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ABSTRACT: Free and forced vibration analyses in Timoshenko and Bernoullicircular beams of fixed-
free and simply supported ends have been presented in this work using Ansys workbench. Modal analysis
has been used to evaluate the natural frequencies and mode shapes, while harmonic analysis has been
used for forced vibration case. The forced excitations used in the analysis are vertical harmonic force of
750 N amplitude and harmonic torque of 500 N.mm amplitude. The forced excitations are applied at free
end in fixed-free beam, and at mid-span in simply supportedbeam. Results of harmonic analysis show that
maximum displacement, velocity, and acceleration of vibration are occur at the natural frequency that
produce mode shape in the same direction of the excitation disturbance. Also the results show that to
eliminate the effect of forced vibration at resonant frequency, the location of external excitation must be
applied at the vibration nodes (zero vibration locations).
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I. INTRODUCTION

Vibration is one of the important phenomena occurs in may mechanical applications and may cause a
damage in mechanical components. Vibration of any system can be studied by mode analysis using modal
expansion method for simple structures and FEM for complex structures. In beams, there are many studies
presented to evaluate vibration results and dynamic behavior. Abrate [1] introduced simple formulas for
prediction of fundamental natural frequency in non-uniform beams with a general shape and arbitrary boundary
conditions by Rayleigh-Ritz method. Dynamic response analysis in circular Timoshenko beam had been
presented by Lin and Lee [2] using closed form solutions with applying general elastic boundary conditions.
Kang et al. [3] studied in-plane free vibration of curved circular beam using a symmetric approach. Chen [4]
investigated free vibration in circular curved beam using the differential transform method. Rensburgand and
Merweb [5] presented a systematic approach to solve the eigenvalue problems associated with the uniform
Timoshenko beam model by finite element method FEM. Wang et al [6] utilized the principle of wave-train
closure to evaluate natural frequencies and mode shapes in simply support and cantilever beams subjected to
sinusoidal force, depending on the reflected wave nature at the beam boundaries. Yang et al. [7] investigated
free vibration in uniform and non-uniform curved beams by FEM using the extended-Hamilton principle with
taking into account the effects of shear deformation, rotary inertia, and axis extensibility. Kim et al [8] studied
the out of plane vibration in thin curved beam using a finite thin circular beam element. The effects of torsional
and transverse rotary inertia, as well as transverse shear deformation can be considered totally or partially in this
method.

In 2011, Sedighi et al [9] presented a new analytical method for analyzing nonlinear vibration and
obtain dynamic behavior in cantilever beam subjected to nonlinear boundary conditions. Ozturk [10] used finite
element and reversion methods to analyze free vibration in cantilever curved beams using straight-beam element
approach. Mahmoud et al. [11] applied the differential transformation method for the free vibration analysis of
E-B (Euler Bernoulli) beams with uniform and non-uniform cross-sections. Abdelghany et al [12] studied free
vibration in Euler-Bernoulli beam of variable cross section using differential transformation method. They
proved the validity of their proposed method by compare the results with previous dependent results.
Korabathina and Koppanat [13] developed the “coupled displacement field method” to calculate the
fundamental frequency of Timoshenko beam which reduces the computational efforts compared with the other
methods. Lv et al. [14] introduced an approach for free vibration analysis in multi-span curved Timoshenko
beam by combining the Rayleigh-Ritz and improved Fourier series methods, with applying general elastic
________________________________________________________________________________________________________________________________|

| NIMER | ISSN: 2249-6645 | WwWw.ijmer.com | Vol. 15| Iss. 5 | Sep.-Oct.2025| 1 |



Analyzing of Vibration Characteristics in Timoshenko and Bernoulli Circular Beams Using ..

