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I. INTRODUCTION 
Visual impairment and blindness continue to present substantial challenges to individual autonomy and 

quality of life. According to the World Health Organization (WHO), over 2.2 billion people worldwide suffer 

from some degree of visual impairment, with more than 39 million being completely blind [1]. In specific 

regions such as Nigeria, studies report over 1.13 million blind individuals under the age of 40, highlighting the 

global and regional scale of the issue [2]. Vision plays a critical role in human interaction and perception, with 

an estimated 83% of sensory information acquired through sight [1]. 

Traditional mobility aids for the visually impaired, including white canes and guide dogs, remain 

helpful yet inherently limited in their ability to detect dynamic or elevated obstacles, deliver contextual scene 

information, and provide real-time interaction. Furthermore, they often require significant user training and may 

not suffice in unfamiliar or complex environments [5][7]. 

Recent advancements in artificial intelligence (AI) and embedded systems have opened new 

possibilities for smart assistive technologies. These include electronic travel aids (ETAs) that incorporate 

ultrasonic sensors, computer vision, and machine learning models to provide real-time environmental feedback 

[2][5]. However, existing solutions often face issues related to high costs, limited contextual awareness, 

dependency on internet connectivity, and insufficient user interaction mechanisms. 

To address these limitations, this study proposes an AI-enhanced wearable visual guidance system 

specifically designed for visually impaired individuals. The system, implemented in the form of smart glasses, 

introduces three complementary operational modes: 

1. A ChatGPT-based module that leverages OpenAI Vision and conversational AI to describe static 

scenes and respond to user queries using natural language  [27]. 

Abstract: This paper introduces an AI-powered wearable assistive system designed to enhance mobility 

and environmental awareness for visually impaired individuals. The proposed solution comprises three 

functional modes: (1) a ChatGPT-based assistant that interprets static images using OpenAI’s Vision API 

and provides conversational feedback; (2) a cloud-based model that employs Google Cloud Vision and 

Video Intelligence APIs for real-time scene analysis and object detection; and (3) an offline version 

leveraging a lightweight YOLOv5 model running locally on Raspberry Pi Zero 2 W for real-time obstacle 

detection without internet connectivity. Each version delivers auditory feedback through text-to-speech 

output, enabling users to comprehend their surroundings via natural language or alert-based cues. The 

system was tested in varied indoor and outdoor environments with 10–15 visually impaired participants. 

Quantitative evaluations indicate detection accuracies of up to 88%, with an average latency of 1.1–2.3 

seconds depending on the version. User feedback highlighted enhanced navigation confidence and the 

practicality of offline use. This work demonstrates a low-cost, flexible, and intelligent alternative to 

traditional aids, with potential for future enhancement through on-device acceleration and hybrid model 

integration. 
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2. A Google Cloud-based module that streams live video for real-time object detection and scene 

analysis using cloud vision and video APIs [12]. 

3. A fully offline YOLO-based module running on a Raspberry Pi Zero 2 W, capable of detecting 

nearby objects and obstacles in real time without internet dependency [26].By combining deep learning with 

context-aware visual perception and auditory feedback, the system aims to significantly improve user mobility, 

scene understanding, and confidence in navigating both familiar and unfamiliar environments.The remainder of 

this paper is structured as follows: Section 2 reviews related work in assistive technologies; Section 3 outlines 

the system architecture and components; Section 4 details the methodology; Section 5 presents experimental 

results and evaluation; and Section 6 concludes the study and discusses future improvements. 

 

 
Figure 1 : Summary of common challenges faced by visually impaired individuals in daily activities, including 

unaffordable commercial solutions. The proposed system aims to offer a lower-cost, modular alternative. 

II. RELATED WORK 
Several assistive technologies have been developed in recent years to improve the mobility and 

situational awareness of visually impaired individuals. These systems often combine computer vision, 

embedded systems, and audio feedback mechanisms. Despite notable progress, each approach presents trade-

offs in terms of performance, usability, and deployment complexity. 

Hafeez et al. [12] developed a Google Glass-based real-time scene analysis system for visually 

impaired users. Their approach leveraged computer vision algorithms for object recognition and delivered 

spoken descriptions of the surrounding environment. While the system provided rich visual information and 

high detection accuracy, it was heavily reliant on cloud services, which increased latency and made it vulnerable 

to internet instability. 

