
International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.4, July-Aug. 2012 pp-2445-2451 ISSN: 2249-6645

www.ijmer.com 2445 | Page

Indu I
1
, Manu T S

2

*PG Scholar, Dept. of Electronics and Communication Engineering, TKM Institute of Technology, Kollam, affiliated to

Cochin University of Science and Technology, Kerala, India.

**Asst. Professor, Dept. of Electronics and Communication Engineering, TKM Institute of Technology, Kollam, affiliated to

Cochin University of Science and Technology, Kerala, India.

ABSTRACT: The primary goal of this paper is to
generate cyclic redundancy check (CRC) using multiple

lookup table algorithms. A compact architecture of CRC

algorithm (Slicing-by-N algorithm) based on multiple

lookup tables (LUT) approach is proposed. This algorithm

can ideally read large amounts of data at a time, while

optimizing their memory requirement to meet the

constraints of specific computer architectures. The focus

of this paper is the comparison of two algorithms. These

two algorithms are Slicing by-N-algorithm and Sarwate

algorithm, in which slicing by-N-algorithm can read

arbitrarily 512 bits at a time, but Sarwate algorithm,
which can read only 8 bits at a time. This paper proposes

the generation of CRC using slicing by 8 algorithm. In

this, message bits are chunked to 8 blocks. All are

processed at a time. Proposed Slicing-by-8 algorithm can

read 64 bits of input data at a time and it doubles the

performance of existing implementations of Sarwate

algorithm.

Keywords: CRC, LUT, Slicing-by-N.

I. Introduction
Cyclic Redundancy Check (CRC) is one of the methods of

detecting the errors in the information during

transmission. CRC is an error-checking code that is

widely used in data communication systems and other

serial data transmission systems [10]. CRC are used for

detecting the corruption of digital content during its

production, transmission, processing or storage. CRC
algorithms treat each bit stream as a binary polynomial

and calculate the remainder from the division of the

stream with corresponding to the remainder is transmitted

together with the bit stream. At the receiver side, CRC

algorithms verify that the correct remainder is has been

received. Long division is performed using modulo-2

arithmetic [3].

CRC is a polynomial-based block coding method

for detecting errors in blocks or frames of data. A set of

check digits is computed for each frame scheduled for

transmission over a medium that may introduce error and

is appended to its end. The computed check digits are
known as the frame check sequence (FCS). A CRC value

is calculated as a remainder of the modulo-2 division of

the original transmitted data with a specific CRC

generator polynomial. For example, Ethernet uses the 32-

bit polynomial value,

G(x) = 1 + x + x2 + x4 + x5 + x7 + x8 + x10 + x11 + x12 + x16

+ x22 + x23 + x26 + x32 (1)

To find the FCS, first a number of zeroes equal to

the number of FCS digits to be generated are appended to

the message M(x). This is equivalent to multiplying M(x)

by 2n, where “n” is the number of FCS digits. This value is

then divided by the generator polynomial G(x) (1), which

contains one more digit than the FCS. The division uses
modulo-2 arithmetic, where each digit is independent of its

neighbour and numbers are not carried or borrowed, thus

additions and subtractions are performed via an exclusive-

OR (XOR) function. The remainder R(x) is appended to the

end of the message before transmission. At the receiver, the

message plus the FCS is divided by the same polynomial. If

the remainder is zero then it can be assumed that no error

has occurred [2].

To accelerate the CRC generation process, a number of

algorithms have been proposed. Among these algorithms

the most commonly used today is the algorithm proposed by
Sarwate. The Sarwate algorithm reads 8 bits at a time from

stream and calculates the CRC value by performing lookups

on a table of 256 32-bit entries [4]. Looking to overcome

limitations of processing 8 bits of data at a time, new

algorithm have been proposed [4] and they can read

arbitrarily large amount of data at a time.

