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ABSTRACT: We analyze a frequency decrease as well as 
a frequency transition with a temperature increase in the 

Hodgkin-Huxley (HH) oscillator undergoing saddle 

homoclinic bifurcations. A gradient of frequency for 

temperature is derived by perturbation analysis of the stable 

HH oscillators, in combination with the other gradient of 

frequency for input current and a so-called phase response 

curve (PRC) multiplied by its related voltage-gated channel 

currents. We then show that the PRC is clearly classified by 

the gradient of frequency for temperature. More 
interestingly, different bifurcation mechanisms of the 

Andronov-Hopf and the saddle-node are commonly 

categorized. 
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I. INTRODUCTION 
Temperature is one of important physical variables, which 

significantly affects autonomous oscillations generated in 

the nervous system. Gamma oscillations evoked on rat 

hippocampal slices are dependent of temperature [1]. In 

simulations on models of the nervous system, temperature 

alters nonlinear phenomena of desynchronization or chaos 

synchronization in the voltage activities [2][3]. It is thus 
interesting to understand mechanisms on emergences of the 

oscillation, which are subject to temperature variation, or to 

study temperature effects on cooperative behavior in the 

neural network.  

Mathematical analysis on voltage oscillations in a 

single neuron is fundamental for understanding collective 

behavior in the assemblies. The Hodgkin-Huxley (HH) 

model is the first mathematical description on such voltage 

dynamics. The HH model can describes how membrane 

potentials in neurons are initiated and propagated [4]. It is 

modified for simulating peripheral cold receptors discharges 
that exhibit different firing patterns [5]. One firing pattern is 

an abrupt increase of the interspike intervals in a certain 

temperature region. This is originated from a homoclinic 

bifurcation of a saddle-node (SN) equilibrium embedded in 

the chaotic attractors [6]. However, why the homoclinic 

bifurcation appears is still unclear. The modified HH model 

seems to be different from the original. We will have to 

study again stability analysis on equilibriums in both the 

original and modified HH models. 

 

 

It is also necessary for us to find another measurement for 
characterizing firing properties or dynamical mechanisms in 

their models. The good measurement is the frequency-

current (f-I) curve [7], which has already been examined in 

electrophysiological experiments [8][9]. The f-I curve 

generally categorizes oscillations into the two classes: For 

the class I, emergence of the oscillation with zero frequency 

is characterized by saddle-node (SN) or saddle-node on 

invariant circle (SNIC) bifurcations with an increase of the 

I. The SNIC, which is also called the SN on a limit cycle 

(SNLC), means that the SN bifurcation occurs on the LC. In 

the class II, emergence of the oscillation with a finite 

frequency is characterized by the Andronov-Hopf (AH) 
bifurcation.  

In recent analysis, one unexpected oscillatory 

phenomenon has been highlighted that the class I Morris-

Lecar (ML) model decreases firing frequency with 

temperature increase [10]. This seems to be very similar to 

frequency discharge of cold fibers, which also shows the 

paradoxical frequency discharge at high temperature 

[11][12] (In what follows, let us call it the frequency 

transition). In 1999, Adair simulated the frequency 

discharge of cold fibers by Boltzmann description of 

voltage-gated Na+ and Ca2+ channels [13]. Presumably, this 
Boltzmann model is not functionally different from the 

original HH model. However, using the original HH model, 

how the paradoxical frequency discharge occurs is still 

unclear. It should thus be clarified by analyzing stabilities as 

well as bifurcation mechanisms in the original HH model.   

In this paper, we show that temperature (μ) 

modulated frequency are characterized with current I and 

so-called phase response curves (PRCs) derived by making 

phase descriptions for small μ perturbation. f-μ formulations 

give us mathematical conditions for a frequency decrease 

and a frequency transition with an increase in temperature, 

dependent of different bifurcation mechanisms on 
oscillation generation. Frequency gradients in terms of μ 

classify PRC into two types, regardless of conventional 

classification. We demonstrate heuristically firing frequency 

transition for larger μ in the HH model undergoing a SNIC 

bifurcation mechanism. Also, a frequency increase with a μ 

decrease is determined by appropriate proportion of 

frequency gradient for I to the product of the PRC and its 

current dynamics. In addition, the frequency gradient in 

terms of μ shows the critical μ-value for the frequency 

transition of a normal saddle-node homoclinic orbit to its 

separatrix loop. Finally, discussion and conclusion will be 
given. 

