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Abstract: Sub-band coding has long been utilized and adopted in different compression, coding and reconstruction 

techniques in most signal processing applications. It has wide applications in communications, bit rate codec’s, sampling, 
and compression for images, videos and speech. However sub-band coding systems in general suffer from a certain amount 

of shift variance of the output reconstructed signal, due to the frequency overlap between different sub-bands in the analysis 

stage. This overlap is known as non-ideal anti-aliasing.  

In this paper we simplify the shift variance analysis of sub-band coding systems in general, and we present different metrics 

that have been reported in the literature to measure the bounds of shift variance for Perfect Reconstruction (PR) sub-band 

systems, we simplify its mathematical analysis and illustrate with graphs the reasons for these bounds and compare them. 

We apply these metrics on Biorthogonal, Orthogonal and Bspline wavelets and present the worst case scenario for different 

input signals in terms of shift variance for all these sub-band coding systems, both numerically and graphically. We finally 

compare the shift variance behavior for different sub-band PR systems for different types of input signals. 
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1. Introduction 
Multirate systems employ by definition sampling rate conversion which introduces an amount of linear periodical shift 

variance (LPSV) in the output reconstructed signal [1-3], in spite of the fact that the adopted sub-band filters are linear shift 

invariant (LSI). This LPSV can be noticed in different applications such as block transform, fractional sampling rate 

converters, multirate filter banks, sub-band quantization, and motion estimation. Several approaches in the literature tried to 

reduce or prevent LPSV has adopted Complex wavelets [4], cycle spinning [5], and circular shifted wavelets [6]. In [7-9] 
several effects of shift variance, and some of its consequences like cyclostationarities on re-sampled data and images, were 

presented. 

In this paper we present a quantitative measure for shift variance in different sub-band coding systems. We derive 

the worst case scenario for the amount of shift introduced in the output reconstructed signal from different types of input 

signals (such as a narrow band input signal or a wide band one). We analyze different metrics for shift variance that has been 

reported in the literature [10] in a simplified form and we apply it on different PR sub-band coding systems that have 

different orthogonality characteristics (Biorthogonal, Orthogonal and Bspline wavelets). We selected Bspline wavelets to be 

included in our comparison as they are well known of being semi orthogonal, as they are orthogonal across different 

scales/channels, but not orthogonal within the same channel, in other words they are orthogonal across time shifts but not 

across time scale. We present an upper bound for shift variance for these systems mathematically and experimentally. 

Finally we discuss our results and provide a tradeoff analysis between different sub-band coding structures. We claim that 

our main contribution is presenting the shift variance metrics reported in [10-13] in a much simplified forms, as well as 
applying and comparing it on different sub-band systems. 

Section 2 analyzes different shift variance bounds and metrics for multirate sub-band coding systems in general. 

Section 3 presents the bounds on shift variance for two channel (2-CH) PR sub-band coding systems for either orthogonal or 

biorthogonal systems. Section 4 presents our own developed shift variance bounds on Bspline PR sub-band coding systems. 

Finally a comparative result analysis of different bounds of shift variance on Biorthogonal, Orthogonal and Bspline wavelets 

is presented in section 5. Discussion and Conclusion in section 6 & 7, respectively 

 

2. Shift variance for subband coding system 

In this paper we will note the following, for a M band multirate filter bank, Fig.1, if the input signal is s[n], and the output of 

s[n] is y[n], then when the input signal is shifted by m samples so that the input is s[n-m] , the output is denoted by xm[n], 

while ym[n] = y[n-m]. Hence for a system to be fully shift invariant xm[n] should be equal to ym[n]. We denote rm[n]= xm[n]-
ym[n]. The residual energy for any band, which is the energy for the difference signal rm[n] for a given input s[n], which is 

proportional to the amount of shift variance in the band, would be,  
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Where rm
M[z], which is the modulation vector for the difference signal rm[n], is 
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Where
MxMCD  a diagonal matrix diag ].......,,,1[ 12 MWWW , Hence,

mD
=diag ].......,,,1[ )1(2  Mmmm WWW  

Shift variance behavior for different sub-band coding systems, 

Biorthogonal, Orthogonal and Bspline wavelets 
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The norm of rm
M[z] would be 
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Where the matrices
MxMCzmAzmT ),(),,( . Thus the residual energy would be 
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In any subband coding system for a filter bank K, if the output xm[n] which is because of the shifted input s[n-m] can be 

expressed as )(sKx m

m  , where ,K  are the filter bank and the concatenation process, and m is the shift operator. 

