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ABSTRACT:MRI images are often subject to noise 

(artifacts). We evaluated the performance of DT-CWT 

combined to Bayesian MAP Estimator to restore those 

images. 

We chose the images from two of four sequences 

commonly used in coronal and axial MRI with and without 
contrast agent. The image with contrast agent was used as 

a reference, and the image without where we added 

artificially noise was subjected to de-noising by forward 

Dual-Tree Wavelet Transform (DT-CWT) combined to 

Bayesian MAP estimator. A test was submitted to 

radiologists for an assessment of the de-noised images to 

compare the proposed algorithm to other effective 

techniques from the recent literature using MRI images. 

Our approach contributed effectively to the MRI images 

de-noising, with better results. In general, wavelets and 

Bayesian estimator contributed effectively to the de-
noising process and to other image processing methods, 

but ranging from classic to complex wavelet transforms, 

the results gradually improved. 

 

Keywords:Bayesian MAP, Complex Wavelet , Dual-Tree 

Wavelet transform,Image de-noising, MRI images. 

I. INTRODUCTION 
The digital representation of images has been controversial 

since the early days of computing. Because images are 

innately strong in semantic content, they quickly became a 

frequently used communication medium.   

Images are also an essential tool in the fields of 

biomedicine and satellite and astronomical imaging, 

among others. 

Medical imaging has revolutionized medicine by 

allowing doctors to retrieve potentially vital information 
from inside the human body in a noninvasive manner, as is 

the case for MRI that we focused on in our study. In 

Magnetic resonance, the practical limits of the acquisition 

time impose a trade-off between the SNR and  the image 

resolution [1,2,3] 

In this paper, we address the problem of MRI 

images de-noising. 

In MRI, acquisition protocols lead to image 

quality loss, particularly with contrast, because of the 

presence of artifacts that make their interpretation difficult 

[4,6] and  this noise in the MRI image magnitude is Rician 

[5] ,having a signal dependent mean.  

 Many challengers have been made to remove this noise 

using wavelet transform as described briefly.  

WiemFourati and Mohammed Salim. B (2007) 

proposed a de-noising method based on the statistical 

dependency of wavelet coefficients and on the application 

of an adaptive Bivshrink type MAP filter (Maximum 

Posterior Estimator) [7]. 

From a method described by Donoho, Alendru in 
[9]. I and al. have proposed a de-noising scheme based on 

a wavelet transform named discrete wavelet transform with 

enriched diversity (TODDE), combining several families 

of wavelets and various estimators in Bishrink occurrence 

to eliminate the noise (speckle) in the images, which also 

applies to ultrasound images [8]. 

Previously proposed wavelet domain filtering 

techniques were based on different thresholding schemes 

where the coefficient selection was based on inter-scale 

correlations[5,11,12], 

It was noted that due to the signal dependent 
mean of the Riciannoise ,both wavelet and scaling 

coefficients of a noisy MRI image are biased estimates of 

their noise-free counterparts [5]. 

In addition it was shown that one can efficiently 

overcome this problem by filtering the square of the MRI 

image in wavelet domain. 

In the wavelet domain, the  Discrete Wavelet 

Transform (DWT) has a limits and major disadvantages 

that undermines its application for some image processing 

as; lack of shift invariance, poor directional selectivity for 

diagonal features and other..[10]. 

A comprehensive review of previous work shows 
the performance of these tools for image de-noising, 

although performance suffers from the classical wavelet 

limits of certain processing treatments, especially for the 

specificity of medical images. 

The objective of this study was to use the DT-

CWT and Bayesian approach that is based on a Symmetric 

Normal Inverse Gaussian (SNIG) [13] this model is useful 

for smoothing disease relative risk estimates. 

