
International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.4, July-Aug 2012 pp-1923-1928 ISSN: 2249-6645

www.ijmer.com 1923 | P a g e

1
Durga Gehlot,

2
Prof. Meena Sharma

1Departmen of Computer Engineering, Institute of Engineering and Technology, DAVV Indore, India
2HOD of Computer Engineering, Institute of Engineering and Technology, DAVV Indore, India

Abstract: Function point analysis is useful to measure size

of software projects in terms of functionality requested by

user. The main advantage of function point analysis is that

it is independent of the technology used for implementation.
When we apply function points to object-oriented software

projects, the concepts of development method have to be

mapped into abstract models that contain functional items

of the application. This proposed idea implement a tool for

mapping function points into use case driven OOSE (object-

oriented software engineering) Jacobson approach. In this

idea we only considers analysis phase of OOSE life cycle.

OOFP tool measures function point from requirements

models and analysis model.
Keyword: function points, size, requirements model, and

analysis model, OOFP.

I. INTRODUCTION
Function Points Analysis (FPA) is one of the

earliest models that are used to predict the size of software

in the early stages. Albrecht proposed the FPA model in

1979 and it measures the size of software based on its

functionalities [1]. The main advantages of the FPA model

are that it is independent of the technology. Up to the

present, various FPA versions based on the Albrecht’s

version have been proposed (e.g. IFPUG method, MarkII,

COSMIC-FFP and they have been accepted as ISO/IEC
standards. The current version of counting rules is recorded

in the Counting Practices Manual [2]. This counting method

isimplicitly based on the high- level model of software

applications. Though independent of implementation,

counting rules are thus based on the implicit assumptions on

the abstract model of software applications. The items in the

abstract model that are than counted include transaction and

file types. These items are typically identified from

documents of traditional, structured design technique e.g.

data flow diagrams, hierarchical process models or database

structures. The proposed paper focus on object oriented
models based on the OOSE Jacobson approach. The

transaction and file type items are counted from models of

analysis phase. The models of analysis phase of OOSE

includes use case model, domain object model and analysis

model but this research paper focuses on counting function

points from analysis model and use case model.

1.1Function Point Analysis with object – oriented design

methods
The Function Point software measure does not

require a particular development technique. However, the

high level concepts of object-oriented development methods

cannot be mapped directly to the concepts of Function Point
Analysis. In order to apply this software measure early in

the development process, the object-oriented concepts

corresponding to transactional and data function types have

to be determined.

Object-oriented methods differ, especially in their

early development phases. The Object-Oriented method of

Jacobson et al. is based on so-called use cases. The OO-

Jacobson identifies the functionality of an application with

requirements use case model. Data types are described with

domain or analysis object model on the requirements level.

The work proposes rules to map these models into function

point counting procedures. With proposed rules, it is
possible to count software developed with the OO-Jacobson

method.

In this research paper, we focus on the approach of

Jacobson et al [3]. This method is called Object- Oriented

Software Engineering. The OOSE method defines a process

to transform formalized requirements into a sequence of

models. The steps include the requirements, analysis,

design, implementation and testing models. The use case

model is the basis on which all the models are developed.

Together with the domain object model it forms

requirements model as shown in Figure 1.

Figure 1: The use case model is the basis on which all

other models of OOSE approach are developed.

Oofp: Mapping the Oose Models into Function Points:

Rules, Tool and Case Study

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.4, July-Aug 2012 pp-1923-1928 ISSN: 2249-6645

www.ijmer.com 1924 | P a g e

The objectives of this research paper are:

1. The application of Function Point Analysis following

the IFPUG standards.

2. To measure for software developed with OOSE method.
3. To count early in the life cycle, in the requirements

analysis phase.

1.2 Related Work

Little work has been published on Function Point
Analysis in the context of object-oriented software

engineering techniques. But these approaches are based on

a model that consists with objects together with their

methods. In these approaches objects are treated as data

files and methods as transactions which are the counting

items in the Function Point Analysis. These approaches do

not applicable to early OOSE documents. It is also

questionable whether each individual method is to be

counted as a transaction.