Then, the shifted output signal ym[n]can be expressed as )(sKy m

m  . Hence for a the filter bank K to be fully shift 

variant, KKK mmm   ],[ should be zero for any input. This last term ],[ mK  is known as a commutator [10-13], and 

it should be proportional to the mean square error between xm[n] and ym[n]. Thus, 
2

2
)](,[][ sKmE mr   (5) 

We note here that in any subband coding system channel, fig.2, even if the analysis and synthesis filters are fully 

shift invariant, the processing inside the band (decimators and interpolators) causes a certain amount of shift variance. Even 

though this analogy may seem strange, as for any band M the decimation and interpolation by factor M shouldn’t lose any 

data and is completely reversible in a any PR system [3,14], but if we remember that there is an amount of overlap between 

different channels (overlap of frequency between High Pass and Low Pass filters in a 2-CH system) that causes this data 

alteration (shift variance), we justify why the PR system is shift variant.  

Hence in an ideal scenario, where all analysis (or synthesis) filters are ideal with sharp transition and no overlap between the 

filters, there PR system would be fully shift invariant in spite of the processing in the band. This can be verified in the result 

section where we see that most amount of shift variance is at frequency overlap regions in the filter frequency response 
graph, fig. 3-10. 

Since we are interested in finding the worst shift variance behavior for a PR system, the error energy [ ]rE m  should be 

maximum, this will happen if the residual input signal is 1][
2
ns  for any input. Hence because of eq. 1-5, [10-13], the 

max eigenvalue of the operator norm 
2

2
( )m

Mr z , would be the upper bound of [ ]rE m , which is the worst case scenario for 

shift variance in a M band multirate filter bank channel. The upper bound of [ ]rE m  is denoted [ ]E m , where 

[ ] sup [ ]rE m E m  and sup stands for supremum which is the least upper bound.  

Hence        ),(max)](,[][ 1

2  j

m emsKmE 


 (6) 

Example of shift variance in a subband PR system (2-CH) 

For a single channel case of a 2-CH PR filter bank, D and T would be,  
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,which is the max eigenvalue for channel i. For a 2-CH multi-rate system, the PR property would imply 
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In the last equation, the 2 eigenvalues of the norm of the 2-CH system were equal, as it is a perfect reconstruction system. 
This would lead to the following equation 


 ],[],[ 1110  KK   (11) 

Fig. 3-6 shows examples of the worst case scenario of shift variance in different 2-Ch PR systems, we also show the 

frequency response of the associated analysis filters. It can be easily noticed that the max amount of shift variance exists 

around the overlap area.  
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3. Bounds of Shift variance for 2-CH orthogonal and biorthogonal systems 

As orthogonal subband PR system are more restrictive by definition and nature [1,3,14] and they also have less overlap 

between the Low Pass and High Pass regions, it is normal to expect that they introduce an amount of shift variance that is 

less than biorthgonal ones.  

Since the max amount of shift variance for a 2-CH PR system, as in eq. 10, is 
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typically equals a value of 1 for orthogonal 2-CH PR systems 

[3,14]. It can be easily proved that the max amount of shift variance for an orthogonal system would not exceed a value of 1 

in a normalized frequency response graph, fig.3-6 

For biorthogonal systems due to their more degrees of freedom nature, their maximum eigenvalue (commutator) would 

exceed the value of 1, fig.5-6. For bi-orthogonal 2-CH PR systems, the ),(1

 jem function has a maximum higher than 

that of unitary (orthogonal) filter banks and corresponds to worst case scenario for shift variance for this band. The areas 

under both curves ),(1

 jem and ),(2

 jem for the bi-orthogonal systems are equal, and their worst case shift variance 

frequency is not center at 2/ , but around it. The higher the maximum value of the curve in fig.4, the more shift variance it 

has. Table 1, lists the ][mEr values for different 2-CH PR filter banks. It can be realized that the shift variance behavior for 

all orthogonal systems tends to be the same for different filter types, this also applies for biorthogonal filter banks. Hence we 

can conclude that the worst case scenario for shift variance is more dependent of the filter bank structure (orthogonal or bi-

orthogonal) rather than the filter type. We can also see that the higher the order of the utilized filter, the less is the 

),(1

 jem  value for the same filter type, which means less shift variance, as the filter frequency response is more ideal 

with sharper transition (and less overlap). 

