
International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.4, July-Aug. 2012 pp-2409-2416 ISSN: 2249-6645

www.ijmer.com 2409 | Page

Ashish Srivastava
1
, Udai Shankar

2
, Sanjay Kumar Tiwari

3

 *(Department Deptt. of Computer Science & Engineering, Madan Mohan Malaviya Engineering College, Gorakhpur).

ABSTRACT: The transactional Processing in Replicated

Data for distributed system has been around for many years

and it is considered a well-established and mature

technology. The conventional transaction model, although

suitable for predictable database applications such as

banking and airline reservation systems, does not provide

much flexibility and high performance when used for

complex applications such as object oriented systems, long-
lived transactions or distributed systems. In this paper we

describe the transaction-processing model of distributed

database includes data, Transaction, Data Manager, and

Transaction Manager and their transaction process. We will

study about concurrency problem of sequence of

synchronization techniques for transaction with respect to

distributed database. The spirit of discussion in a

decomposition of the concurrency control problem into two

major sub problems: read-write and write-write

synchronization. We describe a sequence of synchronization

techniques for solving each sub complexity.

Keywords: Real time system, Replication, Distributed

Database, Distributed processing, Transaction, Transaction

Manager, two-phase commit, Concurrency Control,

Synchronization.

I. Introduction
A real-time system is one that must process information and
produce a response within a specified time, else risk severe

consequences, including failure. That is, in a system with a

real-time constraint it is no good to have the correct action or

the correct answer after a certain deadline: it is either by the

deadline or it is useless. Database replication based on group

communication systems has been proposed as an efficient

and flexible solution for data replication. Replicated is the

key characteristic in improving the availability of data

distributed systems. Replicated data is stored at multiple

server sites so that it can be accessed by the user even when

some of the copies are not available due to server/site
failures.[1] A Major restriction to using replication is that

replicated copies must behave like a single copy, i.e. mutual

consistency as well internal consistency must be preserved,

Synchronization techniques for replicated data in distributed

database systems have been studied in order to increase the

degree of consistency and to reduce the possibility of

transaction rollback. [2]

In replicated database systems, copies of the data items can

be stored at multiple sites. The potential of data replication

for high data availability and improved read performance is

crucial to RTDBS. In contrast, data replication introduces its

own problems. Access to a data item is no longer control
exclusively by a single site; instead, the access control is

distributed across the sites each storing the copy of the data

item. It is necessary to ensure that mutual consistency of the

replicated data is provided

Distributed data base system is a technique that is used to

solve a single problem in a heterogeneous computer network

system. A major issue in building a distributed database

system is the transactions atomicity. When a transaction runs

across into two sites, it may happen that one site may commit

and other one may fail due to an inconsistent state of
transaction. Two-phase commit protocol is widely used to

solve these problems. The choice of commit protocol is an

important design decision for distributed database system. A

commit protocol in a distributed database transaction should

uniformly commit to ensure that all the participating sites

agree to the final outcome and the result may be either a

commit or an abort situation. Many real times database

applications are distributed in nature [3] these include the

aircraft control, stock trading, network management, factory

automation etc.

II. DISTRIBUTED DATABASE SYSTEMS

(DDBS)
A distributed database is a database that is under the control

of a central database management system (DBMS) in which

storage devices are not all attached to a common CPU. It may

be stored in multiple computers located in the same physical

location, or may be dispersed over a network of
interconnected computers. Collections of data can be

distributed across multiple physical locations. Distributed

database system (DDBS) is system that has distributed data

and replicated over several locations. Data may be replicated

over a network using horizontal and vertical fragmentation

similar to projection and selection operations in Structured

Query Language (SQL). The database shares the problems of

access control and transaction management, such as user

concurrent access control and deadlock detection and

resolution. On the other hand, however, DDBS must also

cope with different problems. Accessing of data control and

transaction management in DDBS needs different methods to
monitor data access and update to distributed and replicated

databases. Distributed database systems (DDBS) are systems

that have their data distributed and replicated over several

locations; unlike the centralized data base system (CDBS),

where one copy of the data is stored. Data may be replicated

over a network using horizontal and vertical fragmentation

similar to projection and selection operations in Structured

Query Language (SQL). Both types of database share the

same problems of access control and transaction

management, such as user concurrent access control and

deadlock detection and resolution. On the other hand
however, DDBS must also cope with different problems.

Access control and transaction management in DDBS require

different rules to monitor data retrieval and update to

distributed and replicated databases [4, 5].Oracle, as a

leading Database Management Systems (DBMS) employs

the two-phase commit technique to maintain a consistent

state for the databases [6]. The objective of this paper is to

Transaction Processing In Replicated Data in the DDBMS

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.4, July-Aug. 2012 pp-2409-2416 ISSN: 2249-6645

www.ijmer.com 2410 | Page

explain transaction management in DDBMS and how to
implements this technique. To assist in understanding this

process, an example is given in the last section. It is hoped

that this understanding will encourage organizations to use

and academics to discuss DDBS and to successfully

capitalize on this feature of Database. The next section

presents advantages, disadvantages, and failures in

Distributed Database Systems. Subsequent sections provide

discussions on the fundamentals of transaction management,

two-phase commit, homogenous distributed database system

implementation of the two-phase commit, and, finally, an

example on how the two phases commit works.