boundary conditions. Baxy and Sarkar [15] studied free vibration in curved beams of circular cross section using
both FEM and analytical method for cantilever and simply supported beams. They proved that finite element
and analytical solutions are close up to an opening angle (angle between beam ends measured from curve
center) of 40°. Liu and Zhu [16] presented an approach for formulation of wave propagation, vibration, and
static problems in circular Timoshenko beam based on finite element models using Hamilton's principle. Hull
and Perez [17] proposed an analytical method for frequency response in high frequency circular beams of T-
shaped cross-section, utilizing exponential and Bessel functions to solve the resulting differential equations.
Domagalski [18] presented a method to analyze free vibration in simply supported beams of variable mechanical
properties and cross section along beam axis in periodic manner using classical Timoshenko and Euler beam
theories. Lellep and Lenbaum [19] investigated free vibration in stepped nano-beam made of nano-materials
with crack-like defects. Vibration results have been obtained using non-local theory of elasticity introduced by
Eringen. Neamah et al [20] employed high shear deformation, Timoshenko, and Euler theories to study free
vibration in functionally-graded beam of variable mechanical properties in thickness direction using Hamilton
principle.

1. MATERIAL AND METHODS
2.1 Free and forced vibration
Free and forced vibration analysis in uniform beam can be covered by the following generalized equation
[21]:

*y(x,t 0°y(x,t
E17288 4 pa g(z )= F(x,t)... e (D)
Where E and p are modulus of elasticity and densny of beam material respectively, I and A are area moment of
inertia and cross-sectional area of beam, F is the external disturbance force applied at an axial distance (x) and
time (t), and y represents beam deflection in the same direction of force. To obtain eigen values and eigen vectors

from Eq. 1, F (x, t) must be substituted as zero (free vibration case).

To solve Eq. 1 in forced vibration case, y(x, t) must be substituted as follows:

VOO,E) = X i Yn O G () e (2)

Where y,, (x) is the n normal mode and g,,(t) is the generalized coordinate for n" mode.

For cantilever (fixed-free) beam, the boundary conditions at fixed end (x=0) and free end (x=L) are:

deflection = y(0,8) = 0 .o 3)
_ oy(0,0) _
slope = o = O e, (e
2
Bending moment = E1%=O e (B)
Shear force = EIa y(“) =0 e (6)

While in simply supported beam, the boundary conditions are:

V(0,8) = Y(L,t) =0 oo (7)
2 2
E1Z200 = pI2280 =0 8)

Eg. 1 can be solved numerically using programmed FEM for both free and forced vibration cases under the
applied boundary conditions.

2.2 Finite Element method

Finite element analysis (FEA) is one of the most effective methods used widely in last decades in various
mechanical problems as a result of its flexibility, reliability and short executed time when programed. FEA based
on the principle of discrete problem domain into a suitable number of sub-domains known as elements. The
governing problem equations are applied at each element or node, and the final solution will be obtained by
combine all elements or nodal equations in suitable manner depending on problem nature. FEM has an ability to
solve linear, nonlinear and complex problems efficiently using many software applications in computer [22].

Ansys Workbench will be used in this paper as a programmed finite element utilizing modal analysis and
harmonic analysis fields. From modal analysis, natural frequencies and mode shapes can be evaluated for any
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number of modes. While harmonic analysis gives the values of displacement, velocity, and acceleration of
vibration under harmonic forced vibration. Knowing that there are infinity number of modes in beam since it is a
rigid body.

2.3 Studied Cases

Two cases are studied in the present analysis. The first is fixed-free circular beam subjected to two loading
cases (vertical harmonic force and harmonic torque applied at free end). The second case is circular beam of
simply supported ends subjected to the same loading conditions (vertical harmonic force and harmonic torque)
but applied at beam mid-span. The diameter of beam specimens used in the analysis is 50 mm with 300 mm
length (L). The amplitude of the applied force in all studied cases is 750 N, while the torque amplitude is 500
N.mm.

Fig.(1) shows the studied specimen that meshed in Ansys workbench. The total number of elements is 8241 with
37122 nodes. Beam material used in the analysis is structural steel of 250 MPa yield strength, 460 MPa ultimate
tensile strength, 7850 Kg/m?® density, 200 GPa elasticity modulus, and 0.3 poison’s ratio.