 

Wide band Input signals 

It can be seen in fig. 3-7, that the worst case scenario of shift variance or near maximizers, is a narrow band signal around 

the transition frequency. To complement this worst case shift variance behavior, and to capture more of the filter properties 

rather than properties of the filter banks structure, we can apply an additional bound for shift variance, under the assumption 

that the input signal for the subband PR system exhibit a given amplitude spectra. Similar to earlier work in [10-13], we will 
use a wide band model spectra as the input signal, like a signal with a flat spectrum  

If we specify an amplitude spectrum ( ) ( )j jS e e   we would also be specifying absolute values of the entries of the 

modulation vector ( )j

Ms e 
. Hence, from the weight function 

1
2

0

( ) ( )
M

j m j

m

e W e 




  formed from the modulated 

versions ( )je   , we can define this wide band input signal additional measure of shift variance by 
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Hence, for these types of signals, the worst case scenario for shift variance corresponds to a weighted integration of the max 

eigenvalue of the commutator, 1( , )jm e  , rather than its peak height as eq. 1-5. Similarly to eq.6 & 12, this additional 

measure ][
~

mEw  is also is the same for both channels ][
~

mEw , as 
2

2
[ , ]( ) [ ]m wK s E m    

For a 2-CH PR filter bank, we would have: 
2

1 2
[1] [ , ]( )wE K s , for every signal s with ( ) ( )j jS e e  . By choosing 

( )je   to be wide band, this would correspond to the additional measure of shift variance for wide band signals. This 

additional bound corresponds to the area under ),(1

 jem  and would typically decrease with the increase of the filter 

length, which would imply less width of either of the 2 curves in fig.4-7. 

Table 1 also lists the ][
~

mEw values for the same orthogonal and biorthogonal PR system of the previous subsection. It can 

be seen that this additional shift variance measure is more dependent on the filter type, rather than the filter structure. It is 

also eliminated when there is no overlap in the frequency response between the analysis filters in different channels, as it 

represents the area of the overlap, while the previous narrow band shift variance measure ][mEr corresponds to the max 
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value in the overlap region. Hence, the wide band input shift variance measure ][
~

mEw is a stronger measure than narrow 

band shift variance measure ][mEr , as it assumes that the input signal has a wide band flat spectrum. 

 

4. Shift variance bounds on Bspline PR sub-band coding systems 

The mth order Bspline function )(tBm
, has a finite support and equals zero at t=0,m, and is represented by a polynomial of 

order m-1 at the knots 1,2,..,m. It satisfies the recurrence relation:  
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The mth order Bspline time domain equivalent function would imply  
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In [15], a Bspline based PR multi-scale representation was introduced and for a 2-CH system, as in fig.2, it was shown that 
the analysis and synthesis filters are: 
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As shown before the shift variance for a Bspline PR sub-band coding system, could be assessed by a single channel case for 

either 0H & 0G or 1H & 
1G , Fig.1. 

Hence, the max eigenvalue for either channel in a Bspline based 2-CH PR system, would be:  
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Where m in this case represents the Bspline order used, rather than the PR channel index as in section 3. As shown in eq.18, 

the eigenvalue of the operator norm would depend on the Bspline order m. We note here that the area under the operator 

norm curve for either channel is the same for any Bspline order, as in the case of orthogonal and bi-orthogonal filters. We 

also note that the worst case behavior of shift variance for narrow band input signals would be represented in the peak of the 

operator norm and would be around 2


as the biorthogonal one. The additional bound of shift variance which is for wide 

band input signals, would correspond to the area under the max eigenvalue curve. 

 

5. Result Analysis 

We carried out extensive simulation tests to measure both metrics ][mEr
 and ][

~
mEw

for different types of orthogonal, Bi-

orthogonal and Bspline PR filters banks. Table 1, compares the numerical values of them for all utilized filters banks. Fig.3-

9, shows the maximum Eigen value for both channels 0  and 1  for the whole frequency band for different orthogonal, bi-

orthogonal and Bsplined based systems. As proven in sections 2, 3, and 4, the worst case scenario for shift variance for 

narrow band signals for a Bspline based PR system, would correspond to the peak point in the curves, while the worst case 
scenario for shift variance for wide band input signals would correspond to the range of frequencies inside the curve. 

 

6. Discussion 
It can be easily proven both experimentally and mathematically that the worst case scenario for narrow band input shift 

variance signal for orthogonal PR subband coding systems won’t exceed the unity value for a normalized  frequency 

response graph, fig. 3, as proven in eq.10. For bi-orthogonal systems this narrow band input shift variance signal gets higher 

than 1 due to the more overlap between the high and Low bands. 

