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Abstract: In this paper, we have introduced a new class of complex valued harmonic functions which are orientation 

preserving and univalent in the open unit disc and are related to uniformly convex functions. Coefficient bounds, 

neighborhood and extreme points for the functions belonging to this class are obtained.                                    
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I. INTRODUCTION 

A continuous complex-valued function  f z u iv   is defined in a simply-connected complex  domain D  is said to be 

harmonic in D  if both  u and  v are real harmonic in D . Such functions can be expressed as  

                              ( ) ( ) ( )f z h z g z                                                             (1.1)     

where ( )h z  and ( )g z  are analytic in D . We call ( )h z  the analytic part and ( )g z  the co-analytic part of ( )f z . A 

necessary  and  sufficient condition for ( )f z  to  be locally  univalent  and sense preserving in D  is that    h z g z  

for all z  in D , Clunie and Shell-Smail [2]. Let H  be the class of functions of the form (1.1) that are harmonic univalent 

and sense-preserving in the unit disk  : 1U z z   for which    0 0 1 0zf f   .Then for

( ) ( ) ( )f z h z g z H   , 

           we may express the analytic functions  ( )h z  and ( )g z  as 

        1

2 1

, , , 1k k

k k

k k

h z z a z g z b z z U b
 

 

                              (1.2) 

In  1984, Clunie  and  Sheil-Small  [2]  investigated  the  class  HS  as  well  as  its geometric subclasses and obtained some 

coefficient bounds. Since then, there have been several related papers on HS  and its subclasses. Now we will introduce a 

generalized derivative operator for  ( ) ( ) ( )f z h z g z   given by (1.2). For fixed positive natural m  and 2 1 0,    

                         
1 2 1 2 1 2
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, , ,

m k m k m kD f z D h z D g z       , z U                                (1.3) 

where 
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We note that by specializing the parameters, especially  when 1 2 0,  
1 2

,

,

m kD   reduces to mD  which introduced by  

Salagean  in [6]. 

Now we will introduce the following definition. 

 

Definition 1.1. For 0 1l  , let  1 2, , , ,HG l m k    denote the subfamily of starlike harmonic functions ( )f z H of 

the form (1.1) such that 
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      for z U ,                       (1.4) 

Where         1 ( ) ( )tf z t z t h z g z   
,
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, , , .m k m k i id d
D f z D f re z re
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We also let    1 2 1 2, , , , , , , ,H H HV l m k G l m k V    
 
where  HV  is the class of harmonic functions with varying 

arguments introduced by Jahangiri and Silverman [3] consisting of functions ( )f z  of the form (1.1) in H  for which there 

exists a real number   such that 

                 1 mod2 ,k k         1 0 2 ,k k k                              (1.5) 

where  argk ka   and  argk kb  . The same class introduced in [4] with different differential operator. 

In this paper, we obtain a sufficient coefficient condition for functions ( )f z  given by (1.2) to be in the class

 1 2, , , ,HG l m k   . It is shown that this coefficient condition is necessary also for functions belonging to the class 

 1 2, , , ,HV l m k   . Further, extreme points for functions in  1 2, , , ,HV l m k    are also obtained. 

 

II. MAIN RESULT 

We begin deriving a sufficient coefficient condition for the functions belonging to the class  1 2, , , ,HG l m k   . This result 

is contained in the following. 

Theorem 2.1.  Let ( ) ( ) ( )f z h z g z   given by (1.2). Furthermore, let 
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          (2.1) 

 

where  0 1l   , then  1 2, , , ,Hf G l m k   . 

Proof: We first show that if the inequality (2.1) holds for the coefficients of ( ) ( ) ( )f z h z g z  , then the required 

condition (1.4) is satisfied. Using (1.3) and (1.4), we can write 
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where 

                1 2 1 2 1 2 1 2

' '
, , , ,

, , , ,1 1i m k m k i m k m kA z e z D h z z D g z e t z t D h z D g z 

       

              
                 

 
        1 2 1 2

, ,

, ,1 .m k m kB z t z t D h z D g z        

  In view of the simple assertion that  Re w l  if and only if 1 1l w l w     ,it is sufficies to show that 

            1 1 0.A z l B z A z l B z                                         (2.3) 

Substituting for  A z  and  B z  the appropriate expressions in (2.3), we get 

           1 1A z l B z A z l B z    
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 by virtue of the inequality (2.1). This implies that  1 2( ) , , , ,Hf z G l m k   . 

Now we obtain the necessary and sufficient condition for function ( ) ( ) ( )f z h z g z   be given with condition (1.5). 