Temperature Controlled Voltage Oscillation in Neural 

Circuit Undergoing Homoclinic Bifurcation 
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II. BIFURCATIONS IN SPIKING MODEL 
We shall begin by studying bifurcation analysis on the 

Hodgkin-Huxley (HH) model parameterized as a class I. 

The HH model, which is employed to simulate frequency-

current (f-I) and frequency-temperature (f-μ) relations, is 

given by  

𝐶𝑚
𝑑𝑉

𝑑𝜏
= 𝑄 𝑉, 𝑚, , 𝑛 + 𝐼 = −𝑔𝑁𝑎𝑚3 𝑉 − 𝐸𝑁𝑎  −

𝑔𝐾𝑛4 𝑉 − 𝐸𝐾 − 𝑔𝐿 𝑉 − 𝐸𝐿 + 𝐼,                                     (1) 
𝑑𝑦

𝑑𝜏
= 𝜇𝑃𝑦 𝑉, 𝑦 = 𝜇 𝑌∞ 𝑉 − 𝑦 𝜏𝑦 𝑉  .                          (2) 

Cm (= 1μF/cm2) is the membrane capacity. y ∈ {m, n, h} is 

the non-dimensional gating variable. The parameters ENa, EK, 
and EL are the reversal potentials of Na+, K+ and leak 

currents respectively, while gNa, gK, and gL are the 

conductances. Y∞(V) = αy(V)/(αy(V) + βy(V)), τy(V) = 1/(αy(V) 

+ βy(V)) where αm(V) = −0.1(V + V1) / (exp(−0.1(V + V1)) − 

1), βm(V) = 4exp(− (V + V2) / 18), αh(V) = 0.07exp(− (V + 

V3) / 20), βh(V) = 1 / (exp(−0.1(V + V4)) + 1), αn(V) = 0.01(V 

+ V5)/(exp(−0.1(V + V5)) − 1) and βh(V)=0.125exp(− (V + 

V6) / 18). The class I dynamics are parameterized with gNa = 

35 mS/cm2, ENa=55 mV, gK=9 mS/cm2, EK=-90 mV,  gL=0.1 
mS/cm2, EL=-65 mV, V1=35, V2=60, V3=58, V4=28, V5=34 

and V6=44 (see [2]) so that the HH model represents an 

oscillatory system exhibiting repetitive firings via a saddle 

homoclinic orbit (SHCO) bifurcation with the current 

increase (see Fig. 1). The detailed bifurcation mechanism 

will be examined below. As shown in Fig. 1, firing 

frequency of oscillation decreases and then increases again, 

and its amplitude of oscillation monotonically decreases 

when μ increases.  

We study dynamical mechanisms underlying 

changes of firing frequency with a temperature increase by 
analyzing stabilities of stationary solutions of the HH model. 

The result is shown in Fig. 2(a). For any μ, a saddle, stable 

and unstable nodes coexist for I < ISN (=0.16). Their 

stabilities are numerically calculated as referred in [14][15]. 

ISN is saddle-node (SN) equilibrium. Trajectories, which 

diverge from the unstable node and the saddle, converge to 

the stable node (not shown here). When I exceeds 0.152 for 

μ=0.25, a stable LC attractor appears through a SHCO 

bifurcation so that the attractor exists together with the 

stable node. Since trajectories on the LC attractor pass 

outside the saddle and stable node on the V-m phase plane, 

the LC can be called as the big homoclinic orbit (Fig. 2(b)). 

The LC attractor still remains even if I > ISN.   

This indicates emergences of the oscillation via two 

different bifurcation mechanisms: The first oscillation with 

0-frequency occurs via the SHCO bifurcation. The second 

oscillation with a finite frequency occurs via the SN 

bifurcation [Fig. 3(a)]. We notice that the second oscillation 

emergence is slightly different from the typical one via the 

SN bifurcation.  

Next we show that for μ=2, the HH model begins 

oscillations with 0-frequency through the SN bifurcation as 

shown in Figs. 2(a) and 3(b). We cannot find any bi-stability 

state of the node and the LC attractor as shown in Fig. 3(a). 

To be more precise, such a SN bifurcation is called the SN 

on invariant cycle (SNIC) as referred to [7]. This means SN 

equilibrium occurs on a LC attractor. Here notices that a size 

of the LC is apparently reduced as in the increased Vmin of 

Fig. 2(a).  

Finally, we can see again a SHCO bifurcation when 

μ=6.2 [Fig. 2(a)]. This is a slightly different from the case 

for μ=0.25, in terms of whether or not the SN equilibrium is 

(a)  

(b)  

Fig. 2. (a) Bifurcation diagram for the class I HH model. 