2.1Advantages of Distributed Database system (DDBS)

Since organizations tend to be geographically dispersed, a

DDBS fits the organizational structure better than traditional

centralized DBS. Improved Availability-A failure does not

make the entire system inoperable and Improved Reliability-

Data may be replicatedEach location will have its local data

as well as the ability to get needed data from other locations

via a communication network. Moreover, the failure of one

of the servers at one site won‘t render the distributed

database system inaccessible. The affected site will be the

only one directly involved with that failed server. In addition,
if any data is required from a site exhibiting a failure, such

data may be retrieved from other locations containing the

replicated data [7]. The performance of the system will

improve, since several machines take care of distributing the

load of the CPU and the I/O. Also, the expansion of the

distributed system is relatively easy, since adding a new

location doesn‘t affect the existing ones.

2.2 Disadvantages of Distributed DBS

On the other hand, DDBS has several disadvantages. A

distributed system usually exhibits more complexity and cost
more than a centralized one. Security-network must be made

secure Integrity Control More Difficult This is true because

the hardware and software involved need to maintain a

reliable and an efficient system. All the replication and data

retrieval from all sites should be transparent to the user. The

cost of maintaining the system is considerable since

technicians and experts are required at every site. Another

main disadvantage of distributed database systems is the

issue of security. Handling security across several locations is

more complicated. In addition, the communication between

sites may be tapped to.

2.3 Issues in Distributed Database Design

We have to consider three key issues in distributed database

design

 Data Allocation: where are data placed? Data should

be stored at site with "optimal" distribution.

 Fragmentation: relation may be divided into a

number of sub-relations (called fragments),which

are stored in different sites.

 Replication: copy of fragment may be maintained at

several sites.

III. FUNDAMENTALS OF TRANSACTION
Transaction deals with the problems of keeping the database

in a consistent state even when concurrent accesses and

failures occur.

3.1 What is a Transaction
A transaction consists of a series of operations performed on

a database. The important issue in transaction management is

that if a database was in a consistent state prior to the

initiation of a transaction, then the database should return to a

consistent state after the transaction is completed. This

should be done irrespective of the fact that transactions were

successfully executed simultaneously or there were failures

during the execution,[8]. A transaction is a sequence of

operations that takes the database from a consistent state to

another consistent state. It represents a complete and correct

computation. Two types of transactions are allowed in our
environment: query transactions and update transactions.

Query transactions consist only of read operations that access

data objects and return their values to the user. Thus, query

transactions do not modify the database state. Two

transactions conflict if the read-set of one transaction

intersects with the write-set of the other transaction. During

the voting process, Update transactions consist of both read

and write operations. Transactions have their time-stamps

constructed by adding 1 to the greater of either the current

time or the highest time-stamp of their base variables.Thus; a

transaction is a unit of consistency and reliability. The

properties of transactions will be discussed later in the
properties section. Each transaction has to terminate. The

outcome of the termination depends on the success or failure

of the transaction. When a transaction starts executing, it may

terminate with one of two possibilities:

1. The transaction aborts if a failure occurred during its

execution

2. The transaction commits if it was completed successfully.

Example of a transaction that aborts during process 2 (P2).

On the other hand, an example of a transaction that commits,

since all of its processes are successfully completed [9, 10].

3.2Properties of Transactions

A Transaction has four properties that lead to the consistency

and reliability of a distributed data base. These are Atomicity,

Consistency, Isolation, and Durability [6].

ACID property of transaction: The concept of a database

transaction (or atomic transaction) has evolved in order to

enable both a well-understood database system behavior in a

faulty environment where crashes can happen any time, and

recovery from a crash to a well understood database state. A

database transaction is a unit of work, typically encapsulating

a number of operations over a database (e.g., reading a

database object, writing, acquiring lock, etc.), an abstraction
supported in database and also other systems. Each

transaction has well defined boundaries in terms of which

program/code executions are included in that transaction

(determined by the transaction's programmer via special

transaction commands). Every database transaction obeys the

following rules (by support in the database system; i.e., a

database system is designed to guarantee them for the

transactions it runs):

Atomicity: This refers to the fact that a transaction is treated

as a unit of operation. Consequently, it dictates that either all

the actions related to a transaction are completed or none of
them is carried out. For example, in the case of a crash, the

system should complete the remainder of the transaction, or it

will undo all the actions pertaining to this transaction. The

recovery of the transaction is split into two types

corresponding to the two types of failures: Atomicity means

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.4, July-Aug. 2012 pp-2409-2416 ISSN: 2249-6645

www.ijmer.com 2411 | Page

that users do not have to worry about the effect of incomplete
transactions. Transactions can fail for several kinds of

reasons:

1. Hardware failure: A disk drive fails, preventing some of

the transaction‘s database changes from taking effect.

2. System failure: The user loses their connection to the

application before providing all necessary information.

3. Database failure: E.g., the database runs out of room to

hold additional data.

4. Application failure: The application attempts to post data

that violates a rule that the database itself enforces such as

attempting to insert a duplicate value in a column.

Consistency: Every transaction must leave the database in a

consistent (correct) state, i.e., maintain the predetermined

integrity rules of the database (constraints upon and among

the database's objects). A transaction must transform a

database from one consistent state to another consistent state

(however, it is the responsibility of the transaction's

programmer to make sure that the transaction itself is correct,

i.e., performs correctly what it intends to perform (from the

application's point of view) while the predefined integrity

rules are enforced by the DBMS). Thus since a database can

be normally changed only by transactions, all the database's
states are consistent. An aborted transaction does not change

the database state it has started from, as if it never existed

(atomicity above).

