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I. INTRODUCTION 
The explosive growth of the Internet has led to the creation and accumulation of vast amounts of digital 

textual data, turning it into a valuable and accessible information resource. In the field of text mining, numerous 

studies and applications have achieved notable success using vector-based text representations alongside 

traditional probabilistic and statistical methods. However, these approaches often face limitations in capturing 

deeper semantic aspects and complex word or phrase relationships, especially when applied to natural languages 

with diverse and rich structures like Vietnamese. 

Vietnamese exhibits unique grammatical and semantic features, including the frequent use of compound words, 

flexibility in word order, and a strong reliance on context to determine meaning. These characteristics make 

semantic analysis more complicated compared to many other languages. Existing natural language processing 

(NLP) methods often fail to fully exploit semantic interactions between textual components, such as word 

frequency, syntactic positions, and contextual dependencies. 

To address the issue of plagiarism in academia and publishing, a variety of tools and services have been widely 

developed. These systems typically provide text comparison capabilities against extensive databases comprising 

published documents, academic papers, websites, and other content. Below are several widely-used plagiarism 

detection tools: 

• JPlag: An open-source tool developed at the University of Karlsruhe, specialized in detecting source 

code and text plagiarism, with support for the Vietnamese language. 

• Turnitin: A leading platform in education and research, offering document comparison against a massive 

database and supporting multiple languages, including Vietnamese. 

ABSTRACT: This study focuses on the development of an effective plagiarism detection application for 

the Vietnamese language, aiming to address the challenges posed by semantic analysis and the complex 

relationships among words in this language. Although the availability of online textual data continues to 

grow, traditional methods often fall short in capturing semantic nuances—particularly due to Vietnamese-

specific characteristics such as compound words, flexible word order, and strong contextual dependency. 

To overcome these limitations, we propose an approach based on multidimensional word vector 

representations, incorporating advanced Vietnamese text preprocessing techniques (word segmentation 

and normalization) and leveraging cutting-edge word embedding models such as Word2Vec (CBOW and 

Skip-gram), with a special emphasis on PhoBERT. These models convert text into semantic vectors, 

enabling the computation of document similarity using Cosine Similarity. This method integrates both 

semantic and syntactic features to enhance accuracy. 

The application is designed to provide users with a fast and reliable tool for plagiarism detection. Initial 

experiments demonstrate the potential of the proposed method in improving Vietnamese-language 

plagiarism detection and suggest promising directions for future research on intelligent text processing 

systems. 
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• Plagiarism Checker X: A standalone software application for checking text similarity, delivering 

detailed reports and supporting many languages, including Vietnamese. 

• Copyleaks: A cloud-based service employing advanced algorithms to compare content against the 

internet and private databases, with multilingual support including Vietnamese. 

• iThenticate: A professional-grade service for research, publishing, and enterprises, notable for its 

accuracy and its ability to compare Vietnamese texts against reputable academic sources. 

These tools play a crucial role in maintaining academic integrity and protecting intellectual property, although 

each has its own distinctive features. 

 

II. MATERIAL AND METHODS 
 

This section presents an overview of the distinctive grammatical and lexical features of the Vietnamese 

language, which significantly affect natural language processing (NLP) tasks in general and the problem of 

plagiarism detection in particular. 

 

2.1. Word Structure in Vietnamese 

Vietnamese is an analytic (or isolating) language, characterized by the absence of inflectional morphology in both 

words and syllables. This means each syllable is typically pronounced independently and may correspond to a 

word, without morphological changes to indicate tense, case, number, or gender. This characteristic has profound 

implications on how the language is structured and used, while also introducing unique challenges for syntactic 

and semantic analysis in NLP. 

 

2.1.1. Concepts of “Tiếng” and “Từ” 

In Vietnamese, tiếng refers to the smallest phonological unit, representing a sequence of sounds 

pronounced in a single utterance. A tiếng may carry an independent meaning or may require combination with 

others to form a meaningful unit. From a semantic perspective, tiếng can be classified as follows: 

• Independent meaning units: Syllables that inherently convey a specific meaning. 

• Non-independent meaning units: Syllables that do not carry meaning on their own and must be 

combined with others. 

• Combined units: Some syllables are formed by merging meaningful and non-meaningful components 

to create compound expressions. 

Words (từ) are composed of one or more syllables. Based on their structure, Vietnamese words are typically 

classified into: 

• Simple words: Consist of a single syllable. 

• Compound words, which include: 

- Compound words (từ ghép): Formed by combining two or more meaningful syllables to create a new 

word with a complete meaning. These can be further categorized based on the semantic relationship between their 

components. 

