
International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.4, July-Aug. 2012 pp-2601-2606 ISSN: 2249-6645

www.ijmer.com 2601 | Page

Vaishali Chourey
1
, Dr. Meena Sharma

2

*(Department of Computer Science, Medi-Caps Institute, Indore, M.P. India)

** (Department of Computer Science, IET-DAVV Indore, M.P. India)

ABSTRACT: The object oriented programming proves to

be the most beneficial paradigm for scalable and

maintainable software development. An object

characterizes special features like encapsulation,
inheritance, modularity and polymorphism. The processes

in Test Driven Design closely relate the agile methodology

and strengthen the need of testing during the development

stages. The UML specifies the architecture of the system.

The design follows the specification and hence the

implementation. The whole process adopts the language of

UML from beginning of software through requirements

specification till the deployment. The evaluation of software

so as to be testable needs additional efforts. The weaker or

ignored issues like the testing for non-functional

requirements still need to be accommodated in the test

design. The paper reviews the weaknesses of the object
oriented systems and the models to be testable. It also

includes metrics that quantifies the structural complexity of

system to test its understandability and maintainability.

Keywords: Models, Object Oriented Testing, Model Based

testing, metric based evaluation, Weighted Complexity.

I. INTRODUCTION
Software engineering bridges its strengths to design and

document the software development process through the use

of various models. Booch, Jacobson and Rambaugh[1]

conceptualized the behavioral, functional and

implementation specific models that were sufficient to

describe the elements and their relations in any object

oriented software systems. Their contribution to the

software engineering field for the same has been widely

exercised in industry. The models have been the curious

issue in the testing phenomenon whereby the testing is not
delayed till the implementation phase but it goes

simultaneously as it proceeds in the life cycle. This makes

model based testing an interesting and exploratory research

area. Model driven methodology proved its worth with the

variety of software developed in varied areas. Any degree

of complexity can be easily expressed with a set of

diagrams. Whether it is structural or architectural

specification or functional description, the use of objects

and object design languages like UML has facilitated the

tasks of project managers. It has even groomed the language

of communication amongst the team of developers in any
organization. Along with these the software industry

benefits with the automated tools for programming high

order languages. Altogether this has summed to an approach

for robust and manageable code being developed quickly

and efficiently. Software Testing is also a major phase in

the development of the system for assuring its reliability

and behavioral compliance to the requirements specified. A

fact that 40-50% of the software development efforts are

shared by testing makes it an important aspect.

The work in this paper compiles the major

contributions in the areas of object oriented paradigm and

its importance in the development phases. The section II

contains an overview of the OO system and their
characteristics. The section III contains the modeling

language UML and the various diagrams with their

importance. Section IV summarizes the issues that restrict

testability of the designs. Section V contains the realization

of theories related to class design metrics to map it to

testing process. It brings the quantification of non-

functional parameters like understandability and such

attributes to contribute to testing results.

II. OBJECTS AND OBJECT ORIENTED

DESIGN
All the literature pertaining to the objects and object

oriented design addresses the software projects

commendable threats namely inadequate and unstable

requirement, inadequate customer communications, poor

team communications, unnecessary complexity and

ineffective team behavior. Software projects are governed

by the list of requirements specified by the customer who is
the end user of the whole process. Thus the whole process is

based on requirements that are actually the specifics of the

system and the needs that are captured. The requirements

once finalized do not change often, but the specification for

building a piece of implementation of software are changed

frequently and added throughout the development cycle.

The challenge is to cope up with this frequent updates.

Secondly the requirements must be verified with the

customer before the design starts. Thus the interactions

must conform to the initiation of the project. The next

problem begins when the requirements that are verified are
not “exactly” communicated to the developer team and an

ambiguity occurs. The same requirement must flow

properly to the developers. So, we have to make the models

that are descriptions to the requirements graphically, thus

lessening the probability of ambiguity in documentation if it

was textual. As the analysis completes, the design of core

transactions and implied operations have to be prepared.

The behavior has to be formally or “pseudo-conventionally”

specified with models so that they can be codified easily.

This defines the system in the form of subsystem,

components, classes, objects and their inter-relations like

association, hierarchy and collaborations. Thus the system
is added with another issue of its structural complexity

because of its inter-related artifacts. The task of project

Reviewing Testability of Object Oriented Systems for Non-

Functional Specifications

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.4, July-Aug. 2012 pp-2601-2606 ISSN: 2249-6645

www.ijmer.com 2602 | Page

management is to clearly pass through these phases and

bring up the system in its entirety.