Recently time is the major concern. So in order to

process large amount of data at a time, Multiple Lookup

based approach is more efficient. Multiple Lookup based

approach contains five CRC algorithms, called Slicing by-N

algorithm (N ϵ 4, 8, 16, 32, 64), which is used to read up to
512 bits at a time. So performance of the system should be

increased. Here proposing Slicing by-8 algorithm to read 64

bits at a time. Here proposed an efficient design of CRC

generator using Slicing by-N algorithm (N=8). In this

algorithm, input message stream is sliced into N slices and

each slice has 8 bits. So using this Slicing by-8 algorithm, it

can read 64 bits at a time and it triples the performance of

existing implementation of Sarwate algorithm. In this

algorithm, input data stream is sliced into 8 slices. Each

slice has 8 bits and these total 64 bits are processed at a

time. In this design 8 Look Up tables (LUT) are used, which

contain the pre-computed CRC values. These CRC values
are generated by using LFSR method and 256 combinations

of CRC values corresponding to 8 bit input stream are

generate. In this work CRC32 standard is used. Each slice

returned CRC values from each LUT and all are XORed to

get the final CRC value. This algorithm can reduce the

memory usage and also number of operations significantly

reduces compared to Sarwate algorithm.

Cyclic Redundancy Check Generation Using Multiple

Lookup Table Algorithms

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.4, July-Aug. 2012 pp-2445-2451 ISSN: 2249-6645

www.ijmer.com 2446 | Page

II. System Architecture
Cyclic Redundancy Check is an error detecting

codes that are widely used due to their capability to detect

the alteration of data. Different algorithms are used for

generating CRC. Existing algorithms are LFSR method

and Sarwate algorithm. Here proposing an algorithm, this

has five algorithms, called Slicing by-N algorithm which

is used to generate CRC fastly. Every CRC algorithm treat

input bit stream as a binary polynomial and calculate the

remainder from the division of the stream with standard

generator polynomial. In this work CRC32 standard is

used as a generator polynomial. The binary words

corresponding to the remainder are transmitted together
with input stream. In this work slicing by-8 algorithm is

used to generate CRC and it can read 64 bits at a time.

The main disadvantage of existing table-driven

CRC generation algorithms is their memory space

requirement when reading a large number of bits at a time.

To solve this problem, a new algorithm that slices the

CRC value produced in every iteration as well as the data

bits read into small terms. These terms are used as indexes

for performing lookups on different tables in parallel. For

example, Slicing-by-4 algorithm can read 32 bits of input

data at a time and it doubles the performance of existing

implementations of Sarwate algorithm, while Slicing-by-8
triples the performance and reads 64 bits of input data at a

time. In this way, here proposed algorithm is capable of

reading 64 bits at a time, as opposed to 8, while keeping

its memory space requirement to 8KB.

2.1 General Block Diagram of CRC Generation

The basic block diagram of CRC generator is shown in

fig.1.

Fig.1 Block diagram of basic CRC Generator.

In this CRC generator, the data stream is firstly XORed

with initial CRC value. In this work CRC32 standard is
used as a generator polynomial. In the case of CRC32

standard, the initial CRC value is 0xFFFFFFFF [1] and

other cases, that is, in other CRC standard initial CRC

value is cleared. The output of the XOR block is then

sliced into N slices and each slice has 8 bits. Each is given

to each LUT for calculating the CRC value. Numbers of

LUTs are same to N. Using this Slicing by-N algorithm up

to 512 bits are processed at a time, that is, this Slicing by-

N algorithm composed of five algorithms (N ϵ 4, 8, 16,

32, 64) in which fifth algorithm is used to read 512 bits at

a time.

2.2 Block Diagram of CRC Generator Using Slicing

By-8

Here proposing CRC generation using slicing by-8

algorithm which is used to read 64 bits at a time. The block
diagram of Slicing by-8 algorithm is shown in fig.2 is

 Fig.2 Block diagram of CRC Generator using Slicing by-

8 Algorithm

In this, primarily the input data stream is stored in Buffer

and buffer has size five and each location is 64 bit wide.

Initially first 64 bit data is taken and it is XORed with initial

CRC value. Here using CRC32 standard and its initial value

is 0xFFFFFFFF. So the modified bit stream is got. This bit

stream is sliced into 8 slices and each has 8 bit long. Each 8

bit data is given to each LUT. LUTS have the pre-computed
CRC values. These LUTs have 256 entries with 32 bit wide,

that is, 8 bit data has 28 (= 256) combinations of values,

each has its own CRC value. The CRC value corresponding

to each bit stream is getting from each LUT. Finally all

CRC values are XORed to get the final CRC value.