- Reduplicative words (từ láy): Comprised of two syllables with phonetic similarities in initial sounds, 

rhymes, or both. These often convey expressive or mimetic nuances. 

Phrases (cụm từ) are groups of words functioning as a grammatical unit and expressing specific meanings 

within a sentence. 

Statistical data on Vietnamese word lengths indicate a characteristic distribution, reflecting the prevalent 

use of both simple and compound words. Table I presents the frequency distribution of words by the number of 

constituent syllables: 

Table I. Distribution of word lengths in Vietnamese. 

Word Length Frequency Percentage (%) 

1 8399 12,2 

2 48995 67.1 

3 5727 7.9 

4 7040 9.7 

≥5 2301 3.1 

Total 72994 100 

Table 1.1. Distribution of word lengths in Vietnamese. 
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2.2. Morphological Characteristics in Vietnamese 

Unlike inflectional languages, Vietnamese does not utilize prefixes or suffixes to indicate grammatical 

variations such as tense, case, number, or gender. Instead, changes in meaning or grammatical function are often 

conveyed through word combinations, word order variations, or auxiliary words. While it lacks complex 

morphological transformations like those found in English or Romance languages, understanding 

“transformation” in Vietnamese refers to changes in word roles within a sentence or the creation of compound 

words to expand vocabulary and express nuanced meanings. 

 

2.3. Synonymy and Orthographic Features in Vietnamese 

2.3.1. Synonyms 

Synonyms are words that have the same or similar meanings in specific contexts. Although they can often 

be interchanged without significantly altering sentence meaning, they usually differ in tone, connotation, or usage 

scope. These subtle distinctions enhance the richness and flexibility of the language. A word may belong to 

multiple synonym groups depending on context. Identifying and handling synonyms is a key aspect of various 

NLP tasks, including information retrieval, machine translation, and plagiarism detection, where grasping the true 

semantic content of text is critical. 

 

2.3.2. Orthographic Features and Processing Challenges 

Vietnamese orthographic features present several challenges in automated text processing, including: 

• Confusion among homophones and near-homophones; 

• Regional dialect variations; 

• Capitalization rules; 

• Transcription of foreign names and terms; 

• Use of hyphens; 

• Diversity in punctuation symbols. 

These issues increase the complexity of text normalization and require sophisticated preprocessing 

techniques to ensure accurate NLP outcomes. 

 

2.4. Vietnamese Character Encodings and Normalization 

Vietnamese has historically been encoded using various character sets, resulting in a diversity of textual 

representations. Common legacy encodings include VISCII, VNI, and TCVN3. Currently, Unicode has become 

the de facto international standard, offering full support for Vietnamese characters and serving as the default for 

digital text encoding. 

Due to the existence of multiple encoding systems, Vietnamese NLP pipelines must incorporate a 

preprocessing step to normalize text into a unified encoding standard (typically Unicode). This normalization is 

essential to prevent data loss and ensure consistency in downstream analysis. 

 

III. METHODS AND TEXT PROCESSING PIPELINE 
This section details the methods and procedures applied in the task of comparing and detecting plagiarism 

in Vietnamese texts, including preprocessing steps, text representation models, and similarity measures used. 

 

3.1. Vietnamese Text Preprocessing 

Text preprocessing is an essential stage aimed at standardizing and refining raw data before feeding it into 

machine learning models or natural language processing (NLP) applications. This process improves input data 

quality, reduces noise, and enhances system performance. Key preprocessing steps include: 

• Tokenization: This process divides the input text into the smallest meaningful units, typically 

words or phrases. Tokenization in Vietnamese presents unique challenges due to fixed compound words, 

the absence of clear spacing between syllables in multi-syllable words, and punctuation influence. 

Common issues in Vietnamese word segmentation include: 

• Concatenated words: Difficulty in identifying word boundaries when explicit spaces are lacking. 

• Compound and polysemous words: Accurate segmentation and disambiguation of compound 

words in context. 

• Punctuation and special characters: Handling punctuation marks (e.g., parentheses, hyphens) 

and misplaced or confusing special characters. 

• Non-standard writing: Variability in spelling, abbreviations, and typographical errors increases 

segmentation complexity. 

• Notable models addressing these challenges include: 
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- PhoBERT: A pre-trained Vietnamese language model based on BERT, capable of handling 

segmentation and other NLP tasks like text classification. 

- Vietnamese Word Segmentation with CRFs: Utilizes Conditional Random Fields with contextual and 

lexical features. 

- VnCoreNLP: A comprehensive NLP toolkit for Vietnamese providing effective word segmentation. 