Not only limited to the planning and development,

but testing also is the requirement of the system and theories
indicate the fact that effectiveness of object oriented

technology lies in testing that goes parallel to development.

Whether it is agile development process or any other

technology, that depends on objects and specifies that the

testing of models be made simultaneous. This reduces the

risks from getting accumulated. There are many

justifications to the development of models and their usages.

III. UNIFIED MODELLING LANGUAGE OR

THE UML
The UML is defined [1] as “A language to specify,

visualize, construct and document the artifacts of a

software- intensive system.” It is a standard language for

writing the blueprints of software. Ranging from the

enterprise solutions to distributed web based applications;

UML conceptualizes the artifacts of the system developed

in object oriented languages. Thus, UML is inherently

applicable to architecture centric, iterative and incremental
project development. This language has rules and

vocabulary for physical and conceptual representation of the

software. The language has a collection of diagrams and

relative specifications to handle the complexity of the

system. For the enumeration, we have:

Table 1: Diagrams and Relevance in Software Project

Management

Diagram Purpose

Use case Diagram

This diagram models and

organizes the behavior of the

system through its functionalities

and services to-through-for actors

of the system.

Class Diagram

This represents the set of classes,
interfaces and their relationships.

This diagram addresses the static

and process view of the system.

Object Diagram
This diagram emphasises on the

objects and their relationships.

Sequence Diagram

This is and interaction diagram

that emphasises the time ordering

of messages.

Collaboration

Diagram

This is and interaction diagram

that emphasises the structural

organization of the objects that

send and receive messages.

State-chart Diagram

This diagram addresses the

dynamic view of the system

especially useful in modelling
reactive systems.

Activity Diagram

This is a diagram to model the

functions of the system and

emphasises flow of control among

objects. It represents the sequence,

concurrency and synchronization

of various activities performed by

the system.

Component Diagram
This diagram expresses the

organization and dependencies

among a set of components.

Deployment

Diagram

This diagram shows the

configuration of run-time

processing nodes and

corresponding components.

The generality in the models and their express-ability makes
it applicable to various areas like production, deployment

and maintenance of software. However in the software

development organization, the diagrams are conveniently

adopted by analysts and end users for specifying the

requirements, structure and behavior of the system. The

architects who design the systems to satisfy the

requirements specified and the developers who code the

architecture into executables use the modeling conventions

for communication and documentation. This is equally

benefiting the quality assurance personnel who verifies and

validates the system for its structure, behavior, functionality

and other requirements. The monitoring of the development
is emulsified with the process. This is the strength of UML

widely acceptable by researchers and used by industries.

The UML has been an immensely popular issue in

industry and research for Model Based Testing (MBT). [6]

Models are the simplified version and representation of the

systems and so are easily amenable for automated test case

generation. Models can be classified into formal, semi-

formal and informal models. Formal models are

mathematically derived [3] from techniques of calculus

theory, logic, state machines, markov chains etc., semi-

formals combine the diagrams in ad-hoc conventions and
are used in industries. Behavioral models are very

significant for the test case generation [10, 12] as the bugs

are indicated during test of a specific run or implementation

of specific functionality of the system. Several research

work and industry cases record the diagrams [5] with the

Object Oriented Testing Strategies to test various aspects of

the software. The table below describes it as:

UML Diagram
Test

Coverage

Type of

Test
Fault Model

Class Diagram

State Diagram
Code Unit

Error Handling,

correctness,

Class Diagram

Interaction

Diagram

Functiona

l
Functional

Functional
Behavior

Integration

Issues

API Behavior

Usecase Diagram

Activity Diagram

Interaction

Diagrams

Operation

al

Scenarios

System

Contention

Synchronization

Workload

Recovery

Class Diagram

Interaction

Diagram

Functiona

l
Regression

Unexpected

Behavior

through system

alterations

Usecase Diagram

Deployment
Diagrams

Inter-

System

Communi
cations

Deployme

nt Solution

Interoperability

issues

Table 2: Diagrams and Associated Tests

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.4, July-Aug. 2012 pp-2601-2606 ISSN: 2249-6645

www.ijmer.com 2603 | Page

IV. ISSUES IN OBJECT ORIENTED

TESTING
The Object Oriented Testing requires additional techniques

for its execution apart from the conventional ones. The

testing takes two broad forms of Functional testing or Black

box testing where the fulfillment of functional requirements

is tested. Another is the Structural testing that tests for the

structure of classes, their interactions and their states during

execution of any method or activity. Structural testing is the

white box testing of the OO systems.