2.2.1 Slicing-by-8 Algorithm Description

In this CRC generation process the pre computed

value of CRC first stored in LUTs. The long division

process is to pre-compute the current remainder that results

from a group of bits and place the result in a table. Before
the beginning of the long division process all possible

remainders which result from groups of bits are pre-

computed and placed into a Look up Table. In this way,

several long division steps can be replaced by table lookup

step. The benefit from slicing comes from the fact that

modern processor architectures comprise large cache units.

These cache units are capable of storing moderate size

tables. If tables are stored in an external memory unit, the

latency associated with accessing these tables may be

significantly higher than when tables are stored in a cache

unit. Slicing is also important because it reduces the number

of operations performed for each byte of an input stream
when compared to Sarwate. For each byte of an input

stream the Sarwate algorithm performs the following: (i) an

XOR operation between a byte read and the most significant

byte of the current CRC value; (ii) a table lookup; (iii) a

shift operation on the current CRC value; and (iv) an XOR

operation between the shifted CRC value and the word read

from the table. In contrast, for every byte of an input stream

the Slicing by- 8-algorithm performs only a table lookup

and an XOR operation. This is the reason why the Sicing-

by-8 algorithm is faster than the Sarwate algorithm.

Slicing by-N algorithm says that the current input
stream is XORed with the current CRC and then the

modified stream is produced. This modified stream is then

sliced into N slices and each has one byte wide. Each slice

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.4, July-Aug. 2012 pp-2445-2451 ISSN: 2249-6645

www.ijmer.com 2447 | Page

is given to the LUTs, which have the pre-computed CRC

values. Output of these LUTs is then XORed to get the

current CRC. Initially CRC value is 0xFFFFFFFF.

Here slicing by-8 algorithm is explained. The steps of this
algorithm as follows:

Fig.3 The Slicing by-8 Algorithm

These steps explain how this algorithm works in CRC

generators. In the first step, the current input stream is

XORed with the current CRC value. The input stream is 64

bit wide and CRC value is 32 bit wide. In order to perform
XOR operation, 32 bit wide zeroes is appended to the

current CRC value and is XORed with input stream. The

modified bit is produced as output. In the second step this

modified bit stream is sliced into eight slices. In the third

step, each slice is given to LUTs as input and CRC value

corresponding to input is produced from LUTs. In the fourth

step, these outputs are XORed to get final CRC value.

2.3 Block Diagram of CRC Generator Using

Sarwate Algorithm

Here explains the CRC generation using Sarwate algorithm

which is used to process only 8 bit at a time. A more
efficient approach to CRC computation in software was

described by Sarwate [2]. This technique uses a table of pre

computed effects on the shift register of 8-bit bytes, which

allows the computation to run at one cycle per byte (instead

of one cycle per bit) [4]. The long division process is a

compute-intensive operation because it requires in the worst

case one shift operation and one XOR logical operation for

every bit of a bit stream. Most software-based CRC

generation algorithms, however, perform the long division

process quicker than the bit-by-bit marking technique. One

commonly used technique for accelerating the long division
process is to pre-compute the current remainder that results

from a group of bits and place the result in a table. In this

way, several long division steps can be replaced by a single

table lookup step [3] [6].

Fig.4 Block diagram of CRC Generator using Sarwate

Algorithm

In both Sarwate algorithm and Slicing by 8 algorithms,
Look Up Table is used for storing the 28 combinations of

CRC values. These CRC values are computed using long

division process. Long division steps are explained above.

Initially the CRC value is set to 0XFFFFFFFF. The first 8

bit from the input stream is taken and is XORed with most

significant 8 bits of the initial CRC value. This modified

byte is given to the LUT, it produce the corresponding CRC

value. It is finally XORed with the 24 least significant bits

of the current CRC value, shifted by 8 bit positions to the

left, which produce the next CRC value and this CRC value

is used for next iteration.

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.4, July-Aug. 2012 pp-2445-2451 ISSN: 2249-6645

www.ijmer.com 2448 | Page

2.3.1 Sarwate Algorithm Description

The most representative table-driven CRC generation

algorithm used today is the algorithm proposed by

Dilip.V.Sarwate. The length of the CRC value generated
by the Sarwate algorithm is 32 bits. The Sarwate

algorithm is more complicated than the straightforward

lookup process because the amount of bits read at a time

(8 bits) is smaller than the degree of the generator

polynomial. Initially, the CRC value is set to a given

number which depends on the standard implemented (e.g.,

this number is 0xFFFFFFFF for CRC32) [1]. For every

byte of an input tream the algorithm performs the

following steps:

Fig.5 Sarwate Algorithm

In first step, the algorithm performs an XOR operation

between the most significant byte of the current CRC value

and the byte from the stream which is read. The 8-bit

number which is produced by this XOR operation is used as
an index for accessing a 256 entry table (Step 2). The

lookup table used by the Sarwate algorithm stores the

remainders from the division of all possible 8-bit numbers

shifted by 32 bits to the left with the generator polynomial.