The object is to de-noise images, in which the use 

of contrast agents could have affected the distinct 

visualization of healthy and pathological tissues.  
The images with contrast agent were used as 

controls, and the images without contrast were used as 

images to restore, with the aim of obtaining images similar 

to the ones with contrast agent. In spite of existing 

mathematical methods, such as PSNR, correlation, and so 

forth, we used a human visual system (HSV), consisting of 

a blind test based on specific and precise criteria such as 

quality, sharpness, and the clinicians‟ ability to arrive at a 

correct diagnosis.  

MRI images de-noising based in Dual-Tree complex Wavelet 

and Bayesian MAP Estimator 
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The paper is organized as follows: In the next 

section, we first described briefly the  DT-CWT with has 

advantages in noise study,Section   III provides    some 

necessary preliminaries on  Bayesian MAP Estimator, as 
Symmetric Normal Inverse Gaussian (SNIG) processes  

and  presents  results  on  the  modeling  that indicating 

their heavy-tailed nature. The design of a Bayesian 

estimator that exploits   the   signal.   The proposed method 

and choice of MRI is described in section IV.  Section  V  

compares  the  performance  of  our proposed algorithm 

with the performance of current de-noising  methods , and 

quantifies the achieved  performance  improvement. 

Finally we conclude. 

II. DUAL-TREE COMPLEX WAVELET 

TRANSFORM (DT-CWT). 

Remember that the classical discrete wavelet 

transform (DWT) provides a means of implementing a 

multiscale analysis, based on a critically sampled filter 

bank with perfect reconstruction [14] [15]. 
However, questions arise regarding the good 

qualities or properties of the wavelets and the results 

obtained using these tools, the standard DWT suffers from 

the following problems described as below: 

Shift sensitivity: it has been observed that DWT is 

seriously disadvantaged by the shift sensitivity that arises 

from down samples in the DWT implementation [16,17 ]. 

Poor directionality: an m-dimension transform 

(m>1) suffers poor directionality when the transform 

coefficients reveal only a few feature in the spatial domain. 

Absence of phase information: filtering the image 
with DWT increases its size and adds phase distortions; 

human visual system is sensitive to phase distortion [18]. 

Such DWT implementations cannot provide the local 

phase information. 

In other applications, and for certain types of 

images, it is necessary to think of other, more complex 

wavelets, who gives a good way , because the  complex 

wavelets filters which can be made to suppress negative 

frequency components . As we shall see the CWT has 

improved shift-invariance and directional selectivity [19]. 

The discrete  complex dual tree wavelet transform 
(DT-CWT) was introduced  by N. Kingsburg around in 

1990. 

This implementation uses consists in analyzing 

the signal by two different DWT trees, with filters chosen 

so that at the end, the signal returns with the approximate 

decomposition by an analytical wavelet. 

The dual-tree structure has an extension of 

conjugate filtering in 2-D case; this structure is shown in 

„‟Fig.1‟‟.         

 

This structure needs four trees for analysis as well 

as for synthesis. The pairs of conjugate filters are applied 
to two dimensions (0 and 1), which can be expressed as: 

 
 0 +  𝑗𝑔0  1 +  𝑗𝑔1 =  01 − 𝑔0𝑔1 + 𝑗 0𝑔1 +
 𝑔01                                        (1) 

The synthesis of filters suitable for this structure 

was performed by several people. 

 

 

 

 

 

 

 

 

 

Imaginary trees 

Figure.1. Filter bank structure for DT-DWT 

 

The wavelet corresponding to the tree's 
"imaginary part" is very close to the Hilbert transform of 

the wavelet corresponding to the tree's "real part" [20]. 

For J level decomposition, the corresponding 

details subbands at leven ŋ are denoted :HLŋreal,  

 

HLŋim.,LHŋreal, LHŋim , HHŋreal and HHŋim . 

Where ŋ = 1,2,….,J. 

Because of the existence of two trees, it appears 

that the second noise coefficients moments from such 

decomposition can be precisely characterized. 

The DT-CWT ensures filtering of the results 
without distortion and with a good ability for the 

localization function and the perfect reconstruction (PR) of 

signal. 