The characteristic of object orientation makes
testing rigorous over each iteration and phase of

development [3-5]. The increments that are models like the

analysis model is tested for requirement specific

documentation and use cases. The design model is tested

with the corresponding class diagram, interaction diagrams

and activity diagrams.

Structural testing with methods and their code that

contains statement, decision and path coverage are tested.

All methods that are defined, newly added with the

increment in functionality, inherited methods and methods

that are redefined needs to be tested. The classes are tested
for the state transitions during n activity, transaction flows

are tested with messages that the classes share, exception

testing for the exceptional behavior and conditions that a

class may represent.

Object oriented nature poses difficulties to test a

class without additional methods to access all the

functionalities defined in the class and access its states.

Each new instance for inheritance requires retesting. It is

easy to test conditions, decisions, loops and exceptions

within a class but it is difficult with the set of interaction

amongst classes and requires special techniques. There are

hierarchical structures but absence of hierarchical control
flow makes the execution testing difficult. Integrated

classes are thus tested with techniques like thread based

testing, use based testing and cluster based testing. System

testing is done for the recovery of systems from faulty

conditions, security tests for unauthorized accesses, stress

testing for load during execution and performance testing

for reliability and availability with optimized execution.

Heterogeneity in Models:

Each model describes a different perspective of the

same system, thus the testing of the object oriented models
take different versions for each model[12]. There are

contributions where these models have been used to

generate test cases and respective test scripts are generated

through automated process. The inputs to these test

generators are the set of diagrams associated. Pretschner in

his paper [4] presents a detailed discussion reviewing model

based test generators. The studies in the area indicate that

different test suites with the same coverage may detect

fundamentally different number of errors. Also the above

table [table 2] indicates that the single diagram alone may

not suffice with the exhaustive test of a single type. During

the development the industry follows ad-hoc modeling and
do not comply with a defined set of diagrams. In such cases

where the industry has its own conventions for design and

documentation, it is required that the organizations develop

their own framework and corresponding tools to build,

manage and maintain test models.

Choice of Models in Test Generation:

An example system for the GPS navigation system

for a car developed has to be tested for its functions and

operations. A model based test brings up the test for the
vehicle’s position hereby ignoring other functionalities for

the display and user interaction features [6]. Another test to

the model may test a separate aspect of the system like route

planning or route display and so on. The crucial factor is

that the aspects are independent tests and they do not

interact in terms of aspects. Thus not only diagrams but

behavior also segregates the tests with diagrams.

Skills, Audience and Tools:

The issue arises when the testers need to be

educated and trained on modeling practices. So far when the

testing was confined to code, developers of the
corresponding language who had an expertise could manage

the testing. Thus the object oriented- model based testing

expects modeling skills for the developers and the tester

both. The limitation to the model based testing approach

converges to the idea that only trained and technically apt

audience can and are expected to create, read, review and

maintain models. The concept is insufficient to bridge the

gap between the models that are characterized with the

quality of being best for human understanding and ones that

are optimal for testing. Thus the tools that need to be

customized with the testability of models have to be
developed within the organization’s development

framework. There exists the limitation for behavior testing

tools available for universal applicability.

Scope:

Models have a specific importance when the

requirements are being matched to implementation

parameters like class, methods or objects. The models

however deal only with the superficially expressed behavior

of the system which is the high level abstraction. Most of

the models confined to the views of the system do not

completely fit to the testing essentials. Thus in the early
stages of development, the testers end up with almost

prohibitive tasks of modelling parts of really large and

complex systems. Summarizing, models constructed during

the early development process lack several details of

implementation that are required to generate test cases.

Also for the short development cycles, if there are

new releases every week, that also reflects early

construction phase of object oriented software development,

the diagrams or models do not change accordingly. MBT do

not pay off with such projects and more versatile tools are

required for testing such typical projects. MBT are fruitful
and can be used after releases have achieved a certain

degree of stability in its features.

Features of Programming Languages:

Encapsulation [4] restricts the visibility of object

states and observ-ability of intermediate test results.

Inheritance causes invisible dependencies amongst

hierarchically related classes. The approach that was

devised for preventing code redundancy inhibits code

dependencies of varied forms. The child classes that inherits

parent’s methods cannot be tested without testing the parent
class. Abstract classes are the serious conditions where they

can never be tested. Polymorphism extends to a limit of

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.4, July-Aug. 2012 pp-2601-2606 ISSN: 2249-6645

www.ijmer.com 2604 | Page

testing all possible conditions, paths for execution and

potential errors that it may scope into the classes.