- Deep Learning Models: Uses Recurrent Neural Networks (RNN) or Convolutional Neural Networks 

(CNN) for segmentation, yielding promising results on large datasets. 

• Normalization: This involves transforming characters into a unified format, such as converting all letters 

to lowercase, removing punctuation, tonal markers (if task-specific), and unnecessary special characters. 

Normalization reduces word variations, enhancing the efficiency of subsequent processing steps. 

 

3.2. Text Vector Representation Models 

To enable computational comparison and analysis of texts, they must be transformed from natural language 

into numerical representations. Vector-based models represent each text as a vector in a multidimensional space, 

where each dimension reflects a specific semantic or syntactic feature. 

 

3.2.1. Word Embedding 

Word embeddings are machine learning models that map words or phrases to numerical vectors in a high-

dimensional space. Semantically similar words are placed closer together. These representations better capture 

semantics and inter-word relationships compared to traditional methods like Bag-of-Words or TF-IDF. Common 

models include: 

• Word2Vec: A foundational model offering two architectures: 

• Continuous Bag of Words (CBOW): Predicts a target word based on its surrounding context. 

• Skip-gram: Predicts surrounding context words from a target word. 

• GloVe, FastText: Alternative models that generate high-quality word vectors. Embeddings enrich 

semantic understanding and reduce data dimensionality, improving NLP task performance. 

 

3.2.2. Transformer Models and PhoBERT 

Transformers are neural network architectures introduced for processing sequential data, especially 

effective in NLP tasks. Their breakthrough feature is the self-attention mechanism, which assigns dynamic 

weights to input sequence parts, allowing the model to capture long-range dependencies and complex contextual 

relationships. Transformers are the backbone of many large language models, including BERT. 

PhoBERT is a pre-trained Vietnamese language model based on RoBERTa (a BERT variant), specifically 

fine-tuned on a large Vietnamese corpus. PhoBERT captures Vietnamese syntactic and semantic features more 

effectively than traditional word embeddings and excels in tasks such as text representation for comparison. 

 

3.3. Text Similarity Measurement Methods 

Once text is represented as numerical vectors, various methods are required to quantify similarity between 

them. The objective is to measure the degree of content similarity between two or more texts. 

 

3.3.1. Cosine Similarity 

Cosine similarity measures the cosine of the angle between two vectors in a multidimensional space. It 

ranges from -1 to 1 (or 0 to 1 for non-negative vectors like embeddings). A value near 1 indicates high similarity. 

The formula is: 

 

Sim(Bi, Bj) = (Bi ⋅ Bj) / (||Bi|| * ||Bj||) 

 

where ⋅ denotes the dot product, and ||Bi||, ||Bj|| are the Euclidean norms. Cosine similarity focuses on 

vector orientation, making it less sensitive to document length. 

3.3.2. Euclidean Distance 

Euclidean distance computes the "straight-line" distance between two vectors. The smaller the distance, 

the more similar the texts. It is defined as: 

ED(M, N) = sqrt(∑ (Mi - Ni)^2), for i = 1 to n 

Unlike cosine similarity, Euclidean distance is affected by vector magnitude, meaning text length can 

significantly impact results. 

3.3.3. Jaccard Similarity 

Jaccard similarity is a statistical measure for set similarity, typically applied to sets of unique words or n-

grams. It is calculated as: 
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Jaccard(M, N) = |M ∩ N| / |M ∪ N| 

Values range from 0 (no overlap) to 1 (identical sets). While simple and effective for lexical overlap, it 

does not capture semantic or syntactic structure. 

 

3.3.4. Jaro Distance 

Jaro distance evaluates similarity between two strings based on matching characters and transpositions. It 

is especially useful for name matching and typo detection, rather than full-text semantic comparison. The formula 

is: 

dj = (1/3) * (|s1| / m + |s2| / m + (m - t) / m) 

where m is the number of matching characters and t is half the number of transpositions. 

3.4. Evaluation Metrics 

To assess the effectiveness of text comparison or plagiarism detection systems, standard machine learning 

classification metrics are used: 

Precision: The proportion of true positive results out of all predicted positives. 

Precision = TP / (TP + FP) 

Recall: The proportion of true positive results out of all actual positives. 

Recall = TP / (TP + FN) 

F1-score: The harmonic mean of Precision and Recall, providing a balanced metric, especially useful for 

imbalanced datasets. 

F1 = 2 * (Precision * Recall) / (Precision + Recall) 

The goal is to achieve high Precision, Recall, and F1-score, indicating that the system effectively detects 

plagiarism without missing or falsely flagging content. 

