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Abstract: Image segmentation is the process of dividing an 

image into multiple parts. This is typically used to identify 

objects or other relevant information in digital images. 
maximum a posteriori probability (MAP) estimate is a mode 

of the posterior distribution. The MAP can be used to 

obtain a point estimate of an unobserved quantity on the 

basis of empirical data. It is closely related to Fisher's 

method of  maximum likelihood (ML), but employs an 

augmented optimization objective which incorporates a 

prior distribution over the quantity one wants to estimate. 

MAP estimation can therefore be seen as a regularization 

of ML estimation. In this Paper our algorithm segment an 

image into regions with relevant Textures automatically 

there is no need of regions. The simulations shows the 

image edges very well. Comparing to six state-of-the-art 
algorithms, extensive experiments have shown that our 

algorithm performs the best. 

 

Keywords:  Image segmentation, graph cuts, maximum 

likelihood, maximum a posteriori, Markov random fields. 

 

I.  INTRODUCTION  
A central problem, called segmentation, is to 

distinguish objects from background . For intensity images 

(ie, those represented by point-wise intensity levels) four 

popular approaches are: threshold techniques, edge-based 

methods, region-based techniques, and connectivity-

preserving relaxation methods. Threshold techniques, which 

make decisions based on local pixel information, are 

effective when the intensity levels of the objects fall 

squarely outside the range of levels in the background. 

Because spatial information is ignored, however, blurred 

region boundaries can create havoc.  
Edge-based methods center around contour 

detection: their weakness in connecting together broken 

contour lines make them, too, prone to failure in the 

presence of blurring. A region-based method usually 

proceeds as follows: the image is partitioned into connected 

regions by grouping neighboring pixels of similar intensity 

levels. Adjacent regions are then merged under some 

criterion involving perhaps homogeneity or sharpness of 

region boundaries. Over stringent criteria create 

fragmentation; lenient ones overlook blurred boundaries 

and over merge. Hybrid techniques using a mix of the 
methods above are also popular.  

A connectivity-preserving relaxation-based 

segmentation method, usually referred to as the active 

contour model, was proposed recently. The main idea is to 

start with some initial boundary shape represented in the 

form of spline curves, and iteratively modify it by applying 

various shrink/expansion operations according to some 

energy function. Although the energy-minimizing model is 

not new, coupling it with the maintenance of an ``elastic'' 

contour model gives it an interesting new twist. As usual 

with such methods, getting trapped into a local minimum is 

a risk against which one must guard; this is no easy task. In 
contrast to the heuristic nature of these approaches, 

computational geometry suggests a more algorithmic tack. 

One would first formalize a mathematical criterion for the 

``goodness'' of a given segmentation. This would allow us 

to formulate the segmentation problem as an optimization 

problem under certain geometric constraints.  

The problem of image segmentation and visual 

grouping has received extensive attention since the early 

years of computer vision research. It has been known that 

visual grouping plays an important role in human visual 

perception. Many computer vision problems, such as stereo 
vision, motion estimation, image retrieval, and object 

recognition, can be solved better with reliable results of 

image segmentation. For example, results of stereo vision 

based on image segmentation are more stable than pixel-

based results. Although the problem of image segmentation 

has been studied for more than three decades, great 

challenges still remain in this research. Here we presented 

to apply normalized cuts to image segmentation [1] which is 

able to capture intuitively salient parts in an image. The 

normalized cuts has an important advantage in spectral 

clustering. However, it is not perfectly fit for the nature of 
image segmentation because ad hoc approximations must be 

introduced to relax the NP-hard computational problem. 

These approximations are not well understood and often 

lead to unsatisfactory results.  

These approaches are physics-based models that 

deform under the laws of Newton mechanics, in particular, 

by the theory of elasticity expressed in the Lagrange 

dynamics. Many contour based segmentation algorithms[2]-

[4]  have been developed in the past two decades. One 

problem existing in these algorithms is that they are easy to 

get trapped in local minima. In addition, they need manually 

specified initial curves close to the objects of interest. 
Region-based approaches try to classify an image into 

multiple consistent regions or classes. Thresholding is the 

simplest segmentation method but its performance is 

usually far from satisfactory. Watershed segmentation [10], 

[11] is one of the traditional region-based approaches. The 

watershed transform is often used to segment touching 

objects. It finds intensity valleys in an image if the image is 

viewed as a surface with mountains (high intensity regions) 

and valleys (low intensity regions). Morphological 

operations are always used to handle the over-segmented 
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problem in the output obtained by the watershed transform. 

