝜃
 )+  (11)

𝑠 = [𝑅1
( −1)

,⋯,𝑅 
( −1)

,𝑅𝑠,1
( −1)

,⋯,𝑅𝑠, 
( −1)

,

𝜃1
( −1)

,⋯,𝜃2𝑁
( −1)

, 1
( −1)

,⋯,   
( −1)

, 𝑥( −1),𝑦( −1)]
(12)
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In this formulation, α and β are coefficients that calibrate the focus between operational efficiency and security 

enhancement, facilitating a balanced optimization approach. 

Through this nuanced DRL processing methodology, our RIS-UAV framework adeptly learns to traverse the 

dynamic terrain of our NOMA downlink communication system. By judiciously making decisions that not only 

propel the throughput but also significantly elevate the system’s security posture, this adaptive learning paradigm, 

rooted in DDPG methodologies, marks a significant leap towards achieving secure, high-performing, and adaptive 

wireless communication networks. 

 

Processing the Formulated Problem: In optimizing our sophisticated RIS-aided UAV-based NOMA 

downlink architecture, the DRL strategy is finely tuned to respect the system's Quality of Service (QoS) 

benchmarks and other operational intricacies. Here’s how the DRL scheme, particularly leveraging the DDPG 

algorithm, methodically addresses the stipulated problem: 

• Initial Data Rate Validation for QoS Alignment: At every decision point, marked as timestep t, the DRL 

algorithm diligently computes the transmission rate R(t) for every user in the setup. This step is pivotal for 

confirming adherence to predefined QoS criteria, a fundamental aspect delineated in our problem’s constraint (b). 

Actions leading to satisfactory QoS fulfillment are stored within the model’s memory buffer, reinforcing optimal 

behavior. In contrast, actions resulting in QoS breaches are either penalized or discarded to prevent recurrence, 

steering the DRL agent towards more effective strategies. 

• Adaptive SIC Procedure Refinement: Navigating the complexities of efficient SIC execution, a critical 

facet of NOMA systems, our DRL framework opts for an agile approach. Post each action, it recalculates channel 

vectors, adjusting the decoding sequence to suit the current channel dynamics. This flexibility ensures the SIC 

requirement is inherently met, underscoring the DRL algorithm’s capacity to adjust to live changes within the 

communication framework, thus optimizing the SIC mechanism’s effectiveness. 

• Proposition: Guaranteeing SIC Compliance: The assurance of the SIC constraint within our DRL 

framework is showcased through an adaptive decoding sequence optimization, reliant on the immediate channel 

state. This assertion is supported by revisiting the SINR formulations: 

 

For user t decoding at user j’s channel: 

 

 

 

 

 

 

And for user t decoding at its own channel: 

 

 

 

 

 

Given the channel condition  

 

 

it's evident that the SINR for decoding at j consistently meets or surpasses the self-decoding SINR at t thereby 

upholding the SIC stipulation. This highlights the DRL algorithm's adeptness in dynamically tailoring to channel 

fluctuations while ensuring the SIC protocol's integrity within the NOMA framework. 

Problem Tackling and Constraints Adherence: The DRL approach refocuses the optimization challenge 

towards elevating each user’s data rate, while stringently adhering to the system’s QoS requisites and the physical 

constraints tied to the RIS and UAV: 

 

 

  =  

 =1

 

 ∑  𝑅 
( )

+ 

 =1

 

 ∑  𝑅𝑠, 
( )

(14)

|ℎ |≥ |ℎ |

 𝑎𝑥
{ ,𝑎,𝑣}

 
 =1

 

 ∑  𝑅 → (17)

  𝑁𝑅 → =
 max  

 = +1

 

 ∑   max  +
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|ℎ |
2

(15)

  𝑁𝑅 → =
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2
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≥ 

 

Subject to: Maintaining QoS by ensuring Rt→t     Rmin for all network users t, Observing power distribution 

boundaries and UAV spatial constraints for optimal resource utilization, Confirming RIS phase adjustments 

remain within practical limits, facilitating peak system operation. 

This structured DRL methodology, powered by the nuanced capabilities of the DDPG algorithm, proficiently 

navigates through the multifaceted constraints and goals inherent in the RIS-enhanced UAV-assisted NOMA 

downlink system. It not only propels network efficiency but also substantially fortifies the physical layer’s 

security, illustrating the potential for ground-breaking progress in secure and high-performing wire- less 

communication networks. 