 

IV. 4PROPOSED SOLUTION AND SYSTEM ARCHITECTURE 
This section outlines the overall architecture and detailed steps of the proposed Vietnamese plagiarism 

detection solution presented in this study. The solution integrates text preprocessing techniques, advanced vector 

representation models, and similarity measurement methods to accurately detect both semantic and structural 

similarities in text. 

 

4.1. Overall System Architecture 

The proposed plagiarism detection system is designed with a modular architecture, as illustrated in Figure1: 

 
Figure 1. Vector-based text representation model. 

 

4.2. Implementation Steps in the Proposed Solution 

The plagiarism detection workflow is carried out in the following steps: 

4.2.1. Data Collection and Preprocessing 

The initial phase involves collecting Vietnamese text datasets from diverse and credible sources. The 

collected data then undergoes preprocessing to clean and standardize the content, including the following steps: 

Tokenization 

Normalization 

Stopword Removal 

Low-frequency Word Removal 

Sentence Segmentation 
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4.2.2. Vector-based Text Representation 

Following preprocessing, each document is transformed into a numerical vector representation in a 

multidimensional space. These representations enable the system to capture semantic content, allowing 

computational comparisons. In this study, we focus on leveraging advanced word embedding models: 

Word Embedding Models: These models map words or phrases to numerical vectors, ensuring that 

semantically similar words are located close to each other in vector space. Models such as Word2Vec, using both 

Continuous Bag of Words (CBOW) and Skip-gram architectures, are employed to learn vector representations 

from large-scale text corpora based on contextual word usage. These embeddings provide richer semantic 

information than traditional methods like TF-IDF, while also reducing dimensionality and improving 

computational efficiency. 

 

 
Figure 2. CBOW Architecture. 

 

 
Figure 3. Skip-gram Architecture. 

 

A brief explanation of the Softmax function in Word2Vec may be included here or referenced in Section 

3 if the theoretical foundation has already been introduced. 

Transformer Models and PhoBERT: To enhance the representation of semantic and contextual 

relationships in Vietnamese, we utilize PhoBERT—a variant of BERT (Bidirectional Encoder Representations 

from Transformers) pre-trained on large-scale Vietnamese corpora. The Transformer architecture employed in 

PhoBERT, particularly its self-attention mechanism, enables the model to capture long-range dependencies and 

contextual relationships in both directions. Using PhoBERT facilitates the generation of high-quality semantic 

vectors that more accurately reflect the meaning of Vietnamese text. 
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Figure 4. Transformer Model. 

 

V. SIMILARITY MEASUREMENT METHODS 
There are various methods for measuring textual similarity, including statistical approaches such as term 

frequency indices, context analysis, and machine learning techniques that analyze the syntax and semantics of the 

text. 

For natural language processing (NLP) models such as BERT or Transformer, similarity is typically 

measured using mathematical operations like cosine distance or Euclidean distance between the vector 

representations of the compared entities in a high-dimensional space. 

 

5.1. Cosine Similarity 

Cosine similarity is a commonly used method to measure the similarity between two vectors. It evaluates 

the cosine of the angle between the two vectors, returning a value between 0 (completely dissimilar) and 1 

(identical). The dimensionality of the vector space corresponds to the number of unique terms in the vocabulary. 

The value of each vector component represents the importance of the corresponding term in the sentence, which 

can be calculated using previously presented techniques such as term frequency-inverse document frequency (TF-

IDF) or word embeddings (e.g., Word2Vec) [3][4]. 

 

Assume two documents are represented as vectors: 

Vector Bᵢ = <v₁, ..., vₜ>, where vₜ is the weight of the t-th term in document 1. 

Vector Bⱼ = <v₁, ..., vₜ>, where vₜ is the weight of the t-th term in document 2. 

The cosine similarity is calculated as follows: 

Sim (Bi,Bj) =
𝐵𝑖∗𝐵𝑗

|𝐵𝑖||𝐵𝑗|
= 

∑ (𝐵𝑖∗𝐵𝑗)
𝑡
𝑘=1

√∑ (𝐵𝑖)2𝑡
𝑘=1 ∗ ∑ (𝐵𝑗)2𝑡

𝑘=1

 

Trong đó:    

• 𝐵𝑖 ∗ 𝐵𝑗 is the dot product of the vectors Bᵢ and Bⱼ 

• |𝐵𝑖| ∗ |𝐵𝑗| denotes the product of the magnitudes of vectors Bᵢ and Bⱼ. 

 

5.2. Euclidean Distance 

Euclidean distance is a measure of the “straight-line” distance between two points in a multidimensional 

space, calculated based on the difference between corresponding vector components [11]. 