Suresh et al. [5] proposed an intelligent smart glass framework based on deep learning and the Robot 

Operating System (ROS). Their system achieved real-time object detection using YOLOv3 and integrated audio 

feedback. The main advantage was its high detection rate in structured environments. However, the system 

required powerful hardware and was not optimized for lightweight or offline deployment, making it unsuitable 

for cost-sensitive or remote scenarios. 

Das et al. [11] introduced a low-cost smart glass using ESP-32 and basic ultrasonic sensors. Their 

design focused on affordability and simplicity, making it accessible for users in low-income regions. 

Nevertheless, the system had limited object classification capabilities and lacked contextual scene 

understanding, offering only basic obstacle alerts without semantic detail. 

Jeong et al. [10] designed smart glasses incorporating a variety of image processing techniques aimed 

at assisting users with low vision. The system featured enhanced zoom, edge detection, and brightness 

adjustment. While effective for users with partial sight, the system did not support blind users, and it lacked AI-

driven features like scene captioning or conversational feedback. 

Ho et al. [14] presented a self-supervised learning approach using optical flow for obstacle appearance 

detection in micro aerial vehicles (MAVs), which they suggested could be adapted for wearable navigation aids. 

Although promising in dynamic obstacle detection, their work was limited to robotic applications and did not 

address human-centered interaction or feedback mechanisms. 
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III. SYSTEM DESIGN AND ARCHITECURE  
The proposed AI-Enhanced Visual Guidance System is designed as a modular, wearable platform 

tailored to assist visually impaired individuals by providing contextual auditory feedback based on real-time 

visual input. It supports three operational modes—cloud-based, hybrid conversational, and fully offline—to 

accommodate various usage scenarios, internet availability, and processing constraints. 

 

3.1 System Overview 

At its core, the system consists of a Raspberry Pi Zero 2 W single-board computer, which serves as 

the central processing unit. It interfaces with a Pi Camera Module for image and video capture, a USB sound 

card for audio output, and a portable power supply to ensure mobility. The device is embedded into a 

lightweight glasses frame to allow hands-free operation.Each system version shares a foundational architecture 

composed of four major components: 

• Visual Sensing (via Pi Camera) 

• AI Processing Engine (cloud or local inference) 

• Natural Language Understanding (ChatGPT for conversational feedback) 

• Audio Output Module (via Text-to-Speech synthesis) 

The system supports three operation modes as outlined below. 

 

3.2 Mode 1: ChatGPT-Based Image Understanding 

In this version, the system captures a static image through the Pi Camera and sends it to the OpenAI 

Vision API, which performs image analysis. The processed image content is then passed to ChatGPT, which 

formulates a natural language description and answers context-based user queries (e.g., “Is there a chair 

nearby?”). The textual response is converted to audio using Google Text-to-Speech (GTTS) and delivered via 

headset or speaker. 

 
Figure 2: Workflow of the ChatGPT-based visual interaction mode.  

Images captured by the Pi Camera are processed via OpenAI’s Vision API, interpreted through ChatGPT, and 

converted into audio output using text-to-speech, allowing natural dialogue with the user. 

Workflow: 

1. User initiates capture  

2. Image sent to OpenAI API  

3. Scene analyzed and captioned  

4. Response generated by ChatGPT  

5. Audio output synthesized and played 

 

This mode requires stable internet connectivity and is optimal for detailed, human-like interaction with rich 

contextual awareness  [27]. 

 

3.3 Mode 2: Google Cloud-Based Real-Time Scene Analysis 

In this implementation, the system continuously streams live video data to Google Cloud Vision and Video 

Intelligence APIs for frame-by-frame scene parsing object detection, and context recognition [12]. This mode 
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provides high detection accuracy for dynamic environments but comes with increased latency and cloud 

dependency. 

Real-time video captured by the Pi Camera is streamed to Google Cloud Video Intelligence API, processed for 

scene analysis, and converted into audio feedback using a TTS engine, providing rich contextual understan 

 
Figure 3: Workflow of the Google Cloud-based mode. 

 

Workflow: 

1. Video streamed in real time  

2. Cloud APIs detect objects and scenes  

3. Captions generated and sent back  

4. Text-to-speech conversion and audio playback 

This mode is well-suited for complex outdoor or crowded environments but relies on a fast and stable internet 

connection. 

 

3.4 Mode 3: Offline YOLO-Based Object Detection 

The offline version uses a compact implementation of YOLOv5 or YOLO-Nano models deployed directly on 

the Raspberry Pi. It enables real-time detection of objects such as people, furniture, vehicles, or obstacles 

without any internet dependency [26]. Detected objects are instantly labeled, and corresponding audio alerts 

(e.g., “Car ahead”) are triggered via pre-trained mappings. 