Whitmire[4] considers each class as an internal

logical file and treats messages sent outside the system
boundary as transactions.

The ASMA paper takes a similar approach. Services

delivered by objects to the client are considered as

transactions. The complexity of services is weighted based

on accessed attributes and communications. Objects are

treated as files, their attributes determining their

complexity.

IFPUG [5] is working on a case study which

illustrates the use of the counting practices for object-

oriented analysis and design. This case study, which is

currently in draft form, uses object models in which the

methods of classes are identical with the services recorded
in the requirements. Under this assumption, the methods

can be counted as transactions.

Karner [6] proposes a new measure called Use

Case Points for projects developed with the OOSE method.

The structure of this measure is similar to Function Points,

but it does not conform to the concepts of Function Points.

Thomas Fetcke[7] proposes rules for mapping the

OO-Jacobson approach into Function Point Analysis. This

paper is based on Thomas proposed rules. This research

paper considers how to apply these rules to OOSE models

to measure data and transaction functions. In this paper data
files and transactionfunctions counting is done using

models of analysis phase of the OOSE life cycle. Analysis

phase model includes use case model and analysis model.

II. Brief Introduction To Oose
The OOSE method is divided into three major

consecutive processes: analysis, constructive and testing.

The analysis phase is further divided into two steps called

requirements analysis and robustness analysis as shown in
Figure 2. The first step derives the requirements model

from the informal customer requirements. This model is

expressed in terms of use case model, and may be

augmented by a domain object model. The second step,

robustness analysis, then structures the use case model into

the analysis model by applying use case analysis. The

succeeding process furthertransforms these models, as

indicated in Figure 1.

Figure 2: Analysis Phase of the OOSE life cycle.

At the focus of our work are the models developed

in analysis phase as shown in Figure2. As Jacobson et al.

state, the requirements model can be regarded as

formulating the functional requirements specification based

on the needs of the users. The goal of this research paper

work is to count Function Points early in the life cycle,

measuring the functionality requested by the user from

these models. The overview of these three models discussed

in [7].

III. Fuction Point Concepts
3.1 Function Point model

A high level model of the FPA mode is given in

Figure 3 [7]. The function Point model specifies which

component types of the software application will be

measures and from which viewpoint this will be done. Hat

is to be counted, and measured, are the internal files and

external files of the application, together with the inputs,
outputs and inquiries from and to the user. Software

components or deliverables which are not visible from a

user viewpoint are not considered part of the Function Point

measurement model.

Function Point Model

Figure 3: High-level view of the abstract Function Point

model with users and links to other applications. The

dotted line marks the application boundary.

3.2 Function Point Counting Process

In the IFPUG version, the counting procedure of

function point consists of the following seven steps. The
details of these seven steps are discussed in IFPUG [2].

1. Determine type of function point count.

2. Identify the application boundary (A boundary

indicates the border between theapplication or project

being measured and the external applications or the

user domain. A boundary establishes which functions

are included in the function point count).

3. Identify and rate transactional function types to

determine their contribution to the unadjusted function

point count.

4. Identify and rate data function types to determine their

contribution to the unadjusted function point count.

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.4, July-Aug 2012 pp-1923-1928 ISSN: 2249-6645

www.ijmer.com 1925 | P a g e

5. Determine the Unadjusted function point counts.

6. Determine the value adjustment factor (VAF) that takes

so-called global system characteristics into account,

e.g. data communication, performance or end user
efficiency. This adjustment is external of and

independent from the concepts of the abstract FPA

model. The global system characteristics determine

an adjustment factor that is multiplied with the

unadjusted count.

 7. Calculate the adjusted function point count.

The next section describes the proposed mapping

of OOSE models to function points along these five steps.

IV. Mapping Concepts (Proposed Method)

The aim of this research paper is to calculate the

Unadjusted Function Point. The paper work proposes the

following five steps to apply IFPUG version to the OOSE

requirements analysis models (use case model and analysis

model).