Isolation: According to this property, each transaction

should see a consistent database at all times. Consequently,

no other transaction can read or modify data that is being

modified by another transaction. If this property is not

maintained, one of two things could happen to the data base.

a. Lost Updates: this occurs when another transaction (T2)

updates the same data being modified by the first transaction
(T1) in such a manner that T2 reads the value prior to the

writing of T1 thus creating the problem of loosing this update.

 b. Cascading Aborts: this problem occurs when the first

transaction (T1) aborts, then the transactions that had read or

modified data that has been used by T1 will also abort.

Durability: Durability is the DBMS‘s guarantee that once

the user has been notified of a transaction‘s success the

transaction will not be lost, the transaction‘s data changes

will survive system failure, and that all integrity constraints

have been satisfied, so the DBMS won‘t need to reverse the

transaction. Many DBMSs implement durability by writing
transactions into a transaction log that can be reprocessed to

recreate the system state right before any later failure. A

transaction is deemed committed only after it is entered in the

log. Durability does not imply a permanent state of the

database. A subsequent transaction may modify data changed

by a prior transaction without violating the durability

principle .The concept of atomic transaction has been

extended during the years to what has become a Business

transaction, which actually implement types of Workflow

and are not atomic. However also such enhanced transactions

typically utilize atomic transactions as components [11, 12].

3.3 Type of distributed transaction

By structure, distributed transaction is dividing into two

types. A flat transaction, FT, is an operation, performed on a

database, which may consist of several simple actions. From

the client‘s point of view the operation must be executed
indivisibly. Main disadvantage with FTs that if one action

fails the whole transaction must abort. Issues related to

distributed transaction: There are a number of issues or

problems, which are peculiar to a distributed database and

these, require novel solutions. These include the following:

3.3.1Distributed query optimisation: In a distributed

database the optimisation of queries by the DBMS itself is

critical to the efficient performance of the overall system.

Query optimisation must take into account the extra

communication costs of moving data from site to site, but can
use whatever replicated copies of data are closest, to execute

a query. Thus it is a more complex operation than query

optimisation in centralised databases.

3.3.2Distributed update propagation: Update propagation

in a distributed database is problematic because of the fact

that there may be more than one copy of a piece of data

because of replication, and data may be split up because of

partitioning. Any updates to data performed by any user must

be propagated to all copies throughout the database. The use

of snapshots is one technique for implementing this.

3.3.3Distributed catalog management: The distributed

database catalog entries must specify site(s) at which data is

being stored in addition to data in a system catalog in a

centralised DBMS. Because of data partitioning and

replication, this extra information is needed. There are a

number of approaches to implementing a distributed database

catalog. Centralized- Keep one master copy of the catalog,

fully replicated Keep one copy of the catalog at each site,

Partitioned -Partition and replicate the catalog as usage

patterns demand, Centralised/partitioned- Combination of the

above.

3.3.4Distributed concurrency control: Concurrency

Control4 in distributed databases can be done in several ways.

Locking and timestamping are two techniques, which can be

used, but timestamping is generally preferred. The problems

of concurrency control in a distributed DBMS are more

severe than in a centralised DBMS because of the fact that

data may be replicated and partitioned. If a user wants unique

access to a piece of data, for example to perform an update or

a read, the DBMS must be able to guarantee unique access to

that data, which is difficult if there are copies throughout the

sites in the distributed database.
A number of problems arise while dealing with concurrency

control and recovery issues in distributed databases. Some of

the major problems are:

Site failure: There are situation when one or more sites in a

DDBMS fail. In such situations, consistency and integrity of

the database must be restored.

Network Problems: When communication network fails,

causing one or more sites to be cut off from the rest of the

sites in the DDBMS environment

Data Duplication: Multiple copies of the database must be

monitor carefully for maintaining consistency.
Distributed Transaction: A problem arise when a transaction

distributed across various sites. Some of the sites are

successfully committing/rolling, while the others may not be

successfully done.

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.4, July-Aug. 2012 pp-2409-2416 ISSN: 2249-6645

www.ijmer.com 2412 | Page

Distributed Deadlocks: In DDBMS, a deadlock may occur in
any one or many sites. So, careful handling is necessary.

3.3.5Transaction Concurrency: If transactions are executed

serially, i.e., sequentially with no overlap in time, no

transaction concurrency4 exists. However, if concurrent

transactions with interleaving operations are allowed in an

uncontrolled manner, some unexpected, undesirable result

may occur. Here

IV. Transaction Processing In Replicated Data in

the DDBMS
A transaction is a logical unit of work constituted by one or

more SQL statements executed by a single user. A

transaction begins with the user‘s first executable SQL

statement and ends when it is committed or rolled back by

that user. A remote transaction contains only statements that

access a single remote node. A distributed transaction

contains statements that access more than one node. A
distributed transaction is a transaction that includes one or

more statements that, individually or as a group, update data

on two or more distinct nodes of a distributed database. The

term replication refers to the operation of copying and

maintaining database objects in multiple databases belonging

to a distributed system. The terms distributed database

system and database replication are related, yet distinct. In a

pure (that is, not replicated) distributed database, the system

manages a single copy of all data and supporting database

objects. Typically, distributed database applications use

distributed transactions to access both local and remote data
and modify the global database in real-time. While

replication relies on distributed database technology,

database replication offers applications benefits that are not

possible within a pure distributed database environment.