For the additional shift variance bound of wide band input signal, orthogonal PR systems in general has a less area under the 

curve and less ][
~

mEw
value, which implies that their shift variance behavior is much less compared to biorthgonal PR 

systems. 

For different Bspline orders, (sometimes) the higher the B-spline order, the higher is the pulse at the worst case 

scenario frequency (which would imply more shift variance). This is unexpected due to the increased filter length, which is 

supposed to imply less shift variance. However, the interpolating nature of Bsplines that is not suited for narrow band signals 

[16] can justify for us this behavior, also the wide band input signal behavior, which is the area under the operator norm 
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curve, 0 or 1 , can make this small increase eliminated. For higher B-spline orders, this width of the operator norm curve 

is smaller, (which would imply less shift variance). From analyzing fig 5-7, it can be realized that the amount of increase in 

the frequency peak at the worst case scenario for the error norm is negligible compared to the amount of reduction of the 

width of the curve, for different Bspline orders. Hence the higher the B-spline order for this 2-Ch PR multi-rate system, the 

more shift invariant it is. Bsplines are also more suitable for wideband spectrum input signals. We note here that the average 

number of taps for an analysis/synthesis filter was 14 for the cubic Bspline, 25 for the quadratic Bspline and 35 for the 5th 

order B-spline. Typically for an ideal shift invariant Bspline filter, ][
~

mEw
 tends to go to zero, while ]1[rE tends to be 1. 

This analogy has been verified experimentally as in fig 4-6; however it was not possible to prove mathematically, eq.18. The 

cubic B-spline (order 3) tends to outperform some of the well known orthogonal or bi-orthogonal filter banks in terms of 

]1[rE  or ]1[
~

wE  values. It is obvious from comparing fig.3-9, that Bspline decomposition filters exhibits much less shift 

variance for similar filters lengths of other structures. We note here that this improvement for shift variance behavior with a 

Bspline subband coding PR system in general, is mainly due to the nature of Bsplines that are semi orthogonal, as they are 

orthogonal across different scales/channels, but not within the same channel [17] (orthogonal across time shifts, but not 

across time scale). Hence the overlap between different channels is reduced than in similar bi-orthogonal filters bank 
systems. This justifies their shift variance behavior improvement, it can also be seen in the frequency response High Pass 

and Low Pass graphs, fig 8-10. 
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Table 1 Uniform bound (1)E  and (1)wE  

Filter (1)E  (1)wE  

B-spline order 3 (Cubic) 1.0053 0.1274 

B-spline order 4 (Quad) 1.0624 0.0905 

B-spline order 5 1.0314 0.0662 

Johnston QMF 16 0.9902 0.1265 

Johnston QMF 8 1.0047 0.2696 

Smith Barnwell 16 1.0000 0.1207 

Smith Barnwell 8 1.0000 0.2230 

Multiplierless 4 1.0000 0.4136 

Multiplierless 6 1.0018 0.3126 

Multiplierless 8 1.0000 0.2813 

Haar 1.0000 0.5000 

Daubechies 10 1.0000 0.1609 
Daubechies 30 1.0000 0.0928 

Coiflet-5 1.0000 0.1544 

Symmlet-8 1.0000 0.1799 

Bi-orthogonal 5-3 1.158 0.3906 

Bi-orthogonal 6-10 1.0841 0.2712 

Bi-orthogonal 9-7 1.0301 0.2678 

 

 

 

 

 

 
 

 

 

 

y[n] s[n] 

H(z) M G(z) M 

Fig. 1 Single Channel of a Multirate System 
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s[n] 
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Fig. 2 2Ch PR Multirate System 
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Fig. 4 max norm value (Eigen values) for Biorthogonal 9-7 Antonini filter banks 

Fig. 3 max norm value (Eigen values) for different orthogonal filter banks, Johnston 16(solid), Johnston 

8 (dashed line), Smith-Barnwell 16 & 8 (dotted-dotted dashed) 
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Fig. 5 max norm for Cubic Bspline filter banks 

Fig. 6 max norm for Quadratic Bspline filter banks 
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Fig. 7 max norm for 5th order Bspline filter banks 

Fig. 8 frequency responses overlap for Biorthogonal PR systems 
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Fig. 9 frequency responses overlap for Bspline PR systems 

 

Fig. 10 frequency responses overlap for Orthogonal PR systems 

 