 

Working Procedure:  

The foundation of our DDPG-based learning mechanism is established upon four critical neural networks: 

the target and evaluation networks for both the actor and critic components. Specifically, the target actor network 

(θµ′) and the evaluation actor network (θµ), alongside their critic counterparts (θq′and θq), are meticulously 

constructed with parallel architectures to ensure consistency in learning and prediction dynamics. An experience 

replay buffer (B), with a predefined capacity (C), serves as the memory infrastructure, storing transitions that 

encapsulate the state-action-reward sequences experienced by the agent. Within each episode of the learning 

process, a fresh initialization of channel gain (hk), RIS phase shifts (Φ), and user positions (u) within the designated 

area (A) is conducted. The UAV’s horizontal position (v) is set at a predetermined point, and power allocations 

(ρ) are uniformly distributed as initial conditions. Following this setup, the system computes the data rates (R i
(t)) 

for all users, setting the stage for the initial state (st). The evaluation actor network then processes st to generate 

the corresponding action (at), which encompasses decisions on phase shifts, power allocations, and UAV 

positioning. The immediate reward (rt), reflective of the system’s performance as per equation [9], and the 

subsequent state (st+1), as determined by equation [8], are determined thereafter. 

These elements form a transition ({st, at, rt, st+1}) that is archived within the replay buffer (D). Upon filling the 

replay buffer, the training phase commences, wherein each episode entails updating the current transition 

within D, followed by the extraction of a mini-batch consisting of NB transitions ({si, ai, ri, si+1}) for processing. 

The target Q values (yi) are computed for each transition in the minibatch, employing the equation: 

 

 

 

Here, λ denotes the discount factor, emphasizing the value of future rewards. The critic evaluation network 

(θq) is updated by minimizing the loss function: 

 

 

 

Subsequently, the actor evaluation network (θu) is refined through gradient ascent, leveraging the gradient of the 

Q function with respect to the actor parameters: 

 

 

The algorithm iterates through these steps, periodically employing soft updates (as per equation (6)) to gradually 

align the target networks (θμ′ and θq′) with their evaluation counterparts, thereby ensuring a stable convergence 

towards optimal policy and value functions 

 

Complexity Analysis: The computational complexity of the DDPG algorithm, within this secure 

communication framework, is predominantly dictated by the dimensions of the input  

 
rendering the overall complexity to 

 
This complexity profile is notably more efficient than traditional semidefinite relaxation (SDR)-based 

optimization methods, which typically exhibit a higher computational burden  
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thereby highlighting the efficacy and computational viability of employing DDPG in enhancing the security 

and performance of RIS-equipped UAV-assisted NOMA downlink systems. 

 

State Space (s): Comprises UAV's position v(x,y), 

RIS phase shifts Φ, and channel state information (CSI) G, hr,k, hr,e for all users and eavesdroppers. 

 

Action Space (a): Includes power allocation coefficients pk for each user, RIS phase shift matrix ϕ and UAV's 

next position v`(x,y). Reward (r): Based on secrecy rates of users, calculated as  

 𝑡 = ∑  

𝐾

𝑘=1

[𝑅𝑘 −max
𝑒∈ℰ

 𝑅𝑒,𝑘]
+

 

 

where Rk and Re,k are defined by our system model equations 

 

Transition Dynamics: The transition from st to st+1 incorporates the UAV's movement, changes in the channel 

state, and adjustments in the RIS phase shifts according to the system model equations. 

 

Constraints Handling:  Ensure actions at (power allocations, phase shifts, UAV positions) adhere to physical 

constraints and system model requirements. 

Termination: Episodes terminate based on predefined conditions such as maximum steps, achievement of a desired 

secrecy rate level, or stability in the learning process. 

 

Notes for Integration: The reward function rt directly incorporates the secrecy rate equations from our system 

model, ensuring that the 

 

 optimization is closely aligned with the objective of enhancing PLS The state and action representations are 

designed to capture the essential elements of the RIS-equipped UAV-NOMA system, including the UAV's 

mobility, the RIS's configurability, and the dynamic wireless environment. Adjustments in the algorithm (e.g., 

network architectures, exploration strategies) might be necessary to accommodate the complexity and specifics 

of our communication system model. 