4.1 Step1(Determine the type of function count): This

paper handles only the application project function

point.

4.2 Step2(Identify the application boundary): The counting

boundary is determined by the type of actors appeared

in use case model of OOSE requirement analysis
phase.

Proposed mapping rules to identify the application

boundary

1. Accept each human actor as a user of the system.

2. Accept each non-human actor, which is separate

system not design to provide functionality solely to the

system under consideration as an external application.

3. Reject each non-human actor, which is part of the

underlying system, e.g. a rational database system or a

printing device.
The result is a representation of the application boundary as

a set of users and applications external to the one under

consideration as shown in Figure 4.

Figure 4: Step2- Identification of the counting

boundary.

4.3 Step3 (Identify and rate transactional function types to

determine their contribution to the unadjusted Function

point count.):

 The transaction functions are automatically decided

based on actors and use cases of the use case model. Use

cases are the OOSE concept corresponding to transactions.

Proposed mapping rules to identify and rate transaction

function types

4. Select every use case that has a direct relation to an actor

accepted by rule 1 or 2. This use case will be a candidate

for one or several transactions.

5. Select every use case that extends a use case selected by

rule 4 as a candidate.

6. No other use cases will be counted.

Determining the types of transaction (external input (EI),
external output (EO) and external inquiry (EQ) is based on

a set of detailed rules in FPA [1]. The rules are recorded in

the IFPUG Counting Practices Manual [2]. The relevant

sections are:

“External Input Counting Rules”,

“External Output Counting Rules”, and

“External Inquiry Counting Rules”.

The rates of transactions are based on detailed rules in the

counting practices Manual. The rules require the

determination of data element types (DET) and file types

that are referenced (FTR), illustrated in Figure 5
.

4.4 Step4 (Identify and rate data function types to

determine their contribution to the unadjusted function

point count.):

Data files are automatically decided based on analysis

classes of analysis model. In the analysis model, the objects

are typed into three groups, namely entity, interface and

control objects. The set of objects that have to be analyzed

is limited to the entity objects and is thus set of objects

typically smaller. Interface (boundary) and control objects

are part of implementation.

4.4.1 Finding of Analysis Classes from Use Case Model

1. Is this candidate inside our system boundary?

2. If not, it might be an actor of our system.

Does this candidate have identifiable behavior for our

problem domain?

(i.e., can we name the services/functions that are

needed in our problem domain and that this candidate

would own and provide?)

3. Does this candidate have identifiable structure?

(i.e., can we identify some set of data this candidate

should own and manage?)
4. Does this candidate have relationships with any other

candidates?

If you find a "no," then the candidate is probably

not a class; move on to the next candidate. If the answer is

"yes," keep asking the questions. If you get all "yes"

answers, conclude the candidate is a class, and get the next

candidate to evaluate.

Proposed mapping rules to identify and rate data

function types

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.4, July-Aug 2012 pp-1923-1928 ISSN: 2249-6645

www.ijmer.com 1926 | P a g e

7. Select every object of entity type as a candidate for a

logical file.

8. No other objects will be selected.

For aggregation relationships

9. An entity objects that is part of another object (is

aggregated into another object) is not a candidate for a

logical file, but it is a candidate for a record element

type (RET) for the file related to the aggregating top-

level object

For inheritance relationships

10. An abstract object is not a candidate for a logical file. It

is a candidate for a RET for each object that inherits its

properties.

11. Sub-objects of a concrete object are candidates for a
logical file or for a RET of that object.

12. If use cases make implicit use of logical files that are

not represented in the analysis object (class) model,

these files have to be included in the set of files.

Determining the types of data files (internal logical

files (ILF) and external interface files (EIF)) is based on a

set of detailed rules in FPA [1]. The rules are recorded in

the IFPUG Counting Practices Manual [2]. The relevant

section is “ILF/EIF counting rules”.

The rates of data files are based on detailed rules
in the counting practices Manual. The rules require the

determination of data element types (DET) and record

element types (RET), illustrated in Figure 5.