(a) Beam Specimen

(b) Meshed Beam

Figure 1: Circular beam modeled in Ansys workbench.

111. RESULTS AND DISCUSSIONS
3.1 Free Vibration Results

Fig. (2) shows modal analysis results for the first six modes of fixed-free beam. The first mode shown in Fig.
(2a) has only one wave of vibration in vertical direction. The second mode is similar to the first mode, has one
wave only but in horizontal direction as illustrated in Fig. (2b). The natural frequencies of the first and second
modes are of the same value (approximately) due to circular cross section of beam. Figs. (2c) and (2d) show the
third and fourth modes. The third mode has two waves in vertical direction with one vibration node (zero
vibration location) near the free end. The fourth mode also has two waves but in the horizontal direction with
one vibration node near the free end. Fifth mode belong to torsional vibration, while the sixth mode related to
________________________________________________________________________________________________________________________________|
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axial vibration as shown in Figs. (2e) and (2f). Table (1) shows the resulting natural frequencies of the first sixth
modes in fixed-free circular beam.

(a) 1* mode (b) 2" mode

(c) 3 mode (d) 4" mode

(e) 5" mode (f) 6" mode

Figure 2. Modal analysis of fixed-free circular beam (first six modes).

Table -1 Natural frequencies in fixed-free beam (first six modes).

Mode Number Natural
Frequency, Hz
388.78
388.79
2240.7
2240.8
2608.6
4223.3

DO |W|IN(F-

Results of modal analysis for the first six modes in the same beam when both ends are supported (simply
supported ends) are shown in Fig. (3). The results can be summarized as follows: first and second modes are one
wave vibration in vertical and horizontal (lateral) directions, respectively. Third mode related to torsional
vibration, while the fourth and fifth modes have two waves of vibration in vertical and horizontal directions,
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respectively with one vibration node at beam mid-span. Finally, the sixth mode is related to axial vibration.
Table (2) shows the resulting natural frequencies of the first six modes in simply supported circular beam.

(a)1** mode (b) 2™ mode

(c) 3 mode (d) 4" mode

(e) 5" mode (f) 6™ mode

Figure 3. Modal analysis in simply supported circular beam (first six modes).

Table -2 Natural frequencies in simply supported circular beam (first six modes).

Mode Natural
Frequency, Hz
2240.7
2240.8
5217.3
5469.1
5469.3
8475

A W|N|F-

3.2 Forced Vibration Results

Results of forced vibration in fixed-free circular beam under the action of harmonic force (750 sin(wt)
Newton) applied at free end under the frequency range from 0 to 4500 Hz are shown in Fig. (4). Fig. (4a) shows
that maximum vibrational displacement in the beam occurs at first natural frequency (388.78 Hz) as a result of
resonance case in vertical direction. While at the 3rd natural frequency (2240.7 Hz) the vertical vibrational
displacement in the beam doesn’t reach to a maximum value although this mode is in vertical direction as a
result of existence vibration node near the free end. Fig. (4b) shows the results of vibrational velocity which has

a behavior similar to vibrational displacement for the same reasons. Results of vibration acceleration are shown
________________________________________________________________________________________________________________________________|
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in Fig. (4c), with a maximum value at third natural frequency. Fig. (5) shows the results of vibration in fixed-
free beam under the action of harmonic torque of (500 sin(wt) N.mm) applied at free end. From this figure it can
be noted that maximum vibrational displacement, velocity, and acceleration are occurred at fifth natural
frequency (2608.6 Hz) which belongs to torsional vibration as a result of resonance with torsion load excitation.
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Figure 4a. Vertical displacement of vibration versus forced frequency in fixed-free
circular beam under vertical harmonic force.
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Figure 4b. Vertical velocity of vibration versus forced frequency in fixed-free circular
beam under vertical harmonic force.
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Figure 4c. Vertical acceleration of vibration versus forced frequency in fixed-free
circular beam under vertical harmonic force.
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Figure 5a. Vertical displacement of vibration versus forced frequency in fixed-free
circular beam under harmonic torsional load.
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Figure 5b. Vertical velocity of vibration versus forced frequency in fixed-free circular
beam under harmonic torsional load.