In the noise study, as with any redundant frame 

analysis, when a stationary noise, even if white, is subject 

to a dual decomposition tree, statistical dependencies 

appear between coefficients [12,18,19], because of the 

existence of two trees, it appears that the second noise 

coefficients moments from such decomposition can be 

precisely characterized. 

We observe a de-correlation between primal and 

dual coefficients located at the same spatial position and an 
inter-scale correlation, which allows us to choose between 

several estimators, taking this phenomenon into account. 

If we consider an image degraded by a Gaussian 

n, white, and centered, additive Gaussian noise with a 

spectral density, the decomposition coefficients are also 

affected by that same noise as part of the linearity property 

[22, 20, and 28]. 

With this advantage we can choose an appropriate 

estimator for  de-noising and  the case of DT-DWT 

The mathematical expression for a signal observed at point 

whose coordinates (x,y) in the  image is modeled as 
follows: 

 

g x, y = f x, y + ε x, y (2) 

With g x, y , f x, y  and ε(x, y) are respectively 

the noise coefficient, the original coefficient, and the 

h0h1 h’0h’1 

g’0g’1 

h’0g’1 

g’0h’1 

 

 

f’(m,n) 

h0h1 

h0h1 

h0h1 

f(m,n) 

analysis Synthesis. 
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Gaussian independent noise. Our goal is to estimate f from 

g. To do this, we will use an MPE (Maximum Posterior 

Estimator) filter [7]. 
In considering the linearity Property In the noise 

study, as with any redundant frame analysis, when a 

stationary noise, even if white, is subject to a dual 

decomposition tree, statistical dependencies appear 

between coefficients [26,27]. 

After applying the DT-CWT on (2), we obtain: 

gη x, y = fη x, y + εη(x, y)  (3), 

Where,  gŋ(x,y), ,fŋ(x,y)  and  εŋ x, y  denote (x,y)-th 
wavelet coefficient at level of a particular detail subband of 

the DT-CWT of g, f, and 𝜀 ,     respectively and ŋ (ŋ= 

1,2…,J). 

III. BAYESIAN MAP ESTIMATOR 
It is recognized that parametric Bayesian 

processing presupposes proper modeling for the prior 

probability density function  (PDF) of the signal. 

Bayesian models use prior distributions for 

parameters, this prior can be multi-level and has 

distributions can control the model results 

In  this section we describe the Symmetric 

Normal Inverse Gaussian  (SNIG ) distribution and some it 

proprieties before presenting the model, we refer the reader 

to a recent work of M. I. H. Bhuiyan et al [13,23]. showed 

that  distributions, a family of heavy-tailed densities,  are  

sufficiently  flexible  and  rich  to  appropriately  mode 
wavelet coefficients of images in image de-noising 

applications with better models the prior statistics of the 

signal components , its probability density function reads 

as follows [23]: 

𝑃𝑓(𝑓) = 𝐴
𝐾1(𝛼 𝛿²+𝑓²

 𝛿²+𝑓²
                      (4) 

Where   𝐴 =
𝛼𝛿𝑒𝑥𝑝 (𝛿𝛼 )

𝜋
   , 𝐾1      denotes the 

modified Bessel function of second kind with index 1 [24] 

, the parameter α control the shape of the distribution and δ 

is the a scale parameter. IN additional to illustrate the 

efficiency of the proposed prior, the generally Gaussian 

(GG)  and SNIG PDfs are fitted to wavelet coefficients of 
the subbands HHreal1  for the medical image . Since in DT-

CWT , we applied two real DWT, we assure the 

distribution of the noise coefficients in each DWT is a 

Gaussian  with zero mean and standard deviation 𝜎ε
2  ,and 

denote it by 𝑃ε ε . 
 