Most commonly, replication is used to improve local

database performance and protect the availability of

applications because alternate data access options

exist.[13,14,16] For example, an application may normally

access a local database rather than a remote server to

minimize network traffic and achieve maximum performance.

Furthermore, the application can continue to function if the

local server experiences a failure, but other servers with
replicated data remain accessible. A new component, which

is a replication manager module, has been recently added to

the system, in order to maintain replicated data.

4.1Transaction-Processing Model:

A DDBMS contains four components: transactions (T),

Transaction Manager (TMR), Data Manager (DMR), and

data (D). Transactions communicate with TMRs, TMRs

communicate with DMRs, and DMRs manage the D. TMRs
supervise transactions. Each transaction executed in the

DDBMS is supervised by a single TMR, meaning that the

transaction issues all of its database operations to that TMR.

Any distributed computation that is needed to execute the

transaction is managed by the TMR. Four operations are

defined at the transaction-TMR interface.

READ (A): returns the value of A (a logical data item) in the

current logical database state.

 WRITE (A, new-value): creates a new logical database state

in which A has the specified new value.

BEGIN and END operations to bracket transaction

executions.

DMRs manage the stored database, functioning as backend
database processors. In response to commands from

transactions, TMRs issue commands to DMRs specifying

stored data items to be read or written.

In a centralized DBMS, private workspaces are part of the

Transaction Manager (TMR) and data can freely move

between a transaction and its workspace, and between a

workspace and the Data Manager (DMR). Whereas in a

DDBMS TMRs and DMRs may run at different sites and the

movement of data between a TM and a DM can be expensive.

To reduce this cost, many DDBMSs employ query

optimization procedures which regulate the flow of data
between sites. How a Transaction (T) reads and writes data in

these workspaces is a query optimization problem and has no

direct effect on concurrency control. Suppose T is updating x,

y, z stored at DMRx, DMRy, DMRz, and suppose T's TMR

fails after issuing DMR- write(x), but before issuing the dm-

writes for y and z. At this point the database is incorrect.

However, in a DDBMS, other TMRs remain operational and

can access the incorrect database. To avoid this problem,

prewrite commands must be modified slightly. In addition to

specifying data items to be copied onto secure storage,

prewrites also specify which other DMRs are involved in the

commitment activity. Then if the TMR fails during the
second phase of two-phase commit, the DMRs whose dm-

writes were not issued can recognize the situation and consult

the other DMRs involved in the commitment. If any DMR

received a dmr-write, the remaining ones act as if they had

also received the command. In a DDBMS these are processed

as follows.

BEGIN: The TMR creates a private work space for T.

READ (A): The TMR checks T's private workspace to see if

a copy of A is present. If so, that copy's value is made

available to T. Otherwise the TMR selects some stored copy

of A, say xi, and issues read(x,) to the DMR at which x, is
stored. The DMR responds by retrieving the stored value of x,

from the database, placing it in the private workspace. The

TMR returns this value to T.

WRITE (A, new-value): The value of A in T's private

workspace is updated to newvalue, assuming the workspace

contains a copy of A. Otherwise; a copy of A with the new

value is created in the workspace.

END: Two-phase commit begins.

For each A updated by T, and for each stored copy x, of A,

the TMR issues a prewrite (x,) to the DMR that stores x,. The

DMR responds by copying the value of A from T's private

workspace onto secure storage internal to the DMR. After all
prewrites are processed, the TMR issues dm-writes for all

copies of all logical data items updated by T.

A DMR responds to dmr-write(x,) by copying the value of x,

from secure storage into the stored database. After all dmr-

writes are installed, T's execution is finished.

4.2 SYNCHRONIZATION TECHNIQUES BASED ON

TWO-PHASE LOCKING

Two-phase locking (2PL) synchronizes reads and writes by

explicitly detecting and preventing conflicts between

concurrent operations. Earlier than reading data item x, a

transaction must "own" a read lock on x. Before writing into

x, it must "own" a write lock on x. The ownership of locks is

governed by two rules:

(1) Different transactions cannot simultaneously own

conflicting locks

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.4, July-Aug. 2012 pp-2409-2416 ISSN: 2249-6645

www.ijmer.com 2413 | Page

(2) Once a transaction surrenders ownership of a lock, it may
never obtain additional locks.

The definition of conflicting lock depends on the type of

synchronization being performed:

For ‗rw‘ synchronization two locks conflict if

(a) Both are locks on the same data item, and

(b) One is a read lock and the other is a write lock;

for ‗ww‘ synchronization two locks conflict if

(a) Both are locks on the same data item, and

(b) Both are write locks.

The second lock ownership rule causes every transaction to

obtain locks in a two- phase manner. During the growing
phase the transaction obtains locks without releasing any

locks. By releasing a lock the transaction enters the shrinking

phase. During this phase the transaction releases locks, and,

by rule 2, is prohibited from obtaining additional locks.

When the transaction terminates (or aborts), all remaining

locks are automatically released. A common variation is to

require that transactions obtain all locks before begin- ning

their main execution. This variation is called predeclaration.

Some systems also require that transactions hold all locks

until termination.