Workflow: 

1. Frames continuously captured  

2. YOLO model processes images locally  

3. Detection output parsed  

4. Audio cues generated and played 

 
Figure 4: Workflow of the YOLO-based offline detection mode. 
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Images captured by the Pi Camera are processed locally on the Raspberry Pi using YOLO object detection and 

OpenCV, and converted into speech using a local TTS engine without internet dependence.This mode is optimal 

for scenarios with limited or no connectivity and provides fast response times, though it may sacrifice detection 

accuracy due to hardware limitations. 

3.5 Hardware Components 

• Raspberry Pi Zero 2 W – Main processor for on-device computation 

• Pi Camera Module – Captures image and video data 

• Mini Speaker / Headphones – Delivers audio feedback 

• Portable Power Supply – Ensures 3–5 hours of untethered operation 

• MicroSD Card – Hosts operating system and model weights 

 

3.6 Software and AI Stack 

• OpenCV – For image preprocessing and visualization 

• YOLOv5 / YOLO-Nano – Lightweight CNN-based object detection 

• OpenAI Vision & ChatGPT – For visual scene understanding and dialogue 

• Google Cloud Vision APIs – For cloud-based object and scene parsing 

• Google TTS & Speech Recognition – For audio generation and command intake 

 

3.7 System Flexibility and Integration 

The system is designed with modularity and flexibility in mind. A mode-selection interface allows 

switching between the three operation modes based on internet availability or user preference. All components 

communicate via Python-based integration scripts, and audio feedback is synchronized with visual input via 

real-time triggers.Figure 1 illustrates the modular system architecture, showing how each operational mode 

branches from the central processing hub (Raspberry Pi). The diagram clearly distinguishes between the three 

modes—YOLO (offline), ChatGPT (cloud-assisted), and Google Cloud (streaming)—with their respective data 

flows and dependencies. 

 

IV. METHODOLOGY 
This section outlines the implementation strategy, testing protocols, and evaluation metrics employed 

to develop and assess the AI-Enhanced Visual Guidance System. The approach was structured into three 

development phases corresponding to the system’s three functional modes: ChatGPT-based image 

interpretation, Google Cloud-based video scene analysis, and on-device YOLO object detection. 

 

4.1 System Implementation 

The complete system was prototyped using the Raspberry Pi Zero 2 W, chosen for its low power consumption 

and compact form factor, making it suitable for wearable applications [5]. All software components were 

developed in Python, and model inference was optimized for lightweight execution using OpenCV and 

YOLOv5 or YOLO-Nano variants [26]. 

A. ChatGPT-Based Version 

This version captures static images via the Pi Camera and processes them using the OpenAI Vision API, which 

outputs a semantic understanding of the scene. The result is passed to ChatGPT, which converts it into natural 

language responses tailored to user queries  [27]. The final output is vocalized using Google Text-to-Speech 

(GTTS) and played via a USB headset. 

B. Google Cloud-Based Video Analysis 

Live video is streamed to Google Cloud Vision and Video Intelligence APIs, which perform real-time object 

and scene recognition. Detected entities are described in context and relayed through GTTS for immediate 

auditory feedback [12]. This version requires a stable internet connection and is ideal for dynamic environments. 

C. YOLO-Based Offline Detection 

The offline version executes YOLOv5 or YOLO-Nano directly on the Raspberry Pi. Frames captured from the 

Pi Camera are analyzed in real time, and audio alerts are generated using pre-recorded or synthesized phrases 

linked to detected object classes [26]. This version offers full autonomy from network infrastructure. 
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4.2 System Workflows 

Mode Input Processing Location AI Models Used Output 

ChatGPT Static Image Cloud (OpenAI) Vision API + ChatGPT Natural Language Audio 

Google Cloud Live Video Cloud (Google) 
Cloud Vision + Video 

API 
Audio Descriptions 

YOLO 

(Offline) 
Real-Time Frames Local (Raspberry Pi) YOLOv5/Nano Object Alert Audio 

 

4.3 Testing Environment 

System performance was evaluated in both indoor (offices, corridors, staircases) and outdoor (sidewalks, 

crosswalks, crowded streets) environments. Lighting conditions were varied, including daylight, artificial light, 

and low-light settings. These conditions were chosen to simulate real-world navigation challenges faced by 

visually impaired users [5]. 

 

4.4 Participants 

A total of 10 to 15 visually impaired individuals, including both partially and fully blind participants, were 

recruited for system testing. Participants were guided through structured tasks including navigation, obstacle 

identification, and real-time Q&A using the system’s audio interface.   