The Bayesian MAP estimator is given by [8] as follow: 

𝑥  𝑔 = arg max𝑃𝜀 𝑔 − 𝑓 𝑃𝑓 𝑓           (5)                                                                      

To obtain the MAP estimate ,the derivative of the 

logarithm of the in  (5) is the st to resulting in: 

𝑥−𝑦

𝜎²
+ 𝑝′ 𝑓 = 0                                   (6)                                                                                                

Where  𝑝 𝑓 = ln𝑃𝑓(𝑓)  and  𝑝′ 𝑓 =
𝜕

𝜕𝑓
𝑝(𝑓)  . Using the 

approach proposed by Hyvarinen [25], an approximate 

solution of [7] is obtained as: 

𝑥  𝑔 𝑠𝑖𝑔𝑛 𝑔 max( 𝑔 − 𝜎ŋ
2 𝐵 , 0)        (7)Where                                                       

𝐵 =
2𝑔

𝛿²+𝑔²
+

𝛼𝑔

 𝛿²+𝑔²

𝐾0(𝛼 𝛿²+𝑔²)

𝐾1(𝛼 𝛿²+𝑔²)
            (8)                                                 

In this step we need to estimate the parameters α, 

δ and 𝜎ŋ
2  to obtain  the MAP estimates. In order to take 

noise correction into account for each real DWT tree of the 

DT-CWT. The corresponding value of 𝜎ŋ   is obtained 

using the coefficients in the corresponding  finestsubbands 

of diagonal orientation as: 

𝐶 = 𝐶
𝐷1+𝐷2

2
                         (9)Where D1= MAD (g (k,l)) ̸ 

0,6745 ,  g (k,l) ϵ HH1 and  

D2 = MAD (g (k,l)) ̸ 0,6745 ,    g (k,l) ϵ HH2 , C is a 

smoothing factor ,(MAD is the Median absolute deviation).  

To obtain the SNIG parameters for the (k , l)-th 

coefficient ,the estimates of the second  and fourth order  

signal moments denoted by  𝑚2  𝑘, 𝑙 𝑎𝑛𝑑𝑚4 (𝑘, 𝑙)    , 

respectively, as obtained as:  

𝑚2  𝑘, 𝑙 = max( 𝑚2 𝑘, 𝑙 − 𝜎𝜂
2 , 0) 

𝑚4  𝑘, 𝑙 = max( 𝑚4 𝑘, 𝑙 − 𝜎𝑚2  𝑘, 𝑙 𝜎𝜂
2 −  3𝜎𝜂

4 , 0) 

The values of m2(k,l) are obtained using a DXD square 

window as   

𝑚2(𝑘, 𝑙) =
1

𝐷²
  𝑔 𝑘 − 𝑖, 𝑙 − 𝑗 ²

(𝑀)
2 

𝑗=
−(𝑀)

2 

(𝑀)
2 

𝑖=
−(𝑀)

2 
 

𝑚4(𝑘, 𝑙) =
1

𝐷²
  𝑔 𝑘 − 𝑖, 𝑙 − 𝑗 4

(𝑀)
2 

𝑗=
−(𝑀)

2 

(𝑀)
2 

𝑖=
−(𝑀)

2 

 

Where M= D-1. Next, the corresponding second and fourth 

order cumulants, denoted by 𝐾2
 𝑎𝑛𝑑𝐾4

    respectively, are 

obtained as:     

𝐾2
 = 𝑚2  

𝐾4
 = max((𝑚4 − 3𝑚2 ),0) 

The parameters α and δ are estimated as 

𝛼 =  
3𝐾2 

𝐾4
𝛿 = 𝛼𝐾2

  (13) 

IV. PROPOSED METHOD 
The de-noising diagram involves the following steps 

shown in diagram „‟Fig. 2‟‟. 

(1) Take the MRI image without contrast agent 

(2) Add noisy into this image( to obtain a noisy MRI 

image) 

(3) Compute the  DT-CWT(dual-tree complex wavelet) 
of the  noisy MRI image, 

(4) Obtain the Bayesian MAP estimator using  equation   

(5) 

- or Compute the threshold  value  for each pixel for 

Visu shrink in  all sub band details wavelet 

coefficients [26] 

- or applying Bivariate MAP estimator, in  all sub band 

details wavelet coefficients [27].  