4.2.1Performance of 2PL
A performance of 2PL amounts to building a 2PL scheduler,

a software module that receives lock requests and lock

releases and processes them according to the 2PL

specification. The basic way to implement 2PL in a

distributed database is to distribute the schedulers along with

the database, placing the scheduler for data item x at the

DMR were x is stored. In this implementation read locks may

be implicitly requested by dmr reads and write locks may be

implicitly requested by prewrites. If the requested lock

cannot be granted, the operation is placed on a waiting queue

for the desired data item. Write locks are implicitly released
by dmr-writes. However, to release readlocks, special

lockrelease operations are required. When a lock is released,

the operations on the waiting queue of that data item are

processed first-in/first-out (FIFO) order. However, if a

transaction updates A, then it must update all copies of A,

and so must obtain write locks on all copies of A.

4.2.2Primary Copy 2PL

Primary copy 2PL is a 2PL technique that pays attention to

data redundancy. One copy of each logical data item is

designated the primary copy; before accessing any copy of

the logical data item, the appropriate lock must be obtained
on the primary copy. For read locks this technique requires

more communication than basic 2PL. Suppose xl is the

primary copy of logical data item A, and suppose transaction

T wishes to read some other copy, x,, of A. To read x, T must

communicate with two DMRs, the DMR where As is stored..

But under basic 2PL, T would only communicate with x,'s

DMR. For write locks, however, primary copy 2PL does not

incur extra communication.

4.2.3Voting 2PL Method

Voting 2PL is another performance of 2PL that exploits data
redundancy. Voting 2PL is derived from the majority

consensus technique of Thomas and is only suitable for ‗ww

‗synchronization. To understand voting, we must examine it

in the context of two-phase commit. Suppose transaction T

wants to write into A. Its TMR sends prewrites to each DMR

holding a copy of A. For the voting protocol, the DMR
always responds immediately. It acknowledges receipt of the

prewrite and says "lock set" or "lock blocked." After the TM

receives acknowledgments from the DMRs, it counts the

number of "lockset" responses: if the number constitutes a

majority, then the TMR behaves as if all locks were set.

Otherwise, it waits for "lockset" operations from DMRs that

originally said "lock blocked." Deadlocks aside, it will

eventually receive enough "lockset" operations to proceed.

Since only one transaction can hold a majority of locks on A

at a time, only one transaction writing into A can be in its

second commit phase at any time [17, 18]. All copies of A
thereby have the same sequence of writes applied to them.

transaction's locked point occurs when it has obtained a

majority of its write locks on each data item in its write set.

When updating many data items, a transaction must obtain a

majority of locks on every data item before it issues any dmr-

writes. In principle, voting 2PL could be adapted for ‗rw‘

synchronization. Before reading any copy of a transaction

requests read locks on all copies of A; when a majority of

locks are set, the transaction may read any copy. This

technique works but is overly strong: Correctness only

requires that a single copy of A be locked--namely, the copy

that is read--yet this technique requests locks on all copies.
For this reason we deem voting 2PL to be inappropriate for

rw synchronization.

V. Two-Phase Commit of transaction in

Distributed database System
In transaction processing, databases, and computer

networking, the two-phase commit protocol (2PC) is a type

of atomic commitment protocol (ACP). It is a distributed

algorithm that coordinates all the processes that participate in

a distributed atomic transaction on whether to commit or

abort (roll back) the transaction (it is a specialized type of

consensus protocol). The protocol achieves its goal even in
many cases of temporary system failure (involving process,

network node, communication, etc. failures), and is thus

widely utilized[17,18].However, it is not resilient to all

possible failure configurations, and in rare cases user (e.g., a

system‘s administrator) intervention is needed to remedy

outcome. To accommodate recovery from failure (automatic

in most cases) the protocol‘s participants use logging of the

protocol‘s states. Log records, which are typically slow to

generate but survive failures, are used by the protocol‘s

recovery procedures. Many protocol variants exist that

primarily differ in logging strategies and recovery

mechanisms. Though usually intended to be used
infrequently, recovery procedures comprise a substantial

portion of the protocol, due to many possible failure

scenarios to be considered and supported by the protocol. In a

―normal execution‖ of any single distributed transaction, i.e.,

when no failure occurs, which is typically the most frequent

situation, the protocol comprises two phases:

1. The commit-request phase (or voting phase), in which a

coordinator process attempts to prepare all the transaction‘s

participating processes (named participants, cohorts, or

workers) to take the necessary steps for either committing or

aborting the transaction and to vote, either ―Yes‖: commit (if
the transaction participant‘s local portion execution has

ended properly), or ―No‖: abort (if a problem has been

detected with the local portion).

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.4, July-Aug. 2012 pp-2409-2416 ISSN: 2249-6645

www.ijmer.com 2414 | Page

2. The commit phase, in which, based on voting of the
cohorts, the coordinator decides whether to commit (only if

all have voted ―Yes‖) or abort the transaction (otherwise),

and notifies the result to all the cohorts. The cohorts then

follow with the needed actions (commit or abort) with their

local transactional resources (also called recoverable

resources; e.g., database data) and their respective portions in

the transaction‘s other output (if applicable).

5.1Commit request phase
1. The coordinator sends a query to commit message to all

cohorts and waits until it has received a reply from all cohorts.

2. The cohorts execute the transaction up to the point where

they will be asked to commit. They each write an entry to

their undo log and an entry to their redo log.