 

 

Theorem 2.2. Let ( ) ( ) ( )f z h z g z   be given by (2). Then    1 2, , , ,Hf z V l m k  
 

 if and only if 
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               (2.4) where 

0 1l   . 

 

Proof. Since    1 2 1 2, , , , , , , ,H HV l m k G l m k    , we only need to prove the 

necessary  part of the theorem. Assume that  1 2( ) , , , ,Hf z V l m k   , then by virtue of  (1.3) to (1.4), we obtain 
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 (2.5) 

The above inequality is equivalent to  
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This condition must hold for all values of z , such that 1z r  .Upon choosing   according to (1.5) and noting that 

 Re 1i ie e      , the above inequality reduces to  
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      (2.6)                                                                         

 

If (2.4) does not hold, then the numerator in (2.6) is negative for r  sufficiently close to 1. Therefore, there exists a point 

0 0z r  in  0,1  for which the quotient in (2.6) is negative. This contradicts our assumption that

 1 2( ) , , , ,Hf z V l m k   . We thus conclude that it is both necessary and sufficient that the coefficient bound inequality 

(2.4) holds true when  1 2( ) , , , ,Hf z V l m k   .  

This completes the proof of Theorem 2.2. 

 

Theorem 2.3. The closed convex hull of  1 2( ) , , , ,Hf z V l m k    (denoted by 

 1 2, , , , )HclcoV l m k   is 
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  , then 

for 1b  fixed, the extreme points for  1 2, , , ,HclcoV l m k    are 

                        1 1

k k

k kz xz b z z b z xz                                                             (2.7) 

where 2k   and  
11x b  . 

Proof: Any function ( )f z  in  1 2, , , ,HclcoV l m k    may be expressed as 
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where the coefficients satisfy the inequality (2.1). Set  1h z z  ,  1 1g z b z  ,   i k k

k kh z z e z   , 
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In particular, setting  1 1f z z b z  and   1

k k

k k kf z z xz b z yz     ,  12, 1 ,k x y b     

we see that extreme points of clco     1 2( ) , , , ,H kf z V l m k f z   . 

To see that  1f z  is not in extreme point, note that  1f z  may written as 

                 
           2 2

1 1 2 1 1 2 1

1 1
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2 2
f z f z b z f z b z        

a convex linear combination of functions in  1 2, , , ,HclcoV l m k   . 

To see that mf  is not an extreme point if both 0x   and 0y  , we will show that it can then also be expressed as a 

convex linear combinations of functions in  1 2, , , ,HclcoV l m k   . Without loss of generality, assume  x y . 

Choose 0  small  enough so that 
x

y
 . Set 1A  and  1

x
B

y


  . We then see that both 

 1 1

k k

k kt z z Axz b z yBz     and 

     2 12 2k k

k kt z z A xz b z y B z       are in  1 2, , , ,HclcoV l m k    and that 

      1 2

1
.

2
kf z t z t z   

The extremal coefficient bounds show that functions of the form (12) are the extreme points for  1 2, , , ,HclcoV l m k   , 

and so the proof is complete. 

Following Avici and Zlotkiewicz [1] and Ruscheweyh [5], we refer to the  -neighborhood of the  functions   f z  

defined by (1.2) to be the set of functions F  for which 
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In our case, let us define the generalized  -neighborhood of ( )f z  to be the set 
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Theorem 2.4. Let ( )f z  be given by (1.2). If ( )f z  satisfies the conditions 
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then    1 2, , , , .HN f G l m k    

Proof. Let ( )f z  satisfy (15) and  F z  be given by 
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 we infer that    1 2, , , ,HF z G l m k    which concludes the proof Theorem 

2.4.              

 

REFERENCES 
[1] Y. Avici and E. Zlotkiewicz, On harmonic univalent mappings, Ann. Univ. Mariae Curie-Sklodowska Sect. A 44 

(1990), 1-7. 

 

[2] J. Clunie and T. Shell-Smail, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. A. I. Math., 9:(1984), 3-25. 

 

[3] J. M. Jahangiri and H. Silverman, Harmonic univalent functions with varying arguments, Int. J. Appl. Math. 

8(3):(2002), 267-275. 

 

[4] G.Murugusundaramoorthy, K. Vijaya, and R. K. Raina, A subclass of harmonic functions with varying arguments 

defined by Dziok-Srivastava operator, Archivum Mathematicum. 45 (2009), 37-46. 

 

[5] S. Ruscheweyh. Neighborhoods of univalent functions, Proc. Amer. Math. Soc.81 (1981), 521-528. 
 

[6] G. S. Salagean, Subclass of univalent functions, Lecture Notes in Math., Springer-Verlag, Berlin, Heidelberg and New 

York., 1013:(1983), 362-372. 

 