(11) 

(12) 

(10) 
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(5) Compute the inverse dual-tree complex (IDT-CWT) 

using synthesis filter bank forobtained the de-noised 

image. 

 

(6)  

 

 

 

 

 

 

 

 

Choice of the images 

MRI images are diverse and specific. Our study takes into 

account the behavior of different structures in comparison 
to contrast agents, because we are convinced that all 

structures do not react the same way to these agents. 

Our choice is geared to cranial images, in collaboration 

with the MRI department of the CHEIK ZHAID 

International University Hospital, based in Morocco. We 

selected brain MRI images of two of the four most 

commonly used sequences, axial and coronal „‟Fig. 3‟‟, for 

ethical reasons, we decline to identify the patient. 

 

 
We compare our proposed algorithm to other 

effective techniques from the recent literature using MRI 

images. 

From the first category of thresholding, we select 

the Vusu Shrinkage and Bivariate shrinkage[26], [27], in 

the second set we used only the adaptive Wiener filter 

implemented in CWT domain and considered window of 

size 7x7 within subband. 

To quantifythe noising performance of each 
algorithm, we employed the Peak-Signal –to-Noise-Ratio 

(PSNR) defined as 























 2

2

10

)(
1

256
log20

IÎ
N

PSNR

  

(14) 

where Î and I denote the noise free and the noised 

images respectively and N2 is the total pixels [29]. 

V.Results and Discussion 
In the simulations, complex zero mean white 

Gaussian noise with standard deviation ζϵ=20,was added 

to the images without contrast agent (C1 and c2) 

The noisy image is decomposed using  only the dual tree 

wavelet transform (DT-CWT), for both the discrete (real 

DWT) and the complex parts (CWT), because the previous 

works have sufficiently proved   the superiority of DT-

CWT over DWT in image de-noising [15,28] 

For each decomposition, the number of resolution 

levels is set in order to obtain equivalent size 
approximations (as much as possible) at the coarser 

resolution.  

Table 1 give the results obtained the category of 

thresholding, has, Visu Shrinkage and Bivariate Shrinkage. 

In Table2, we show results obtained with adaptive Wiener 

adaptive filter  

From the tables it can be seen that our approach 

achieves the best results in most situations, followed by 

Bivariate method. 

Figure 4 and 5 illustrates the results with the first 

set of thresholding and Wiener adaptive filter respectively. 

 

 

The PSNRs and Similarity between restored and 

original image as shown in table1 and2 for each case. 

 

Table 1.PSNR VALUES (dB) OBTAINED BY THE 

TREE DE-NOISING METHODS 

 

 

Noisy MRI 

Image 

Forward 

DT-CWT 

Bayesian 

processor 

IDT-CWT 

Denoised 

MRI image 

α and δ 

Estimation

s 

Fig 2. Diagram of proposed de-noising method 
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TABLE 2. PSNR VALUES (dB) OBTAINED BY 

WIENER FILTER AND PROPOSED METHOD 

ζ Axial MRI Image Coronal MRI Image 

METH

OD 

Noi

sy 

Wien

er 

filter 

Propos

ed 

Metho

d 

Noi

sy 

Wien

er 

filter 

Propos

ed 

Metho

d 

10 28.2
6 

32.51 33.61 27.1
8 

32.34 32.85 

15 24.5

5 

30.43 31.63 23.6

5 

30.87 31.90 

20 22.5

5 

28.92 30.19 21.1

4 

29.17 30.17 

25 20.4

5 

27.74 29.21 20.1

7 

28.10 29.85 

30 18.6

2 

26.73 28.51 18.6

2 

26.13 28.87 

 

We observed a decrease of PSNR between the 

reference images and those subject to de-noising. To assert 

the difference caused by the use of a contrast agent in the 

image, the correlation between the two images is lower, as 

it is to the naked eye. We clearly noticed that some details 

were quite visible, due to the contrast agent. 