23319 -
4644.6
925.07
W
E 184.25
E
2 36698
=3
=
273002
=4
1.4558
0.28995
5.7751e-2
37.5 1000, 2000, 3000 4000, 4500,
Frequency (Hz)

Figure 5c. Vertical acceleration of vibration versus forced frequency in fixed-free circular
beam under harmonic torsional load.
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Results of forced vibration in simply supported beam under the action of harmonic force (750 sin(wt)
Newton) applied at beam mid-span under the frequency range from 0 to 8500 Hz are shown in Fig. (6). Fig. (6a)
shows that at first natural frequency (2240.7 Hz) the beam attains maximum vibrational displacement in vertical
direction due to resonamce phenomena of external excitation force with first natural frequency which belongs to
vibration in vertical direction. It is noted from this figure that the resonance phenomena doesn’t occurs at the
natural frequency of fourth mode (mode of two vibration waves in vertical direction) because the excitation
force applied exactlly at the vibration node (location of zero vibration) at this frequency.

Figs. (6b) and (6¢) show the results of vibrational velocity and vibrational acceleration which have a
behaviour similar to vibrational displacement for the same mentioned reasons. Finally, Fig. (7) shows the results
of forced vibration in simply supported beam under the action of harmonic torque of (500 sin(wt) N.mm)
applied at beam mid-span. It is obvious from this figure that maximum vibrational displacement, velocity, and
acceleration are occur at third natural frequency of 5217.3 Hz (frequency of torsional mode) due to resonance
case with torsion load.
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Figure 6a. Vertical displacement of vibration versus forced frequency in simply
supported circular beam under vertical harmonic force.
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Figure 6b. Vertical velocity of vibration versus forced frequency in simply
supported circular beam under vertical harmonic force.
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Figure 6¢. Vertical acceleration of vibration versus forced frequency in simply
supported circular beam under vertical harmonic force.

1.3802e-5 3

7.4538e-6

4,0255e-6

2.174e-6

1.1741e-6

6.3407e-T

Amplitude (mm)

3.4243e-T

1.8493e-T

9.9874e-8

as. 12500 2500. 3750. S000. 6250, 7500, 8500.

Frequency (Hz)

Figure 7a. Vertical displacement of vibration versus forced frequency in simply
supported circular beam under harmonic torsional load.
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Figure 7b. Vertical velocity of vibration versus forced frequency in simply
supported circular beam under harmonic torsional load.
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Figure 7c. Vertical acceleration of vibration versus forced frequency in simply supported
circular beam under harmonic torsional load.

IV. CONCLUSIONS AND RECOMMENDATIONS

The conclusions that can be drawn from this work are summarized as follows:
To study forced vibration in any system, it is important to evaluate all natural frequencies and mode

shapes up to the forced frequency of the external excitation.

The mode shapes and natural frequencies in vertical and lateral directions are of same values due to
symmetry condition in circular beams.

In fixed-free circular beam the first fourth modes are related to vertical and lateral vibration, fifth mode
is torsional vibration mode, and the sixth mode represents axial vibration mode. While in simply
supported beam the first, second, fourth and fifth modes are related to vertical and lateral vibration,
third mode represents torsional mode, and the sixth mode is related to axial vibration.

In forced vibration, location of the applied external excitation must be chosen at the locations of
vibration nodes (locations of zero vibration) in order to eliminate the vibration effect at resonance
frequency case.

Maximum displacement, velocity, and acceleration of vibration are occurred at the natural frequencies
that produce mode shape in the same direction of external excitation.

It is recommended to use beams of functionally graded materials to ehnance vibration characteristics and
dynamic response as well as use curved beams with different curve radii to obtain an optimum curved shape
helps to ehnance vibration response.
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