The literature on object orientation defines its

strength as Open-Close Principle. The modules are open for
extension but close for modification. This, when applied to

classes, testing and maintainability is sacrificed. For any

new behavior minor-or-major the classes are open for the

inheritance. This becomes redundant with series of

modifications hereby increasing the complexity of the

system. The numbers of classes grow proportionally with

the increment in form of new requirements, refined

requirements or just additional classes in the development

model. A research paper by John D. Mc Groger [17] proves

through a formula derived that works as a multiplier

function to estimate number of classes after each iteration.

(a)

The number of classes and the relationships amongst them

contributes to structural complexity and is referred to in
many researches, there by calculating cyclomatic complexity

to quantify the attribute.

(b)

Fig 2: (a) Average Metric Values for Percentage of Classes

of Each Type

 (b) Average Metric value for the Number of Methods

per Class

The above facts have been referred from the research [13,

18] done on various projects that estimate the total number

of classes coded and the nature of classes along with the

number of methods within each class. The average is
depicted in statistics as above figures Fig 2 (a) and (b).

Thus the number of classes and methods within each class

has a vast average estimated and it is technically not

feasible to test all the methods and a mid-way taking

necessary implementations pass through the tests. Can the

un-tested classes create errors and are there more intense

testing methods to check the addition of classes and verify

them, i.e making each class testable, is still a question to the

project managers.

 Also it is well proved that object oriented features

like polymorphism, inheritance and encapsulation [18]

create wide opportunities for the bugs to creep into the

system that was less prevalent in traditional systems. It is
also well exemplified in many cases like if many server

objects function correctly at top level, but there is nothing to

prevent a new client class from using it correctly. Thus, not

only testing but developing becomes tedious and testing

gets extended over a prolonged duration while final

implementation gets ready.

The most important part of the analysis of system

is calculating the complexity. Complexity is formally

defined as the degree to which system or component has a

design or implementation that is difficult to understand and

verify [21]. This can be included in the system test that

validates maintainability and understandability.
The classes may be analyzed with the metrics that

measure the aspects of classes and the interactions amongst

them[7]. These measures tells us more about our design and

help quantify the maintainability. A change in one class will

affect code in other classes, it should be minimal and

classes with high dependency must be kept in same

package. There are some metrics as:

Intra Class Metrics:

There are metrics at class level that may be helpful

to calculate the complexity of the system. They can be reuse
ratio, specialization ratio, number of external methods

called, number of methods called in class hierarchy,

number of local methods called, number of instance

variables, number of modifiers, number of interfaces

implemented and number of packages imported.

LCOM (Lack of Cohesion Methods): This metric refers the

correlation between methods and the local instance

variables of the class. High cohesion indicates good class

subdivision.

Unweighted Class Size: This is calculated as number of
methods and attributes of a class.

Inter Class Metrics:

This is measured by coupling at class level.

Coupling is defined as a representation of the references

between classes. If a class refers another class or it is being

referenced then we measure it as coupling. There are

parameters that still need to be standardized and can be

defined as: Coupling between classes, Fan Out, Fan In,

Efferent Coupling, Afferent Coupling. (Originally defined

by Chidamber & Kemerer)[20].

Response for Class: It measures the coupling of classes in

terms of method calls. It is the sum of number of methods

in the class and the number of distinct method calls made by

the methods in the class.

Message Passing Coupling: This metric measures the

number of number of messages passing among objects of

the class. A large value indicates high coupling and classes

seem to be more dependent on each other. This increases

the complexity of the system.

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.4, July-Aug. 2012 pp-2601-2606 ISSN: 2249-6645

www.ijmer.com 2605 | Page

The above mentioned parameters are non- weighted

measures, there are also metrics with weighted parameters

like[22]:

Weighted Class Complexity (WCC): The calculation is

based on calculating the complexity of operations by

considering corresponding cognitive weights. The cognitive

weights are used to measure the complexity of the logical

structures of the software that reside in the code as methods.

They are classified and weighed as sequence (w=1), branch

(w=2), iteration (w=3) and call (w=2) [15]. Initially the

weight of individual method in a class is calculated by

associating a weight with each method (member function)

and add all the weights. This is weight due to methods and

is called Method Complexity (MC). If there are n methods

in a class then total method complexity is given by:

 = Ʃn MCn

The next step computes the total complexity due to

attributes in the class and is denoted by Na.