The value returned from the table lookup is then XORed

with the 24 least significant bits of the current CRC value,

shifted by 8 bit positions to the left (Step 3). The result from

this last XOR operation is the CRC value used in the next

iteration of the algorithm‟s main loop. The iteration stops

when all bits of the input stream have been taken into

account.

Sarwate algorithm has been designed when computer
architectures supported XOR operation with only eight bits.

Today‟s processors support operations with 32 and 64 bits

values, and if this algorithm is extended it would require

lookup tables of 2
32

= 4G entries for processing 32 bits of

data at a time, and 264 = 16G for 64 input data. These tables

can‟t fit into a cache and would cause significant latency

problem if in RAM.

III. 3. Simulation Results
The simulation was done using Modelsim PE 10.0c

Simulator and the output waveforms is obtained as shown in

fig. 6, 7,8,9,10. Slicing by-N algorithm is one of the CRC

algorithms, which is used to read up to 512 bits at a time. It

is Multiple Look Up based approach that is, in this N LUTs

are used. In this paper, Slicing by-8 algorithm is used which

it is used to read 64 at a time. Each 64 bits are sliced into 8

slices and each slice has 8 bits. In this algorithm 8 LUTs are
used. Each slice is given to each LUT and these LUTs

contain all 28 combinations of CRC values. Outputs of

LUTs are CRC values corresponding to each slice and all

outputs from LUTs are XORed to get final CRC value.

Similarly Sarwate algorithm is used to read 8 bits at a tme

and in this, only one LUT is used for iteration.

3.1 Simulation waveforms

Fig.6 256 Combinations of CRC Using LFSR Method

Fig.6 shows the 256 combinations of CRC is generated

using LFSR method in VHDL. In this, initially reset („rst‟)

is „1‟, all are cleared. After that, reset is „0‟, and calculating

each CRC corresponding bits from “00000000” to

“11111111”. These are getting from the signal „data‟.

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.4, July-Aug. 2012 pp-2445-2451 ISSN: 2249-6645

www.ijmer.com 2449 | Page

Fig.7 256 Combinations of CRC values using MATLAB

Fig.7 shows 256 combinations of 32-bit CRC values can

be generated by MATLAB. Using MATLAB, generated

these CRCs by using the „Deconv‟ function. This function

is used for polynomial division. By dividing the input

stream with the standard generator polynomial, which is

33-bits, getting the remainder which is 32 bit long. These

generated CRC values are stored in a text file by

generating a text file using „file generate‟ and „file write‟

functions.

Fig.8 Comparison output for CRC values

The comparison result of CRC generation using
MATLAB and LFSR method got the same. Ie, generated

CRC values using LFSR method is cross verified by

MATLAB. This comparison gives the result that the CRC

values produced by LFSR method are correct.

Fig.9 Output of CRC generation using Slicing by 8

Algorithm

Fig.9 shows the simulation result of CRC generation using

Slicing by 8 algorithm. This result shows that the initial 64

bit from the input stream is taken and is modified with

current CRC value by XORing. This output is given at the
signal „s‟. this output is slices into 8 slices, which is given at

signal s1-s8. These output is given to each LUTs. This LUT

produced corresponding CRC values of each byte(8 bytes),

which is given at the signal „r1-r8‟ and all are XORed to get

next CRC value which is used for next iteration. This final

CRC value is indicated by the signal „crc_out‟.

Fig.10 Output of CRC Generation Using Sarwate Algorithm

Fig.10 shows the simulation result of CRC generation using
Sarwate algorithm. In this, the initial 8 bit data from the

input message stream is taken („s1‟) which is XORed with

initial CRC value (0XFFFFFFFF), ie, in this result if h is

„low‟ then the message bit is XORed with initial value and

if h is „high‟, then the input is XORed with MSB bit of
current CRC value. This modified bit is indicated by the

signal „s2‟. This modified bit is given to LUT. In this, only

one LUT is used for storing the pre computed CRC values.