 

This structured DDPG algorithm, tailored to our RIS-UAV-NOMA system, provides a mathematical framework 

for optimizing the system's performance with respect to PLS leveraging deep reinforcement learning techniques 

to address the high-dimensional and non-convex nature of the problem. 

( ((6 2+𝑁2 + )3.5))
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Proposed DDPG Algorithm for RIS-UAV Enhanced Security Architecture for NOMA Networks 

 

 

II. Simulation Results 
In our investigation, we employ a DDPG-driven framework tailored for an RIS-supported UAV-NOMA 

communication setup to scrutinize its efficacy in boosting system performance and security. The simulation setup 

positions the Base Station (BS) at the coordinate origin while situating the RIS-equipped UAV at the initial 

location of (50,0). The designated user area, defined by the vertices (45,45), (55,45), (55,55), and (45,55) hosts 

users whose positions are predetermined and remain constant throughout each simulation episode. 

 

The system assumes Line-of-Sight (LoS) connectivity for both the BS-to-RIS and RIS-to-user links adopting a 

Rician fading model articulated as: 

 

 

Here,  represents the line-of-sight component, HRayleigh  signifies the non-line-of-sight component 

subject to Rayleigh fading, and Ω is the Rician K-factor set to 10 for our simulations. The path loss exponent is 

denoted by α and is chosen as 2. Channel conditions are randomly generated at exponent is denoted by α and is 

chosen as 2. Channel conditions are randomly generated at the onset of each episode and remain static for the 

 =
Ω

Ω+1
  +

1

Ω+1
 Rayleigh
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episode's duration. The BS and the RIS-equipped UAV are fixed at altitudes of 20 meters and 30 meters, 

respectively. 

Further parameters include a noise power setting of σ2 = -60dB and a baseline user rate requirement of 

Rmin= 1.2 bps/Hz. The network architecture for the Actor network comprises a dual-layer fully connected neural 

network for both the evaluation and target networks, with input and output layers sized according to the 

dimensions of the state and action vectors. Activation functions include ReLU for the initial layer and tanh for the 

output layer to ensure a strong gradient signal. 

The Critic network adopts a similar two-layered structure, processing state and action inputs through 

separate pathways before merging and applying ReLU activation, leading into the final output layer. Batch 

normalization is applied across both networks to stabilize learning. 

Hyperparameters for the simulation include an evaluation network learning rate (β) of 0.0001, a discount 

factor (λ) of 0.95, a soft update rate (τ) of 0.005, a replay buffer capacity (C) of 50,000, 1500 episodes, 300 steps 

per episode, and a minibatch size (NB) of 16. Exploration noise, introduced to promote policy diversity, follows a 

complex Gaussian distribution with zero mean and a variance of 0.1. 

To incorporate the potential threat posed by eavesdroppers (Eve) into the system, the simulation contemplates the 

RIS-to-Eve channel, denoted as hr,e, and the RIS-to-Eve distance, dI,e. The channel gain experienced by Eve, while 

analogous to that of legitimate users, is adjusted for Eve's specific location, expressed as: 

 

 

This incorporation enables the system to evaluate and mitigate the risks associated with Eve's interception 

attempts, fine-tuning power allocations pi and phase adjustments θn to safeguard communication channels. 

 

In Figure. 3, the graph showcases the progression of secrecy rates over a sequence of episodes for various 

learning rates in a UAV-aided communication network using a DDPG algorithm. The system, aimed at bolstering 

PLS adapts and refines its performance across episodes. Learning rates are a critical factor here: a high rate 

(LR=0.1) leads to rapid learning but with considerable volatility, potentially due to over-adjustments. Conversely, 

lower learning rates, such as LR=0.001, demonstrate a gradual but stable enhancement in secrecy rates, suggesting 

a more methodical learning approach that might converge more reliably to optimal strategies for secure 

communications. This balance between speed and stability in learning rates is crucial for the algorithm to 

efficiently navigate and optimize the complex dynamics of the secure communication environment. 