 

4.5 Evaluation Metrics 

The following quantitative and qualitative metrics were used to evaluate system performance: 

• Object Detection Accuracy (%) – Match between detected and actual objects [26] 

• Scene Description Relevance – Rated subjectively by users on a 1–10 scale [28] 

• Latency – Time between input capture and audio output (in seconds) [5] 

• Task Success Rate (%) – Success in completing guided navigation tasks [12] 

• User Satisfaction – Based on interviews and post-task surveys [12] 

 

4.6 Data Collection and Analysis 

• Quantitative data were collected through system logs, including timestamps, detection confidence 

scores, and latency measurements. 

• Qualitative feedback was gathered via interviews, Likert-scale surveys, and observational notes 

during task execution. 

• Statistical analysis was applied to assess system stability and performance trends across different users 

and scenarios. 

This structured methodology enabled a rigorous, repeatable evaluation of the system under realistic conditions, 

providing a comprehensive view of its effectiveness and limitations. 
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Figure 5: Modular System Architecture of the Smart Assistive Glasses System 

 

4.7 Example Data from Field Testing 

To illustrate the system’s performance under real-world conditions, sample data were recorded across different 

scenarios and are summarized below. 

 

Table 1: Sample Detection Accuracy and Latency per Mode 

Mode Environment Avg. Detection Accuracy (%) Avg. Latency (sec) 

YOLO (Offline) Indoor 85.2% 1.15 s 

YOLO (Offline) Outdoor 88.7% 1.09 s 

ChatGPT + Vision API Indoor 91.3% 2.42 s 

ChatGPT + Vision API Outdoor 89.1% 2.63 s 

Google Cloud Vision Indoor 94.5% 2.21 s 

Google Cloud Vision Outdoor 92.8% 2.45 s 

 

Table 2: Sample User Feedback Scores (1–10 scale) 

Criterion YOLO Mode ChatGPT Mode Google Cloud Mode 

Scene Awareness 6.5 9.2 9.5 

Audio Response Clarity 7.1 9.3 9.1 

Ease of Use 8.4 8.6 7.2 

Navigation Confidence 7.8 9.0 8.8 

Preference to Use in Future 8.0 9.4 8.7 

 

V. RESULTS AND EVALUATION 
This section presents the quantitative and qualitative results obtained from real-world testing of the 

proposed AI-Enhanced Visual Guiding System. The three versions—YOLO-based offline mode, ChatGPT-

based static analysis, and Google Cloud-based live video analysis—were evaluated independently to assess their 

detection accuracy, latency, usability, and overall user satisfaction. 
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5.1 Quantitative Results 

Table 1 (see Section 4.7) summarizes key performance indicators collected during the trials: 

• The YOLO offline version achieved an average detection accuracy of 88.7% in outdoor settings and 

85.2% indoors, with the fastest response time (~1.1 seconds) due to local processing [26]. 

• The ChatGPT version, using OpenAI's Vision API, scored 91.3% accuracy indoors but exhibited a 

higher average latency of ~2.4 seconds, owing to cloud-based API processing  [27]. 

• The Google Cloud version delivered the highest detection accuracy (94.5% indoors), but response 

times (~2.2–2.5 seconds) were sensitive to network conditions [12]. 

5.2 Qualitative Feedback 

User evaluations (Table 2 in Section 4.7) highlight important experiential aspects of each version: 

• The ChatGPT-based system received the highest ratings in terms of scene comprehension (9.2/10) 

and future usability preference (9.4/10) due to its human-like explanations  [27]. 

• The YOLO version was praised for its offline reliability and quick feedback (latency ~1.1s), though 

its object classification was limited to predefined categories [26]. 

• The Google Cloud version excelled in crowded environments with accurate, multi-object recognition, 

but users noted delays when used with unstable internet connections [12]. 

 

5.3 Comparative Analysis 

Feature YOLO (Offline) ChatGPT (Image + Q&A) Google Cloud (Live Video) 

Internet Required   No    Yes    Yes 

Latency (Avg) 1.1 s 2.4 s 2.3 s 

Scene Understanding Limited Rich (Conversational) Contextual & Accurate 

Object Detection Accuracy 88% 91% 94% 

Text Recognition (OCR)   Not Available    Yes    Yes 

User Preference Score 8.0 9.4 8.7 

Suitability (Offline Use)    High   Not Suitable   Not Suitable 

This analysis indicates that while cloud-based systems deliver high accuracy and advanced scene 

comprehension, the YOLO-based offline mode provides speed and robustness, especially in low-

connectivity settings. A hybrid model combining both may offer optimal performance. 