Usually, watershed is used for the segmentation of 

foreground and background (two class) of an image. For a 

general color image with many different regions, it often 
gives a bad result. It is also sensitive to the morphological 

structuring element. 

This paper proposes a new image segmentation 

algorithm based on a probability maximization model. An 

iterative optimization scheme alternately making the MAP 

and the maximum likelihood (ML) estimations is the key to 

the segmentation. We model the MAP estimation with 

MRFs and solve the MAP-MRF estimation problem using 

graph cuts. The result of the ML estimation depends on 

what statistical model we use. Under the Gaussian model, it 

is obtained by finding the means of the region features. It is 

shown that other statistical models can also fit in our 
framework. The main contributions of this work include: 1) 

a novel probabilistic model and an iterative optimization 

scheme for image segmentation, and 2) using graph cuts to 

solve the multiple region segmentation problem with the 

number of regions automatically adjusted according to the 

properties of the regions. Our algorithm can cluster relevant 

regions in an image well, with the segmentation boundaries 

matching the region edges. Extensive experiments show 

that our algorithm can obtain results highly consistent with 

human perception. The qualitative and quantitative 

comparisons demonstrate that our algorithm outperforms 
six other state-of-the-art image segmentation algorithms. 

 

II. A NEW PROBABILISTIC MODEL 
In this section, we first introduce the features used 

to describe the properties of each pixel, and then present the 

new probabilistic model. For a given image P, the features 

of every pixel p are expressed by a four-dimensional vector 

             (1) 

where (p), (p) and (p) are the components of p in the 

L*a*b* color space, and (p)denotes the texture feature of 

p. Several classical texture descriptors have been developed. 

In this paper, the texture contrast defined in [13] (scaled 

from [0; 1] to [0; 255]) is chosen as the texture descriptor. 

Fig. 1 shows an example of the features. The task of image 

segmentation is to group the pixels of an image into 

relevant regions. If we formulate it as a labeling problem, 

the objective is then to find a label configuration 

 

 
f =   where  is the label of pixel p denoting which 

region this pixel is grouped into. Generally speaking, a 

“good” segmentation means that the pixels within a region i 

should share homogeneous features represented by a vector 

Ф(i) that does not change rapidly except on the region 

boundaries. The introduction of Ф(i)  allows the description 

of a region, with which high level knowledge or learned 
information can be incorporated into the segmentation. 

Suppose that we have k possible region labels.[2] 

         (2) 

A four-dimensional vector is used to describe the properties 

of label (region) i, where the four components of Ф(i)have 

the similar meanings to those of the corresponding four 
components of I(p) and will be derived in Section II-B. let 

Ф={ Ф(i) }g be the union of the region features. If P and 

Ф(i)  are known, the segmentation is to find an optimal 

label configuration b f, which maximizes the posterior 

possibility of the label configuration[3]-[5].. 

                        (3) 
where Ф  can be obtained by either a learning process or an 

initialized estimation. However, due to the existence of 

noise and diverse objects in different images, it is difficult 

to obtain Ф   that is precise enough. Our strategy here is to 

refine Ф according to the current label configuration found 

by (3). Thus, we propose to use an iterative method to solve 

the segmentation problem. Suppose that    and   are the 
estimation results in the nth iteration. Then the iterative 

formulas for optimization are defined as  

              (4) 

               (5) 
This iterative optimization is preferred because (4) can be 

solved by the MAP estimation, and (5) by the ML 

estimation. Based on this framework, next we will explain 

how the MAP and ML estimations are implemented.  

 

A.  MAP Estimation of f from Ф: 

Given an image P and the potential region features 

Ф, we infer f by the Bayesian law, i.e., Pr(f/ Ф,P) can be 

obtained by  

          (6) 
which is a MAP estimation problem and can be modeled 

using MRFs. Assuming that the observation of the image 

follows an independent identical distribution (i.i.d.), we 

define Pr(Ф,P/f)  as  

 (7) 

 
Figure 2: An example of the brightness contrast. (a) The 

original image. (b) 

The brightness contrast in the horizontal direction. (c) The 

brightness contrast in the vertical direction 
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where D(p, fp, Ф) is the data penalty function which 

imposes the penalty of a pixel p with a label fp for given Ф 

The data penalty function is defined as  

 (8) 
We restrict our attention to MRFs whose clique potentials 

involve pairs of neighboring pixels. Thus 

    (9) 

 

where N(p) is the neighborhood of pixel p   called 
the smoothness penalty function, is a clique potential 

function, which describes the prior probability of a 

particular label configuration with the elements of the 

clique (p, q). We define the smoothness penalty function as 

follows using a generalized Potts model[6]-[8].  
 