This LUT produce corresponding CRC value. This output is

indicated by the signal „s3‟. This output is XORed with 24

least significant bits of the current CRC value which is

shifted by 8 bit positions to the left. This is the next CRC

value. It is indicated by the signal „s4‟. This CRC output is

used for next iteration to get the modified bit and finally get

the correct CRC value. This final CRC output is indicated

by the signal „crc_out‟.

IV. Synthesis Results

4.1 Comparison of Device Utilization

This comparison results explain how much amount of area

are required for different algorithms.

4.1.1 Device Utilization Summary of Slicing by 8 and

Sarwate Algorithm with 64 bit Input Stream

Fig.11 Device Utilization Summary of Sarwate Algorithm

with 64 bit data

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.4, July-Aug. 2012 pp-2445-2451 ISSN: 2249-6645

www.ijmer.com 2450 | Page

Fig.12 Device Utilization Summary of Slicing by 8
Algorithm with 64 bit data

These two summaries shows that number of slices used by

Slicing by 8 algorithm is lightly greater compared to

Sarwate algorithm, ie, 3% of slices are used in Sarwate

algorithm and 5% of slices are used in Slicing by 8

algorithm. But the usage of 4-input LUTs are less in
Slicing by 8 algorithm compared to Sarwate algorithm, ie,

2% of 4-input LUTs are used in Sarwate algorithm and

1% in Slicing by 8 algorithm. And IOB usage is same in

Slicing by 8 algorithm and Sarwate algorithm, ie, 42% of

IOBs are used.

4.1.2 Device Utilization Summary of Slicing by 8 and

Sarwate Algorithm with 512 bit Input Stream

Fig.13 Device Utilization Summary of Sarwate Algorithm
with 512 bit data

Fig.14 Device Utilization Summary of Slicing by 8
Algorithm with 512 bit data

These two summaries also gave the same comparison
result with the input is 512 bits. Usage of 4-input LUTs

are less and usage of slices are more in Slicing by 8

algorithm compared to Sarwate algorithm. 5% of slices

are used in Sarwate algorithm and 6% in Slicing by 8

algorithm. 4% of 4-input LUTs are used in Sarwate

algorithm and 2% in Slicing by 8 algorithm.

The above two comparisons, ie, for 64 bits and for 512

bits, the result shows that for 64 bits of data, number of

slices used by Slicing by 8 is 2% greater compared to

Sarwate algorithm and for 512 bits of data, number of

slices used by slicing by 8 is only 1% greater compared to
Sarwate algorithm. This result explains that by increasing

the number of bits processed, number of slices used in

Slicing by 8 algorithm is reduced compared to Sarwate

algorithm. Also these two summaries explains that

number of 4-input LUTs used by Sarwate algorithm is

twice greater than Slicing by 8 algorithm.

4.2 comparison of time consumption

Fig.15 shows the comparison graph of time consumption.

This graph clearly says that CRC generator with Slicing by

8 algorithm consume less time compared to Sarwate
Algorithm and LFSR method. Slicing by 8 algorithm have

minimum delay compared to other algorithms.

Fig.15 comparison of time delay

The below table clearly explains the comparison of different
Algorithms for CRC generation purposes.

TABLE.1 Comparison of Device Utilization

4.3 Graphical Representation of Comparison Results

Fig.16 Graphical Representation of Comparison of Device
Utilization using MATLAB

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.4, July-Aug. 2012 pp-2445-2451 ISSN: 2249-6645

www.ijmer.com 2451 | Page

Fig.16 shows the graphical representation of comparison

results of device utilization in different CRC generation

methods. The first graph represents the number of slices

used by LFSR, Sarwate, Slicing by 8 methods. This graph
shows that slices used by LFSR are very much higher than

Sarwate and Slicing by 8. The first graph represents the

number of slices utilized by LFSR, Sarwate and Slicing by

8 for, 64 bits processed and also 512 bits processed. The

second graph represent the number of 4-input LUTs. This

graph also shows that LFSR method is high area

consuming method. The second graph represents the

number of 4-input LUTs are utilized by LFSR, Sarwate,

Slicing by 8 in the case of both 64 bits processing and 512

bits processing.