3. Each cohort replies with an agreement message (cohort
votes Yes to commit), if the cohort‘s actions succeeded, or an

abort message (cohort votes No, not to commit), if the cohort

experiences a failure that will make it impossible to commit.

5.2Commit phase
Success: If the coordinator received an agreement message

from all cohorts during the commit-request phase:

1. The coordinator sends a commit message to all the cohorts.

2. Each cohort completes the operation, and releases all the

locks and resources held during the transaction.

3. Each cohort sends an acknowledgement to the coordinator.

4. The coordinator undoes the transaction when all

acknowledgements have been received

Failure:
If any cohort votes No during the commit-request phase (or

the coordinator‘s timeout expires):

1. The coordinator sends a rollback message to all the

cohorts.

2. Each cohort undoes the transaction using the undo log,

and releases the resources and locks held during the

transaction.

3. Each cohort sends an acknowledgement to the

coordinator.

4. The coordinator undoes the transaction when all

acknowledgements have been received.

The protocol proceeds in two phases, namely the prepare and

the commit phase, which explains the protocol‘s name. The

protocol is executed by a coordinator process, while the

participating servers are called participants. When the

transaction‘s initiator issues a request to commit the

transaction, the coordinator starts the first phase of the 2PC

protocol by querying—via prepare messages—all

participants whether to abort or to commit the transaction.

The master initiates the first phase of the protocol by sending

PREPARE (to commit) messages in parallel to all the cohorts.

Each cohort that is ready to commit first force-writes a
prepare log record to its local stable storage and then sends a

YES vote to the master. At this stage, the cohort has entered

a prepared state wherein it cannot unilaterally commit or

abort the transaction but has to wait for the final decision

from the master. On the other hand, each cohort that decides

to abort force-writes an abort log record and sends a NO vote

to the master. Since a NO vote acts like a veto, the cohort is

permitted to unilaterally abort the transaction without waiting

for a response from the master.

After the master receives the votes from all the
cohorts, it initiates the second phase of the protocol. If all the

votes are YES, it moves to a committing state by force

writing a commit log record and sending COMMIT messages

to all the cohorts. Each cohort after receiving a COMMIT

message moves to the committing state, force-writes a

commit log record, and sends an ACK message to the master.

If the master receives even one NO vote, it moves to the

aborting state by force-writing an abort log record and sends

ABORT messages to those cohorts that are in the prepared

state. These cohorts, after receiving the ABORT message,

move to the aborting state, force write an abort log record
and send an ACK message to the master. Finally, the master,

after receiving acknowledgements from all the prepared

cohorts, writes an end log record and then ―forgets‖ the

transaction. The 2PC may be carried out with one of the

following methods: Centralized 2PC, Linear 2PC, and

Distributed 2PC, [17, 18].

5.3The Centralized Two-Phase Commit Protocol
In the Centralized 2PC communication is done through the

coordinator‘s process only, and thus no communication

between subordinates is allowed. The coordinator is

responsible for transmitting the PREPARE message to the

subordinates, and, when the votes of all the subordinates are

received and evaluated, the coordinator decides on the course

of action: either abort or COMMIT. This method has two

phases:
1. First Phase: In this phase, when a user wants to COMMIT

a transaction, the coordinator issues a PREPARE message to

all the subordinates, (Mohan et al., 1986). When a

subordinate receives the PREPARE message, it writes a

PREPARE log and, if that subordinate is willing to

COMMIT, sends a YES VOTE, and enters the PREPARED

state; or, it writes an abort record and, if that subordinate is

not willing to COMMIT, sends a NO VOTE. A subordinate

sending a NO VOTE doesn‘t need to enter a PREPARED

state since it knows that the coordinator will issue an abort.

In this case, the NO VOTE acts like a veto in the sense that
only one NO VOTE is needed to abort the transaction. The

following two rules apply to the coordinator‘s decision.

a. If even one participant votes to abort the transaction, the

coordinator has to reach a global abort decision.

b. If all the participants vote to COMMIT, the coordinator

has to reach a global COMMIT decision.

2. Second Phase: After the coordinator reaches a vote, it has

to relay that vote to the subordinates. If the decision is

COMMIT, then the coordinator moves into the committing

state and sends a COMMIT message to all the subordinates

informing them of the COMMIT. When the subordinates

receive the COMMIT message, they, in turn, move to the
committing state and send an acknowledge (ACK) message

to the coordinator. When the coordinator receives the ACK

messages, it ends the transaction. If, on the other hand, the

coordinator reaches an ABORT decision, it sends an ABORT

message to all the subordinates. Here, the coordinator doesn‘t

need to send an ABORT message to the subordinate(s) that

gave a NO VOTE.

5.4The Linear Two-Phase Commit Protocol
In the linear 2PC, subordinates can communicate with each

other. The sites are labeled 1 to N, where the coordinator is

numbered as site 1. Accordingly, the propagation of the

PREPARE message is done serially. As such, the time

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.4, July-Aug. 2012 pp-2409-2416 ISSN: 2249-6645

www.ijmer.com 2415 | Page

required to complete the transaction is longer than centralized
or distributed methods. Finally, node N is the one that issues

the Global COMMIT. The two phases are discussed below:

First Phase: The coordinator sends a PREPARE message to

participant 2. If participant 2 is not willing to COMMIT, then

it sends a VOTE ABORT (VA) to participant 3 and the

transaction is aborted at this point. If participant 2, on the

other hand, is willing to commit, it sends a VOTE COMMIT

(VC) to participant 3 and enters a READY state. In turn,

participant 3 sends its vote till node N is reached and issues

its vote.