 

In Figure. 4 depicts the impact of different numbers of eavesdroppers (denoted by E) on the secrecy rate 

in a UAV-assisted secure communication system, as episodes progress. A clear pattern emerges: as the number 

of eavesdroppers increases from E=2 to E=5, there is a general trend of decreasing secrecy rate, indicating that 

more eavesdroppers make it challenging to maintain high levels of secure communication. The plot with E=2 

reaches the highest secrecy rate more quickly and maintains it with less fluctuation, suggesting that fewer 

eavesdroppers make it easier for the system to optimize security. Conversely, with E=5, the system takes longer 

to reach a stable and high secrecy rate, and it experiences more significant variance, reflecting the increased 

complexity of optimizing secure communication in the presence of more eavesdropping threats. This illustrates 

the system's adaptive learning in response to the number of eavesdroppers, which directly affects the secrecy rate 

over time. 

 

Figure 3: Different Learning rates 

 

𝐡𝑒 =
𝐡 ,𝑒
 𝚽𝐆

(𝑑 , ⋅ 𝑑 ,𝑒)
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Figure 4: Different Number of Eves 

 

In Figure. 5 displays the evolution of the secrecy rate, measured in bits per second per Hertz (bps/Hz), 

across different episodes for varying numbers of users in a secure communication system aided by an UAV. As 

the episodes increase, the secrecy rate for each scenario with different user counts ranging from K=2 to K=5 tends 

to rise and eventually stabilizes. Initially, the learning algorithm quickly enhances the secrecy rate for lower user 

scenarios (K=2 and K=3), indicating that the system can more easily optimize for fewer users. As the user count 

increases (K=4 and K=5), the rate at which the secrecy rate improves slows down, suggesting that a greater number 

of users presents additional challenges for the system to optimize secure communication. However, all scenarios 

reach a point of convergence, indicating that despite the complexity introduced by more users, the system's 

learning algorithm can adapt and enhance the security over time. 

In Figure. 6 plots the secrecy rate in bits per second per Hertz (bps/Hz) against the transmit power in 

decibels (dB) for different configurations of an RIS using both a proposed DDPG approach and a random RIS 

orientation. It compares the performance of a 50-element and 100-element RIS under both methodologies. As the 

transmit power increases, all configurations demonstrate an increase in the secrecy rate. The proposed DDPG 

algorithm with 100 RIS elements achieves the highest secrecy rate, indicating that the DDPG approach efficiently 

optimizes the phase shifts of the RIS for enhanced secure communication. In contrast, a random RIS orientation, 

even with the same number of elements, results in a significantly lower secrecy rate, highlighting the benefits of 

intelligent phase shift design in RIS-aided communication systems. The difference in performance between the 

proposed DDPG method and the random approach is more pronounced at higher element counts, suggesting that 

the advantages of the DDPG algorithm become more substantial as the number of RIS elements increases. 

 

 

Figure 5: Different Number of Users 

 

 

Figure 6: Transmit Power 
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In Figure. 7 depicts a comparison of secrecy rates achieved by employing an RIS with different numbers 

of elements. It compares a proposed DDPG optimization strategy against a random RIS element orientation at two 

transmit power levels, 10dB and 30dB. The DDPG strategy outperforms the random orientation at both power 

levels, with its advantage more pronounced at the higher number of RIS elements.  

 

 

Figure 7: Number of RIS Elements 

 

The DDPG method maintains superior performance even at the lower transmit power, highlighting the 

effectiveness of intelligent optimization in enhancing secure wireless communication. 

 

III. Conclusion 
Secure data transmission in a downlink network for NOMA by utilizing an Intelligent RIS in conjunction 

with an UAV. The basis for fine-tuning the IRS's phase shifts, the BS power distribution, and the UAV's spatial 

coordination is the DDPG algorithm. The main objective is to increase the total data rate while maintaining the 

confidentiality of SIC, which requires a decoding order that is flexible enough to change as the channel conditions 

do. The simulation results confirm that the implemented DDPG-centric approach increases network performance 

overall and remains robust in dealing with of fluctuating IRS elements and user counts. Significantly, it highlights 

an advanced defensive approach against unauthorized access, strengthening the network's defense against 

eavesdropping while maintaining broad access for authorized users and therefore providing a significant 

advancement in the enhancement of wireless networks. 
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