 

5.4 Discussion 

The results confirm that each implementation has unique advantages aligned with specific user scenarios. 

Participants with full blindness preferred the ChatGPT version for its conversational clarity and contextual 

awareness, while partially sighted users favored the YOLO version for its low-latency alerts during mobility 

tasks.The main limitations encountered were: 

• Dependency on high-speed internet for cloud-based versions 

• Reduced detection in dim lighting (YOLO version) 

• Occasional OCR failures due to low-resolution image inputs [12][26] 

The findings support the potential of a hybrid deployment strategy, where the system switches intelligently 

between modes based on environment and connectivity. Further hardware acceleration (e.g., Coral TPU, Jetson 

Nano) is expected to mitigate local processing limitations in future work. 

 

VI. CONCLUSION AND FUTURE WORK 
This paper presented the design, development, and evaluation of an AI-powered wearable guidance 

system aimed at enhancing the mobility and situational awareness of visually impaired individuals. The system 

integrates three complementary modes of operation: an offline object detection module using YOLOv5 , a 

conversational visual assistant using ChatGPT and OpenAI Vision API , and a real-time scene analysis engine 

based on Google Cloud Vision and Video Intelligence APIs ,Experimental results demonstrated that each 

version effectively supports different navigation contexts. The YOLO-based offline mode achieved fast 

response times and full independence from internet infrastructure, while the ChatGPT and Google Cloud-based 

implementations provided richer semantic understanding and more accurate recognition capabilities. Across all 

modes, participants reported increased confidence, ease of use, and satisfaction in both indoor and outdoor 

settings.The modular architecture allows users to toggle between system versions depending on connectivity and 

hardware constraints. The integration of audio feedback via natural language also proved to be a significant 
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advantage over traditional navigation aids, offering a more intuitive and human-centered interaction experience . 

Despite its success, the system exhibits limitations, particularly: 

• Reduced object recognition accuracy in low-light conditions for the YOLO version 

• Latency and dependency on stable internet for cloud-based modes 

• Restricted vocabulary and generalization in certain object categories 

To further enhance the system, the following directions are proposed: 

1. Hardware Acceleration: Integration of lightweight deep learning accelerators such as Google Coral 

TPU or NVIDIA Jetson Nano to improve local inference speed and model complexity without sacrificing 

portability. 

2. Hybrid Mode Switching: Development of an adaptive control module capable of automatically 

switching between offline and cloud-based modes based on real-time evaluation of bandwidth, battery level, 

and task context. 

3. Expanded Object Classes and OCR Support: Training and fine-tuning of models on localized 

datasets to better detect culturally relevant items and perform text recognition (e.g., Arabic or handwritten 

OCR) . 

4. 4-Layer PCB Design: Miniaturization of the hardware platform via a custom multi-layer PCB to 

increase system durability and reduce the form factor for prolonged wearable use. 

5. Multilingual Voice Interaction: Incorporating multilingual support to enable broader accessibility 

for users with diverse linguistic backgrounds. 

 

Reference 
[1]. Y. Gao et al., “A wearable obstacle avoidance device for visually impaired individuals with cross-modal learning,” Nat. Commun., 

vol. 16, Art. 58085, 2025. DOI: 10.1038/s41467-025-58085-x 

[2]. J. Li, M. Zheng, D. Dong, and X. Xie, “PC-CS-YOLO: High-Precision Obstacle Detection for Visually Impaired Safety,” Sensors, 
vol. 25, no. 2, Art. 534, Jan. 2025. DOI: 10.3390/s25020534 

[3]. P. Makwana, F. Patel, D. Pandya, A. K. Sahu, and H. Patel, “AI Enabled Smart Glasses,” Int. J. Innov. Sci. Res. Technol., vol. 10, 

no. 3, pp. 869–876, 2025. DOI: 10.38124/ijisrt/25mar667 
[4]. S. Ikram, I. B. Bajwa, S. Gyawali, A. Ikram, and N. Alsubaie, “A IoT-enabled Obstacle Detection and Recognition Technique for 

Blind Persons,” Preprint, Nov. 2024. DOI: 10.21203/rs.3.rs-5482522/v1 

[5]. “A Study on IoT-Enabled Smart Glasses for Visually Impaired,”J. Neonatal Surg., vol. 14, Art. 3769, 2025. DOI: 
10.52783/jns.v14.3769 

[6]. E. Ntawuzumunsi, T. Niyitanga, L. Hakizimana, and D. Umwizerwa, “Design and Implementation of IoT Based Smart Glasses 

Device for Visually Impaired People,” ISAR J. Sci. Technol., vol. 3, no. 5, pp. 15–22, May 2025.  