Figure 5: Step3 and Step4- Rating of data and

transaction function types.

Proposed Mapping Rules for determining DET, RET

and FTR

13. Attributes of objects are candidates for data element

types (DET) for files and for the transactions by which

it is read and maintained.

14. Candidates for record element types are determined by

subgroups of files and by rules 9-11.

15. Each object maintained and /or read by a use case

counts as a file type referenced (FTR) for the

associated transaction(s), if and only if the object has
been identified as a file in step 4.

After determining DETs, RETs, FTRs rate the data

files and transaction functions according to rating matrix

and then allot weighs according to weighting matrix in the

Counting Practices Manual [2]. The total weight of data

files types and transaction types are the required unadjusted

function points count.

4.5 Step 5 (Determine the unadjusted function point

counts)

As the result of Step3 and Step4, the counts for each

function type are automatically classified according to
complexity and then weighted. The total for all function

types is the unadjusted function point count.

V. CASE STUDY
In this section the rules proposed in section 4 are applied to

OOSE approach based project. The documentation

provided included use case models and analysis object

models together with the textual description these models.

5.1 Example of OOSE based analysis models
In OOSE life cycle, analysis phase is divided into

two phases: requirement analysis and robustness analysis.

Requirement analysis consists with two models, use case

models and domain object models. Robustness analysis

consists with a model known as analysis model. This

research work focuses on use case models and analysis

classes.

Case Study: A part of Course Registration System Use

Case Model

Figure6: Use Case: Register for Courses

This use case allows a Student to register for

course offerings in the current semester. The Student can

also update or delete course selections if changes are made

within add/drop period at the beginning of the semester.

The Course Catalog System provides a list of all the course

offerings for the current semester.

5.2 Finding Analysis classes from use case model

(Behavior)
Register for Courses Use Case-This use case starts when a

Student wishes to register for course offerings, or to change

his/her existing course schedule.

1. The system requests that the Student specify the

function he/she would like to perform (Create a

Schedule, Update a Schedule, or Delete a Schedule).

2. Once the Student provides the requested information,

one of the sub flows is executed. If the Registrar

selected “Create a Schedule”, the Create a Schedule

sub flow is executed. If the Registrar selected “Update

a Schedule”, the Update a Schedule sub flow is

executed. If the Registrar selected “Delete a Schedule”,
the Delete a Schedule sub flow is executed.

Candidates for entity (noun) and applying 4 conditions of

section 4.4.1 to make them entity analysis classes as shown

in Figure7.

1. Student-A person enrolled in classes at the university.

2. Schedule-The courses a student has selected for the

current semester.

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.4, July-Aug 2012 pp-1923-1928 ISSN: 2249-6645

www.ijmer.com 1927 | P a g e

3. Course Offering-A specific delivery of the course for a

specific semester – you could run the same course in

parallel sessions in the semester. Includes the days of the

week and times it is offered.

Figure7: Analysis class model consists with entity

analysis classes

5.3 Now, applying proposed rules to Analysis Class

Model and Use Case Model of above Case Study:

By rules 1, 2 and 3 application boundary includes-

Human actors- student

Non-human actors-Nil

By rules 4-12 and 13-15 candidates for transaction/data

function types with ratings and weight are shown in

Table1.

Table1: Transaction/Data function types with ratings

and weight.
In order to make it adjusted function point, we have to
calculate and tabulate the GSC and come out with the VAF

as shown in Table2.

Table2: Global System Characteristics (GSC)

So using formulae:

VAF = 0.65 + ((sum of all GSC factor)/100).

= 0.65 + (22/100) = 0.87

This factor affects the whole FP like anything, be very

particular with this factor.
So now, calculating the

Adjusted FP (AFP) = VAF * Total Unadjusted

 FP (UAFP)

 = 0.87* 24 =20.88,

 =Rounded to 21 FPs

Compared with the approaches proposed in the literature,

these mapping rules have certain advantages.