Each document can be represented as a vector using methods like TF-IDF or Word2Vec. Given two vectors 

M and N, the Euclidean distance is computed as: 

ED (M, N) = √∑ (𝑀𝑖 − 𝑁𝑖)
2𝑛

𝑖=1  

Trong đó: 

• Mi and Ni are the i-th components of vectors M and N, respectively. 

• n is the dimensionality of the vector space 

A smaller Euclidean distance indicates greater similarity between the documents in the vector space. 

However, it is important to note that Euclidean distance may not accurately reflect semantic relationships when 

using TF-IDF or Word2Vec vectors. In many cases, cosine similarity is preferred for measuring text similarity 

with vector-based representations. 
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5.3. Jaccard Similarity 

Jaccard similarity is a metric for measuring the similarity between two sets. It is calculated as the size of 

the intersection divided by the size of the union of the sets, yielding a value between 0 and 1—where 0 indicates 

no shared elements and 1 indicates complete overlap. The Jaccard similarity between two sets M and N is defined 

as: 

This metric is relatively weak in capturing semantic similarity and is therefore less suitable for 

conventional textual comparisons. 

 

Jaccard similarity (M, N) = 
|𝑀 ∩ 𝑁|

|𝑀 ∪ 𝑁|
 

Where:  

∣M ∩ N∣ is the number of elements common to both sets. 

∣M ∪ N∣ is the total number of distinct elements across both sets. 

This metric is relatively weak in capturing semantic similarity and is therefore less suitable for 

conventional textual comparisons. 

Note: 

Jaccard similarity is best used to evaluate the overlap between two sets in terms of shared elements. It is 

typically less effective than other methods when applied to standard textual content. 

 

5.4. Jaro Distance 

Jaro distance is a metric for comparing the similarity between two character strings, frequently used in 

NLP and database applications. 

Given two strings b₁ and b₂, the Jaro distance d is calculated as: 

𝑑 =
1

3
(

𝑚

|𝑏1|
+ 

𝑚

|𝑏2|
+

𝑚 − 𝑡

𝑚
) 

Where: m is the number of matching characters, t is ½ of transpositions. 

Each word in b₁ is compared with all words in b₂, and transpositions are counted as half of the mismatches 

in positions. The Jaro score ranges from 0 (completely dissimilar) to 1 (identical). 

 

5.5. Text Similarity Evaluation 

Text similarity can be assessed using distance metrics such as cosine similarity and Euclidean distance. 

In Word2Vec, each word is represented as a numerical vector that captures its semantic and contextual 

information. Cosine similarity is typically used to evaluate the similarity between the vector representations of 

documents. 

 

Using Word2Vec yields reliable and accurate similarity results. However, interpreting these results 

requires deep understanding of natural language and machine learning techniques. Incorporating both semantic 

similarity and word order provides a more comprehensive measure of textual similarity. 

Assume the two tokenized documents are: 

B1 = { v11, v12, …, v1a1} 

B2 = { v21, v22, …, v2a2} 

Trong đó: vij is the j-th term in document bi (i=1,2)  

        ai is the number of terms in document Bi.   

 

Let B = B₁ ∪ B₂ = {v₁, v₂, ..., vₐ} be the set of all distinct terms across both documents. 

 

Semantic feature vector U₁ = (U₁₁, U₁₂, ..., U₁ₘ) for document B₁ is constructed as follows: 

 

Among the analyzed methods, semantic similarity captures meaning-level alignment between words, while 

structural similarity reflects word order relationships. Both aspects are essential for determining overall text 

similarity. Therefore, a comprehensive similarity measure should combine these two aspects, expressed as: 

 

VI. CONCLUSIONS AND RECOMMENDATIONS 
This study successfully developed an effective plagiarism detection application for the Vietnamese 

language. We addressed the linguistic challenges specific to this isolating language through a comprehensive 

preprocessing pipeline and by employing advanced semantic vector representations such as Word2Vec and 

PhoBERT. 
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The proposed solution uses cosine similarity in a hybrid approach that combines semantic similarity with 

word order similarity. This enables the system not only to detect exact word matches but also to capture semantic 

and structural nuances, thereby improving detection accuracy. 

However, limitations remain regarding the detection of idea-level plagiarism and the optimization of 

similarity metric weights. In future work, we aim to enhance Vietnamese word embedding models, integrate 

advanced deep learning techniques for handling more complex plagiarism cases, automate parameter tuning, 

improve the user interface, and expand evaluation using larger datasets. Our ultimate goal is to develop more 

robust tools to uphold integrity in digital content. 
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