   
(10) 

where ∆(p,q) =  called brightness contrast, 

denotes how different the brightness of p and q are, c > 0 is 

a smoothness factor, σ > 0 is used to control the 

contribution of ∆(p,q)  to the penalty, and T(.) is 1 if its 
argument is true and 0 otherwise. From our experiments, we 

found that σ =2(∆(p,q))  is a good choice, where <.> 

denotes the expectation of all the pairs of neighbors in an 

image. depicts two kinds of constraints[11]. The 

first enforces the spatial smoothness; if two neighboring 

pixels are labeled differently, a penalty is imposed. The 
second considers a possible edge between p and q; if two 

neighboring pixels cause a larger ∆, then they have greater 

likelihood to be partitioned into two regions. Figure. 2 is an 

example of the brightness contrast. In our algorithm, the 

boundaries of the segmentation result are pulled to match 

the darker pixels in Figure. 2(b) and (c), which are more 

likely to be edge pixels. From (6), (7), and (9), we have 

 (11) 
Taking the logarithm of (11), we have the following energy 

function[13]. 

(12) 
It includes two parts: the data term 

 

                   (13) 
and the smoothness term 

            (14) 
From (12), we see that maximizing Pr(f/ Ф,P)  is equivalent 

to minimizing the Markov energy E(f, Ф) for a given 

Ф.[14]. In this paper, we use a graph cut algorithm to solve 

this minimization problem, which is described in Section 

III.  

 

B. ML Estimation of Ф from f:  

If the label configuration f is given, the optimal Ф 

should maximize Pr(f/ Ф,P)  ,or minimize E(f, Ф)  
equivalently.  Thus we have 

                (15) 

Or 

                             (16) 

Where  denotes the gradient operator. Since   

is independent of  Ф, we obtain  

 

                            (17) 

where different formulations of  lead to different 

estimations of Ф . For our formulation in (8), it follows that 

(18) 
Therefore, (17) can be written as 

               (19) 
 

From (19), we obtain the ML estimation  ,where  

                           (20) 

Note that when the label configuration  is unknown, 

finding the solution of (17) is carried out by clustering the 
pixels into groups. In this case, the ML estimation is 

achieved by the K-means algorithm [12], which serves as 

the initialization in our algorithm described in Section III. 

 

C. Non-Gaussian Modeling: 

The definition of   in (8) uses the Gaussian model 
to describe a uniform region. Some other distributions in the 

modeling of natural images, such as the exponential family 

distributions [17], [18], can also be used in our framework. 

Let us take another popular model, the Laplace model [19], 

as an example. To replace the Gaussian model with the 

Laplace model, we modify (7) as   

    (21) 
where the data penalty is defined as 
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            (22) 
With this data penalty, the MAP estimation is the same as 

when the Gaussian model is used. However, the ML 

estimation result is different from (20) and becomes 

           (23) 
where Median {.} denotes the median of the elements in a 

set [15]. In addition to the above parametric models, we can 

also use non-parametric distributions to describe the region 

features. Similar to the parametric models, the data penalty 

functions are defined as the negative logarithm of different 

likelihood functions in different non-parametric models 

(e.g., a histogram clustering model is used. In summary, 

different statistical models lead to different definitions of 

the data penalty. Given different data penalties, the MAP 
estimations are the same, but the ML  estimation results 

depend on the used models. In the rest of this paper, we 

only consider the Gaussian model[16]-[19]. 

 

III. THE PROPOSED ALGORITHM 
             We first give the description of the algorithm for 

image segmentation, and then prove its convergence. 

A. Algorithm Description: 

With E(f; Ф) defined in (12), the estimations of b f and b Ф 
in (4) and (5) are now transformed to 

              (24) 

            (25) 

The two equations correspond to the MAP estimation and 
the ML estimation, respectively. The algorithm to obtain b f 

and   is described as follows. 

 

Algorithm: Image segmentation: 

 
We explain step 3.2 in more details here. After step 3.1, it is 

possible that two non-adjacent regions are given the same 

label. For example, the upper-left and the lower-right 

regions are both labeled by 1. After step 3.2, each of the 

connected regions has a unique label. The MAP estimation 

is an NP-hard problem proposed to obtain an approximate 

solution via finding the minimum cuts in a graph model. 