The complexity of a single class is called Weighted Class

Complexity (WCC) and is given by:

 WCC = Na + Ʃn MCn

If the total number of classes in the code is x then:

 TotalWeightedClassComplexity = Ʃ WCCx

The above weighted complexity calculation can be

explained with the help of an example. The system

comprises of following classes:

Person

Student

Employee

Faculty
Administration

The code exists like the one specified below and at each

level, the complexity is calculated simultaneously.

/* Person Class is inherited by Student and Employee Class

*/

 PERSON CLASS

class Person

{
string name; int age; char gender;

public:

Person(string="" ,int=0, char='\0'); // W p1=1

Person(const Person &person); //copy constructor W p2=1

void print()const; //Wp3=Wp31+Wp32=2+1=3

string getName(){ // Wp4=1

return name; }

int getAge(){ //Wp5=1

return age;}

char getGender(){ //Wp6=1

return gender; }
};

//Person-default constructor

Person :: Person(string in, int ia, char is)

{ name = in; age = ia; gender = is; }

//Person-copy constructor

Person :: Person(const Person &p)

{ name = p.name; age = page; gender = p.gender; }

void Person :: print()const

{ cout<<"Name\t : "<<name<<'\n' ; //Wp31=1

cout<<"Age\t : "<<age<<'\n' ;

if (gender=='F') //Wp32=2

cout<<"Gender\t : Female" <<'\n' ;

else cout<<"Gender\t : Male" <<'\n' ; }

 STUDENT CLASS

class Student: public Person{ int sid; float gpa;

public:
Student(const Person &p,int student_id,float igpa):

Person(p) //WS1=1

{ sid = student_id;

gpa = igpa; }

void print()const; };

//WS2=WS21+WS22*WS23=1+2*2=5

void Student :: print()const

{ Person :: print();

cout<<"S.ID\t:"<<sid<<"\nGPA\t:"<<gpa<<endl;

//WS21=1

if (gpa>=2.0) //WS22=2

cout<<" Student is successful"<<endl;

else {if (gpa>=1.7) //WS23=2

cout<<"Student must improve GPA" <<endl;

else

cout<<"Student must repeat" <<endl;}}

/* ******** EMPLOYEE CLASS ********** */

class EMPLOYEE: public Person{ float salary;

public: EMPLOYEE::EMPLOYEE(const Person &p, float

sal):Person(p) ,salary(sal){} //WE1=1

EMPLOYEE(const EMPLOYEE

&EMPLOYEE):Person(EMPLOYEE){
salary=EMPLOYEE.salary; } //WE2=1

void print()const; }; //WE3=1

void EMPLOYEE::print() const{ Person::print();

cout<<"salary: "<<salary<<endl; }

FACULTY

class Faculty: public EMPLOYEE{

string branch;.

public: Faculty(const EMPLOYEE &e, string

b):EMPLOYEE(e),branch(b) //WF1=1
{}

void print()const; }; //WF2=1

/* ******** ADMINISTRATIVE CLASS ********** */

class Administrative: public EMPLOYEE{string duty;

public:

Administrative(const EMPLOYEE &e,string

d="\0"):EMPLOYEE(e){duty=d;} //WA1=1

void print() const; }; //WA2=1

void sendMessage(string msg,Faculty &fac) //WA3=1

{cout<<"The incoming message :"<<msg<<". \nMessage
to"; cout<<fac.getName(); }

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.4, July-Aug. 2012 pp-2601-2606 ISSN: 2249-6645

www.ijmer.com 2606 | Page

MAIN

int main(void)

{

Person * per[3];
per[0]=new Person ("Aysegul",27,'f');

per[1]=new Person ("Remzi",23,'m');

per[2]=new Person ("Ali",30,'m');

EMPLOYEE EMPLOYEE1(* per[0],1000);

EMPLOYEE1.print();

Student student1(* per[1],9299,3.5);

student1.print();

EMPLOYEE EMPLOYEE2(* per[0],2000);

Administrative

admEMPLOYEE(EMPLOYEE1,"Secretary");

Faculty facEMPLOYEE(EMPLOYEE2,"Computer");

admEMPLOYEE.sendMessage("Today there is a seminar at
your university. You are in

vited",facEMPLOYEE);

}

The example is referred from the research of [22] metric

based calculation of complexity. This exactly computes the

java code for complexity. The idea is to use the same

derivations for the design where the classes are decided

with its member functions and relations are defined. So far

the calculation is based only on methods, attributes and

relationship. The structural complexity is majorly due to
relations and this can be well defined for class diagram and

object (collaboration specifically) diagrams. The same

calculations can be made during the iterations when classes

grow and at each step the complexity may be curbed.