V. Conclusion
The design of CRC generator using Multiple Look Up

based approach is proposed. In this paper, slicing by-8

algorithm is designed, and compares this algorithm with

the existing algorithms, that is, with Sarwate algorithm

and LFSR method. In this work, first generated the CRC

values using LFSR method and generated all 256
combinations of CRC using LFSR method. In this work,

also generated these 256 combinations of CRC values

using MATLAB. Outputs produced from MATLAB and

LFSR method is cross verified. This clearly explains that

these two CRC values are same. Designed Look Up Table

(LUT) and stored all CRC values in the LUT. LUT

contains 256 entries with 32 bit. The input stream is firstly

stored in a buffer. In a buffer, five locations with each

location has 64 bit wide. These 64 bit data is sliced into

eight slices and each is given to each LUT. CRC values

are generated from each LUTs corresponding to input
stream and all are XORed and get the final CRC value. In

this work CRC-32 is used for generating CRC values. So

Slicing by-N algorithm can read arbitrarily large amount

of data at a time that is used to reduce the time

requirement. So this method is applied to CRC generator

with Slicing by-N algorithm will be proposed in iSCSI

(internet Small computer system interface).

Acknowledgement

We would like to thank the Principal, HOD and all the

teaching and non-teaching staffs of TKM Institute of

Technology for helping to complete the work as

mentioned in the paper.

References
[1] Amila Akagic, Hideharu Amano. “Performance

Evaluation of Multiple Lookup Tables Algorithms

for generating CRC on an FPGA”, 1st International

Symposium on Access Spaces (ISAS), IEEE-ISAS

2011.

[2] C. Toal, K. McLaughlin, S. Sezer, and Xin Yang.

“Design and Implementation of a Field

Programmable CRC Circuit Architecture”. Very

Large Integration (VLSI) Systems, IEEE
Transactions on, aug. 2009.

[3] F. L. Berry M. E. Kounavis., “A Systematic

Approach to Building High Performance Software-

Based CRC Generators”. In ISCC ’05: Proceedings

of the 10th IEEE Symposium on Computers and

Communications, pages2, 2005.

[4] Michael E. Kounavis, Frank L. Berry, “Novel Table

Lookup-Based Algorithms for High-Performance

CRC Generation”, IEEE transactions on Computers,

vol. 57, november 2008
[5] S.M. Joshi, P.K. Dubey, and M.A. Kaplan. “A new

parallel algorithm for CRC generation”. In

Communications, IEEE International Conference,

pages 1764 –1768 vol.3, 2000.

[6] Abhijeet Joglekar, Michael E. Kounavis, and Frank L.

Berry. “A scalable and high performance software

iSCSI implementation”. Proceedings of the 4th

conference on USENIX Conference, page 20, 2005.

[7] Yan Sun, Min Sik Kim. “A Pipelined CRC

Calculation Using Lookup Tables”, IEEE

Communications Society subject matter experts for

publication in the IEEE CCNC 2010 proceedings.
[8] J. Bhasker. “AVHDL Primer”, Prentice Hall, 2007.

[9] Kennedy, Davis. “Electronic Communication

Systems”, Tata McGraw Hill, 1999.

[10] C. Borrelli. IEEE 802.3 Cyclic Redundancy Check.

http://www.xilinx.com/support/documentation/applica

tion notes/xapp209.pdf.

ABOUT AUTHORS

 Ms.Indu.I
1 has M.Tech in VLSI and

Embedded systems from Cochin

University of Science and Technology

(CUSAT) and B.Tech in Electronics and

Communication from CUSAT and now

she is working as an Assistant professor of Electronics

and Communication Department in Sree Buddha

College of Engineering for Women, Ayathil,

Pathanamthitta, which is an affiliated engineering

college under Mahatma Gandhi University.

Mr.Manu.T.S
2 has M.Tech in Embedded

systems and B.Tech in Electronics and

Communication and he is working as an

Assistant professor of Electronics and

Communication Department in TKM Institute of

Technology, Kollam, an affiliated engineering college

under Cochin University of Science and Technology

for last two years, Asst. Prof. Manu T.S has guided

over 25 students for their academic project ,seminars

and mini projects throughout his career and he

undergone many training programs in VLSI and

Embedded systems .He presented and Published Papers

related to FPGA designs in National and International

Conferences and Journals. .

http://www.xilinx.com/support/documentation/application%20notes/xapp209.pdf
http://www.xilinx.com/support/documentation/application%20notes/xapp209.pdf