Second Phase: Node N issues either a GLOBAL ABORT
(GA) or a GLOBAL COMMIT (GC) and sends it to node N-

1. Subsequently, node N-1 will enter an ABORT or

COMMIT state. In turn, node N-1 will send the GA or GC to

node N-2, until the final vote to commit or abort reaches the

coordinator, node

5.5 The Distributed Two-Phase Commit Protocol
In the distributed 2PC, all the nodes communicate with each

other. According to this protocol, as Figure 5 shows, the

second phase is not needed as in other 2PC methods.

Moreover, each node must have a list of all the participating

nodes in order to know that each node has sent in its vote.

The distributed 2PC starts when the coordinator sends a

PREPARE message to all the participating nodes. When each

participant gets the PREPARE message, it sends its vote to

all the other participants. As such, each node maintains a
complete list of the participants in every transaction. Each

participant has to wait and receive the vote from all other

participants. When a node receives all the votes from all the

participants, it can decide directly on COMMIT or abort.

There is no need to start the second phase, since the

coordinator does not have to consolidate all the votes in order

to arrive at the final decision.

VI. DATABASE MANAGEMENT SYSTEM: THE

TWO-PHASE COMMIT
A distributed database system is a network of two or more s

Databases that reside on one or more machines. A distributed

system that connects four databases. An application can

simultaneously access or modify the data in several databases

in a single distributed environment. For a client application,
the location and platform of the databases are transparent.

You can also create synonyms for remote objects in the

distributed system so that users can access them with the

same syntax as local objects. For example, if you are

connected to database mfg but want to access data on

database headquarters, creating a synonym on manufacturing

for the remote dept table enables you to issue this

query[18] ,The database is a distributed database

management system, which employs the two-phase commit

to achieve and maintain data reliability. The DB2 database is

a distributed database management system, which employs

the two-phase commit to achieve and maintain data reliability.
The following sections explain DB2‘s two-phase

implementation procedures. How Session maintains between

nodes in each transaction, DB2 constructs a session tree for

the participating nodes. The session tree describes the

relations between the nodes participating in any given

transaction. Each node plays one or more of the following

roles:

6.1The Branch Tree

In each transaction, Oracle constructs a branch tree for the

participating nodes. The session tree describes the relations

between the nodes participating in any given transaction.

Each node plays one or more of the following roles [10]:

6.1.1 Client(C): A client is a node that references data from
another node.

6.1.2. Database Server (DS): A server is a node that is being

referenced by another node because it has needed data. A

database server is a server that supports a local database.

6.1.3. Global Coordinator (GC): The global coordinator is

the node that initiated the transaction, and thus, is the root of

the branch tree. The operations performed by the global

coordinator are as follows:

• In its role as a global coordinator and the root of the
branch tree, all the SQL statements, procedure calls, etc.,

are sent to the referenced nodes by the global coordinator.

Instructs all the nodes, except the COMMIT point site, to

PREPARE

• If all sites PREPARE successfully, then the global

coordinator instructs the COMMIT point site to initiate

the commit phase

• If one or more of the nodes send an abort message, then

the global coordinator instructs all nodes to perform a

rollback.

6.1.4. Local Coordinator: A local coordinator is a node that

must reference data on another node in order to complete its

part. The local coordinator carries out the following functions:

• Receiving and relaying status information among the

local nodes

• Passing queries to those nodes

• Receiving queries from those nodes and passing them on

to other nodes

• Returning the results of the queries to the nodes that

initiated them.

6.1.5. Commit Point Site: Before a COMMIT point site can
be designated, the COMMIT point strength of each node

must be determined. The COMMIT point strength of each

node of the distributed database system is defined when the

initial connection is made between the nodes. The COMMIT

point site has to be a reliable node because it has to take care

of all the messages. When the global coordinator initiates a

transaction, it checks the direct references to see which one is

going to act as a COMMIT point site. The COMMIT point

site cannot be a read-only site. If multiple nodes have the

same COMMIT point strength, then the global coordinator

selects one of them. In case of a rollback, the PREPARE and
COMMIT phases are not needed and thus a COMMIT point

site is not selected. A transaction is considered to be

committed once the COMMIT point site commits locally.

6.2Two-Phase Commit and the Database Implementation
The transaction manager of the homogenous Oracle8

database necessitates that the decision on what to do with a

transaction to be unanimous by all nodes. This requires all

concerned nodes to make one of two decisions: commit and

complete the transaction, or abort and rollback the transaction.

The Oracle engine automatically takes care of the commit

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.4, July-Aug. 2012 pp-2409-2416 ISSN: 2249-6645

www.ijmer.com 2416 | Page

[19]. or rollback of all transactions, thus, maintaining the
integrity of the database. The following will describe the two

phases of the transaction manager.

6.2.1. PREPARE Phase (PP): The PP starts when a node,

the initiator, asks all participants, except the commit point

site, to PREPARE. In the PP, the requested nodes have to

record enough information to enable them either to commit

or abort the transaction. The node, after replying to the

requestor that it has PREPARED, cannot unilaterally perform

a COMMIT or abort. Moreover, the data that is tied with the

COMMIT or abort is not available for other transactions.
Each node may reply with one of three responses to the

initiator. These responses are defined below:

a. Prepared: the data has already been modified and that the

node is ready to COMMIT. All resources affected by the

transaction are locked.

b. Read-only: the data on the node has not been modified.