1. The mapping rules are based on the standard FPA

defined in the IFPUG Counting Practice Manual. This

widely used measure independent of technology.

2. The count is based on requirements models, which are

the first models available in the OOSE life cycle. For
the purpose of effort estimation based on Function

Points, this is an essential prerequisite.

This approach also has some limitations.

1. The main limitation is the focus on the Jacobson OOSE

method. Mapping rules are based on the requirements

models of this approach and cannot be applied to

methods that do not develop these models. Also an

advantage this focus on OOSE, that the models are

unambiguously defined in the method.

VI. OOFP TOOL
The concept of mapping the object oriented software

models into function Points lead to implement a tool

called OOFP. This tool is implemented in java language.

The inputs for the tool are use case model and analysis class

(object) model and the output includes the values of

function points, transactional functions, and data functions.

 The OOFP tool is automated using XMI (xml

metadata interchange) parser. The XMI parser takes .xmi or

.xml files of use case and analysis class models as input
then read and extracts the use cases, actors, entity classes

from these files. Extracted candidates are then used for

calculating function points.

Transactio

n/ data

function

name

Transactio

n/ data

function

type

No. of

DET

No. of

RET/

FTR

Comple

xity

Weight/

Value

Register

for

courses

EI 3 2FTRs

(Studen

t,

Schedul

e)

low 3

Register

for

courses

EO 3 2FTRs

(Studen

t,

Schedul

e)

low 3

Register

for

courses

EQ 4 1FTR

(Course

Offerin
g)

low 4

Student ILF 3 1RET(S

chedule
)

low 7

Course

Offering

ILF 4 1RET(S

chedule
)

low 7

UAFP 24 FPs

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.4, July-Aug 2012 pp-1923-1928 ISSN: 2249-6645

www.ijmer.com 1928 | P a g e

Figure: 8 Function Point Counting Tool (OOFP tool).

VII. SUMMARY
This work demonstrated the applicability of

function points as a measure of functional software size to

the object- oriented Jacobson approach, OOSE. This work

supports that the function point measures independent of

the technology used for implementation and that it can be
used in the object-oriented paradigm.

 Future work in the field has to deal with the mapping of

OOSE design model into function points.

References
[1] A. J. Albrecht. Measuring Application Development

Productivity. IBM Applications Development
Symposium, Monterey, CA, 1979

[2] Function Point Counting Practices Manual, Release 4.0.
Westerville. Ohio, International Function Point Users Group,
1994.

[3] Jacobson, I., M. Christerson et al. Object-Oriented Software
Engineering. A Use Case driven Approach. Addison-Wesely,
1992.

[4] Whitmire, S.A. Applying function points to object-oriented
software models, 1992. In Software engineering productivity
handbook. J. Keyes, McGraw-Hill, pp.229-244.

[5] Function Point Counting Practices: case Study3- Object-
Oriented Analysis. Object-Oriented Analysis. Object-

Oriented Design (Draft), International Function Point Users
Group, 1995.

[6] Karner, G. Resource Estimation for Objectory Projects,
Objectory Systems, 1993.

[7] ThomasFetcke, Alain Abran and THo- Hau Nguyen.Mapping
the OO-Jacobson Approach into Function Point Analysis,
1997.Published in the Proceeding of TOOLS- 23’97.

[8] “CostEstimatingWebSite”,

http://cost.jsc.nasa.gov/COCOMO.html
[9] “Construx Estimate tool”, www.construx.com
[10] ”CoStar tool”, www.softstarsystems.com
[11] “An introduction (tutorial) to Function Point Analysis”,

www.devdaily.com/FunctionPoints.

VIII. APPENDIX: Screenshots For OOFP Tool
The following screenshots show how function

points are calculated using OOFP (Object oriented function
point) tool.

Screen1: Function Point Calculation

Screen 2: Value Adjustment Factor

Screen 3: Function Point Report for a Project

http://cost.jsc.nasa.gov/COCOMO.html
http://www.construx.com/
http://www.softstarsystems.com/
http://www.devdaily.com/FunctionPoints