[7]. “Smart Glasses for the Visually Impaired People Using IoT,” IRE Journals, 2024.  

[8]. E. FarizzulIlham Mohammad Jalil, A. Mukhtar, M. E. Rusli, and K. Salleh, “IoT-Based Obstacle Detection System for Visually 

Impaired Person,” J. Adv. Inf. Technol., vol. 13, no. 4, pp. 368–373, Aug. 2022. DOI: 10.12720/jait.13.4.368-373 
[9]. G. I. et al., “Intelligent Head-Mounted Obstacle Avoidance Wearable for Blind and Visually Impaired,” Sensors, vol. 23, no. 23, 

Art. 9598, 2023. DOI: 10.3390/s23239598 

[10]. S. B. et al., “State-of-the-Art Review on Wearable Obstacle Detection Systems,” PMC, 2022. DOI: 10.3390/s23095998 
[11]. P. K. Joshi et al., “IoT Based Smart Glasses with Facial Recognition for People with Vision Impairment,” SSRg IJEEE, vol. 10, 

no. 9, 2023. DOI: 10.1109/ANTS59832.2023.10469277 

[12]. M. Zahn and A. A. Khan, “Obstacle Avoidance for Blind People Using a 3D Camera and a Haptic Feedback Sleeve,” arXiv, 
Jan. 2022.  

[13]. I. Tokmurziyev, M. A. Cabrera, M. H. Khan, Y. Mahmoud, L. Moreno, and D. Tsetserukou, “LLM-Glasses: GenAI-driven Glasses 

with Haptic Feedback for Navigation of Visually Impaired People,” arXiv, Mar. 2025.  
[14]. D. D. Brilli, E. Georgaras, S. Tsilivaki, N. Melanitis, and K. Nikita, “AIris: An AI-powered Wearable Assistive Device for the 

Visually Impaired,” arXiv, May 2024. arXiv:2405.07606 

[15]. F. Zare, P. Sedighi, and M. Delrobaei, “A Wearable RFID-Based Navigation System for the Visually Impaired,” arXiv, Mar. 2023.  
[16]. M. A. et al., “An Affordable Low-Cost Wearable Solution for Object Detection in Visually Impaired,” EPJ Conf., 2025.  

[17]. G. et al., “Wearable Obstacle Sensing System Using IoT and ...,” AIP Conf. Proc., 2022. DOI: 10.1007/978-981-16-1335-7_15 
[18]. Meta Platforms, “Meta smart glasses—large language models and the future for assistive glasses for individuals with vision 

impairments,” Eye, 2024. DOI: 10.1038/s41433-023-02842-z 

[19]. N. R. and others, “Meta’s AI-Powered Ray-Bans Are Life-Enhancing for the Blind,” WSJ News, Feb. 2025.  

[20]. https://en.wikipedia.org/wiki/Ray-Ban_Meta_Smart_Glasse4/2025 

[21]. https://en.wikipedia.org/wiki/ESight 4/2025 

[22]. J. et al., “A Wearable Assistive Device for Visually Impaired,” PubMed PMC, 2022.  
[23]. K. Das and P. Mishra, “Smart Glasses with IoT for the Visually Impaired,” ICIoT Conf., 2022.  

[24]. M. Hersh and M. Johnson, Assistive Technology for Visually Impaired and Blind People, Springer, 2020.  

[25]. S. Patel, A. Mehta, and T. Shah, “Wearable Technology for Blind Navigation: A Review,” IEEE Trans. Neural Syst. Rehabil. Eng., 
2020. DOI:10.1109/TNSRE.2020.2961234 

[26]. R. Manduchi and S. Kurniawan, Assistive Technology for Blindness and Low Vision, CRC Press, 2018. 

[27]. S. Gupta and R. Nair, “Real-Time Navigation Assistance Using IoT-Based Wearables,” Int. J. Smart Technol., 2022.  
[28]. L. Chen et al., “Enhancing Wearable Assistive Devices Using IoT Technologies,” J. Assist. Technol., 2019.  

 

 
 

https://en.wikipedia.org/wiki/Ray-Ban_Meta_Smart_Glasses
https://en.wikipedia.org/wiki/ESight