With this reply, the node does not PREPARE and does not

participate in the second phase.

c. Abort: the data on the node could not be modified and thus

the node frees any locked resources for this transaction and

sends an abort message to the node that referenced it.

6.2.2. COMMIT Phase (CP): Before the CP begins, all the

referenced nodes need to have successfully PREPARED. The

COMMIT phase begins by the global coordinator sending a

message to all the nodes instructing them to COMMIT. Thus,

the databases across all nodes are consistent.

VII. CONCLUSIONS
At the present time Transaction management is an fully

grown thought in distributed data base management systems
(DDBMS) for research area for research. In this paper, we

have reviewed the basic concepts Transaction Processing In

Replicated Data. Many associations do not implement

distributed databases because of its difficulty. They simply

resort to centralized databases. However, with global

organizations and multi-tier network architectures,

distributed implementation becomes a necessity. It is hoped

that this paper to will assist organization in the

implementation of distributed databases when installing

homogenous DBMS, or give confidence organizations to

journey from centralized to distributed DBMS.We talk about
the basic concept of transaction in distributed database

systems, and also discussed the advantage, property and

operations transaction in distributed environments. It is really

important for database to have the ACID properties to

perform. We have presented the basics of distributed

database technology as well as the techniques that help in

distribution of database in transaction-processing model.

Also, Discussion regarding the framework for the design and

analysis of distributed database concurrency control

algorithms. The framework has two main components are

system model that provides common terminology and

concepts for describing a variety of concurrency control
algorithms, and a problem decomposition that decomposes

concurrency control algorithms into readwrite and write-

write synchronization subalgorithms. We have considered

synchronization subalgorithms outside the context of specific

concurrency control algorithms.

References
[1] R. Abbott and H. Garcia-Molin a, ―Scheduling ‗Real-

Time Transactions: a Performance Evahration‖, F&c.

of 14th VLDB Conj., August 1988.

[2] Sang Hyuk Son, "Replicated Data Management in

 Distributed Database Systems", ACM Simgod,, Vol.

 17, Issue 4, Dec 1998, Newyork,USA, pp-62-69.

[3] Jayant. H, Carey M, Livney,1992, ―Data Access

Scheduling in Firm Real time Database Systems‖,

Real Time systems Journal, 4
[4] M, Valduriez P, 1991, Principles of Distributed

Database Systems, Prentice-Hall.P. Bernstein, V.

Hadzilacos and N. Goodman,

[5] G. Coulouris, J. Dollimore, T. Kindberg: Disributed

Systems, Concepts and Design, Addison–Wesley,

1994.

[6] Oracle8 Server Distributed Database Systems, Oracle,

3-1 – 3-35.

[7] Ozsu, Tamer M., and V.alduriez, Patrick [1991],

Principles of Distributed Database Systems, Prentice

[8] Mohan, C.; Lindsay, B.; and Obermarck, R.
[1986],―Transaction Management in the R*

Distributed Database Management System.‖ ACM

Transactions on Database Systems, Vol. 11, No. 4,

December1986, 379-395.

[9] S. Ceri, M.A.W. Houtsma, A.M. Keller, P. Samarati:

A Classification of Update Methods for Replicated

Databases, via Internet, May 5, 1994.

[10] D. Agrawal, A.El. Abbadi: The Tree Quorum Protocol:

An Efficient Approach for Managing Replicated Data.

in Proc. of VLDB Conf. pp 243-254, 1990.

[11] Distributed Transaction Processing on an Ordering

Network By Rashmi Srinivasa, Craig Williams, Paul F.
Reynolds (2002)

[12] Ghazi Alkhatib, Transaction Management in

Distributed Database: the Case of Oracle‘s Two-

Phase Commit, Vol. 13(2)

[13] E. Cooper, ―Analysis of Distributed Commit

Protocols‖, Proc. of ACM Sigmod Conj., June 1982.

[14] Ramamritham,Son S. H, and DiPippo L,2004, Real-

Time Databases and Data Services, Real-Time

Systems J., vol. 28, 179-216.

[15] Jayanta Singh and S.C Mehrotra et all,

2010,―Management of missed transaction in a
distributed system through simulation‖, Proc. Of IEEE.

[16] Udai Shanker, ―Some Performance Issues In

Distributed Real Time Database System‖, PhD Thesis,

December,2005

[17] D. Agrawal, A.J. Bernstein, P. Gupta, S. Sengupta,

―Distributed Optimistic Concurrency Control with

Reduced Rollback,‖ Distributed Computing, vol. 2,

no. 1, pp. 45-59, 1987.

[18] R. Agrawal, M.J. Carey and L.W. McVoy, ―The

Performance of Alternative Strategies for Dealing with

Deadlocks in Database Management Systems,‖ IEEE

Trans. Software Eng., vol. 13, no. 12, pp. 1,348-1,363,
Dec. 1987.

[19] Boutros B. S. and Desai B. C., ―A Two-Phase Commit

Protocol and its Performance,‖ in Proceedings of the

7th International Workshop on Database and Expert

Systems Applications, pp.100-105, 1996.