Thus, the re-arrangement of classes to maintain a proper

metric can prove the system to be consistent in terms of

growing number of classes and dependencies amongst

classes. Lesser the complexity, more manageable is the

design.

V. CONCLUSION AND FUTURE WORK
 An object benefits with its features of modularity,

abstraction, encapsulation and inheritance but it was never

predicted that the growing amount of code and maintenance

classes bears loads on testing parameters. All the models

have independent importance but require to be modified for

testing individual aspects of the system. Several methods to

derive a testable version of the UML have to be devised so

that testing is not in the span of development but has

intermediate phases upon stable models being developed. A
future enhancement thereby adding the class complexity

metrics to model based testing tools may be a convenient

way to validate the understandability and maintainability

parameters.

REFERENCES
[1] Rumbaugh, Jacobson, and Booch., The Unified Modeling

Language Reference Manual Addison-Wesley, Reading

MA, 1999.

[2] Robert V. Binder, Object Oriented Testing: Myth and
Reality, article published in Object Magazine, May 1995.

[3] Santosh kumar Swain, Model Based Object-Oriented
Software Testing, Journal of Theoretical and Applied
Information Technology (JATIT 2005-2010)

[4] G. Suganya, S.Neduncheliyan, A Study of Object Oriented
Testing Techniques: Survey and Challenges, IEEE 2010.

[5] Clay E. Wiliams, Software Testing and the UML, Center
of Software Engineering, IBM T.J. Watson Research
Center.

[6] Mrk Utting, Position Paper: Model Based Testing.

[7] Tong Yi, Fangjun Wu and Chengzhi Gan, A Comparison
of Metrics for UML Class Diagrams, ACM SIGSOFT
Volume 29, Number5, September 2004

[8] Magiel Bruntink and Arie Van Deursen, Predicting Class
Testability using Object-Oriented Metrics. Paper from
junit.org

[9] Richard Torkar, Robert Feldt, and Tony Gorschek Test
Cases Generation from UML Activity Diagrams, Eighth
ACIS International Conference on Software Engineering,
Artificial Intelligence and Parallel/ Distributed Computing.

[10] Richard Torkar, Robert Feldt, and Tony Gorschek ,
Extracting Generally Applicable Patterns from Object-
Oriented Programs for the Purpose of Test Case Creation.

[11] Jehad Al Dallal ,Testing Object-Oriented Framework
Applications Using FIST2 Tool: A Case Study, World

Academy of Science, Engineering and Technology 63 2010.

[12] Harry M. Sneed, ANECON GmbH, The Drawbacks of
model-driven Software Evolution.

[13] J. Kaczmarek, M.Kucharski, Size and Effort Estimation
for applications written in Java, Information and Software
Technology 46(2004) pp 589-601, Sciencedirect and
Elesvier Publication.

[14] Arilo C. Dias Neto, Rajesh subramaniam, Marlon Vieira,

Guilherme H. Travassos, A Survey on Model Based
Testing approaches: A Systematic Review.

[15] Y. Wang and J. Shao, “A new measure of software
complexity based on cognitive Weights.” IEEE Canadian
Journal of Electrical and Computer Engineering, 2003.

[16] Craig Larman, Applying UML and Patterns: An
Introduction to Object Oriented Analysis and Design and
the Unified process, Second Edition, pp. 69-74

[17] John D. McGregor, Managing Metrics in an Iterative
Incremental Development Environment.

[18] E. V. Berard, “Issues in the Testing of Object-Oriented
Software”, Electro’94 International, IEEE Computer
Society Press, 1994, pp. 211–219.

[19] Ibrahim K. El-Far and James A. Whittaker, Model Based
Software Testing, Encyclopaedia on Software Engineering
Wiley 2001.

[20] Martin Hitz, Behzad Montazari, Chidamber and Kemerer's
Metrics Suite: A Measurement Theory Perspective, IEEE

Transactions on Software Engineering 1996.

[21] Standard for Software Quality Metrics Methodology, 1998,
IEEE Std. 1061-1998 IEEE Computer Society.

[22] Sanjay Mishra & Ibrahim Akman, Weighted Class
Complexity: A Measure of Complexity for Object Oriented
System, Journal of Information Science and Engineering
24, 2008.