Minimum cuts can be obtained by computing the maximum 
flow between the terminals of the graph. In [16], an 

efficient max-flow algorithm is given for solving the binary 

labeling problem. In addition, an algorithm, called α 

expansion with the max-flow algorithm embedded, is 

presented to carry out multiple labeling iteratively. In our 

algorithm, the α  expansion algorithm is used to perform 

step 3.1. Besides the graph cuts, other techniques such as 

belief propagation can also be used to solve the MAP-MRF 

problem. One remarkable property of our algorithm is the 

ability to adjust the region number automatically during the 

iterative optimization with the relabeling step embedded 

into the MAP and ML estimations. Another property of our 
algorithm is that it is insensitive to the value of K in the 

initialization step with the K-means algorithm.  

Now we analyze the computational complexity of 

the algorithm. In step 2, the K-means algorithm takes 

O(NdKTk) time [12], where N is the number of pixels in an 

image, d is the number of features used to represent a 

pixel/region, K is the number of clusters, and Tk is the 

number of iterations. In our application, d = 4, K is set to 

10, and Tk is set to 100. Both step 3.2 and step 3.3 take 

O(N) time. In step 3, the main computational burden is the 

use of the graph cut algorithm (the α expansion) in step 3.1. 
The max-flow algorithm is linear in practice. The α 

expansion algorithm takes O(NCnTαn) time to carry out the 

MAP estimation during the n-th execution of step 3.1, 

where Cn is the number of label candidates and Tαn is the 

number of iterations inside the α expansion. Let T be the 

number of executions of step 3.1. Then the computational 

complexity of our algorithm is O(NdKTk)+O(NPT i=1 

CnTαn). In general, Cn ranges from 1 to 50, Tαn is less than 

5, and T is less than 10.[20] 

 

B. Algorithm Convergence: 

We prove that the proposed algorithm is 
convergent in this section. Suppose that after the nth 

iteration, the energy is En, the configuration is fn, and the 

union of region features is Фn. The MAP estimation is to 

estimate the configuration fn+1 by minimizing the energy. 

Therefore, after the MAP estimation step of the (n+1)th 

iteration, the energy  decreases or keeps unchanged, 

i.e.,  

                                                                (26) 

Suppose that the configuration is   after the 
relabeling step. This step only changes the labels of some 

regions but not their features, i.e., for each pixel p, 

                                      (27) 
Therefore, from (8) and (13), the relabeling step does not 

change the data term. On the other hand, after the 

relabeling, for two neighboring pixels p and q. 
 

   (28) 

which implies that the relabeling step does not change the 



International Journal of Modern Engineering Research (IJMER) 

www.ijmer.com              Vol.2, Issue.4, July-Aug. 2012 pp-2635-2640             ISSN: 2249-6645 

www.ijmer.com                                                                        2639 | Page 

smoothness term either (see (10) and (14)). Thus, after the 

relabeling step, the energy keeps unchanged, i.e., 

                          (29) 

Furthermore, since the ML estimation does not change the 
smoothness term but may reduce the data term or keeps it 

unchanged, we have 

 

                          (30) 

So the energy keeps monotonically non-increasing during 

the iterations, i.e., 

                             (31) 

which completes the proof of the convergence of our 

algorithm. 

IV. MATLAB RESULTS 
We test the proposed algorithm by using Matlab, We 

classify part of the image in the Matlab” a dog” and show 
the segmentation results obtained by the  algorithm  in 

Figure 3  All the boundaries of the small regions with the 

numbers of pixels less than 100 are removed. From these 

example, we have the following observations.  

 

 
(a) 

 
(b) 

Figure 3 :a), (b)  Segmentation results on the “ dog” 

Quantitative comparisons are also important for objectively 

evaluating the performance of the algorithm. There have 
been several measures proposed for this purpose. Region 

differencing and boundary matching are two of them. 

Region differencing  measures the extent to which one 

segmentation can be viewed as a refinement of the other. 

Boundary matching measures the average displacement 

error of boundary pixels between the results obtained by an 

algorithm and the results obtained from human subjects. 

However, these two measures are not good enough for 

segmentation evaluation. For example, a segmentation 

result with each pixel being one region obtains the best 

score using these two measures. A strongly over-segmented 
result, which does not make sense to our visual perception, 

may be ranked good. 

 

V.CONCLUSION 
In this paper, we have developed a Extensive Technique for 

image segmentation algorithm. Our algorithm is formulated 

as a labeling problem using a probability maximization 

model. An iterative optimization technique combining the 

MAP and ML estimations is employed in our framework. 
Under the Gaussian model, the MAP estimation problem is 

solved using graph cuts and the ML estimation is obtained 

by finding the means of the region features.  The qualitative 

and results demonstrate that our algorithm out performs 

than others. Our future work includes the extension of the 

proposed model to video segmentation with the 

combination of motion information technique , and the 

utilization of the model for specific object extraction by 

designing more complex features (such as shapes) to 

describe the objects. 
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