 

For the other images with Visu-shrinkage or 
Bivariate shrinkage (Bishrink),  the proposed method 

shows an even better performance with the Bishrink 

estimator, where values have improved. 

In all cases, the best results were obtained with 

the proposed method, followed by Bivariateshrinkage with 

Wiener filter and finally Visu shrinkage, figures and tables 

shows. 

One can also note that the poorer performance 

was obtained for Visushrinkwith (increased the value of ζ , 

which remains well below the Bivariate threshold as 

indicated in Table 1 . 

Here, we focused particularly on the ability of the 

our processor structure to de-noise MRI images. In 

comparison with several existing de-noised methods, the 

proposed approach out performs results in all cases, the 

obtained results are provided in Tables 1 and Table 2. 

When considering the initial PSNR between 

original images and degraded images, it shown this 

approach providing a superior gain for each estimator. We 

then turned our attention to the test addressed to 
radiologists on the image quality, also obtaining, in their 

consideration and as a result of the simulations, a better 

performance for our processor, compared to other 

techniques. 

 

The test methodology is detailed below: 

Considering the brain images of four sequences 

commonly used in MRI, axial, coronal, presented to four 

experienced radiologists working in university hospitals 

and Sino-congolaise hospital.  

In a first stage, the anonymous images were given 

to the radiologists and they were asked whether the image 
presented to them was original or restored and if it was 

acceptable for the diagnosis, to which they could answer 

yes or no.  

Secondly, the restored images compared to the 

reference images were placed side by side and in this case 

the original was revealed to the observer, blinded to the 

type of transform used to restore the image to compare. 

The radiologists were asked to quantify on a scale of 1 to 

9, as follows: 

 

9 No visible difference 
7 No loss of diagnostic information 

5 In the limit of information loss, discrete anomalies may 

be omitted. 

3 Important diagnostic information may be omitted, and 

the degradation affects the interpretation.  

1 Unsatisfactory for diagnosis; indisputable loss of 

diagnostic information. 

 

From this test, we obtained the following observations: 

For two of four observers, axial sequence images de-noised 

with Visu shrink estimator (ζ>20)  were considered non-

diagnostic cases. 

One observer rejected the coronal sequence images 

restored with  Visushrink estimator (ζ>20). 

Axial images were considered acceptable for 

diagnosis by all observers for all techniques without Visu 

shrink estimator (ζ>20) 

In the case where the original or reference image 

is revealed, we obtained the following results: 
Axial: 75% of the observers found no significant loss of 

diagnostic information for the proposed approach. One 

observer judged the images de-noised with the Visushrink 

estimator (ζ>15) estimator too degraded to be reliable. 

Coronal: One observer has considered an image de-noised 

Visushrinkage at the limit of information loss and marked 

it as a 5. 

Axial: All observers agreed on the absence of significant 

loss of diagnostic information for proposed method, 

images with the Bivariate estimator and Wiener filter. 

Axial: Three observers classified the images in the 5-6 

categories, within the diagnostic information loss limit, for 

Visu Shrinkage. 
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VI. CONCLUSION 
Given the simulation results obtained with our 

approach, we can state, as described in the literature, this 

processor is more efficient than others. Its extension to the 

complex case has especially proved to be interesting and 

leads to better results than the discrete case. Moreover, the 

combination with DT-CWT and different MAP estimator 

offered encouraging results.  

Far from the consideration of matching or 

competing with the use of contrast agents, our study is 

meant as a statement, indicating that it is possible, with 

computer processing and the appropriate estimators, to 

restore a noisy medical image and to highlight certain 
pathologies the distinction of healthy and pathological 

tissue.  

This can result in a solution on the social level, 

taking into account the cost of an MRI exam with contrast 

agents.Finally, the results of the simulation carried out on 

selected MRI images has allowed us to ascertain that our 

approach is very favorably positioned compared to the 

existing medical image de-noising techniques. 
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