There are two stationary voltages in the I range of 0.14 

to 0.2. One is a saddle (the broken line) while the other 
is a stable node (the black line). The oscillations occur 

via a SNIC bifurcation that the limit cycle (LC) involves 

the saddle and node. Colored lines present the minimum 

voltages (Vmin) of the oscillations. (b) A trajectory of the 

LC on the V-m phase plane. The trajectory outside of the 

saddle and node points is the one of a “big” saddle 

homoclinic orbit. Stable manifold (separatrix) of the 

saddle (empty circle) between the red and blue lines 

separates resting (green circle) and oscillatory states. 

Fig. 1. Dynamics for the Hodgkin-Huxley (HH) neuron 

model at I = 0.161, parameterized as class I. The time 

courses of the membrane voltage when μ increases from 

0.25 to 6.2 via 2. 
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outside of the homoclinic orbit. We show again the f-I curve 

with the bi-stability (see Fig. 3(c)). Because the trajectory is 
attracted into the HCO, the amplitude as well as the 

frequency of the oscillation is respectively small and high as 

shown in Fig. 1.  

In summary, we find f-μ relation at each current 

level as shown in Fig. 4. Before a SN bifurcation, the 

frequency is in small peak for μ < 0.5 while its frequency 

slope for μ > 6.0 is extremely sharp. Immediately after the 

SN bifurcation, a constant low frequency level appears in 

the middle range of μ. It gradually increases as I increases 

from ISN. The f-μ curve then becomes a monotonic 

increasing curve for temperature. This indicates that a 

frequency decrease and a frequency transition with a 

temperature increase are based on two SHCO bifurcation 

mechanisms for μ < 0.5 and μ > 6.0 around the SN 

equilibrium. 

III. PERTURBATION APPROACHES 
Next, in order to deepen more understandings of the 

frequency decrease and frequency transition, we employ a 

phase reduction method [10][16][17][18]. In the phase 

reduction method, reducing n-dimensional oscillatory 

dynamics, subject to small perturbations of temperature and 

current (Δμ and ΔI), to the one-dimensional phase equation, 

the perturbations are even phase-described. Then, we find 

that frequency gradient for temperature ([∂f/∂μ]) is related to 
another oscillatory property such as PRCs and f-I curves. 

The HH oscillator perturbed with small temperature 

and small current is written in the general form: 

𝑑𝒙

𝑑𝜏
= 𝑭 𝒙 + 𝑮(𝒙),                                                             (3) 

where x=(V, y) ∈ R4. V is the potential variable while y is a 

vector consisting of 3 recovery variables. F(x) is a vector 
field (Q(x) + I0, μ0 P(x)) where Q is the membrane potential 

dynamics for V. P(x) is the recovery dynamics for y. The 

perturbation term G(x) = (ΔI, P(x) Δμ). 

Let xp(τ) denote the unique phase asymptotically 

stable Tp-periodic function to 

𝑑𝒙p

𝑑𝜏
= 𝑭 𝒙p .                                                                      (4) 

where xp( τ + Tp ) = xp( τ ). Then a stable solution for Eq. (3) 

is approximated as 

𝒙 𝜏 = 𝒙p 𝜏 + 𝜂(𝜏) + 𝒖(𝜏 + 𝜂(𝜏)),                                (5) 

where η(τ) means a small perturbation in the phase direction 

on the periodic orbit. u(τ+η(τ)) denotes the orbital deviation 

to the periodic orbit xp( τ ). Substituting Eq. (5) into Eq. (3) 

and expanding the both-hand sides into a Taylor series leads 

(a)  

(b)  

(c)  

Fig. 3. f-I curves for μ = 0.25, 2 and 6.2. The HH model 

((a) μ = 0.25 and (c) μ = 6.2) begins class II oscillations 

via the SN bifurcation while terminating the oscillations 

in the class I. (b) The HH model (μ = 2) shows 

simultaneous excitabilities and oscillations of the class I. 

 

Fig. 4. Frequency f versus temperature μ on simulation 

with the class I HH neuron model. When I=0.161, the 
frequency passed through a minimum for μ=6 and then 

extremely increased at the higher temperature. The low 

frequency level gradually rises so that the frequency is a 

monotonically increasing function of temperature. 
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 𝜂  𝜏 
𝑑𝒙p  𝑞 

𝑑𝑞
+

𝑑

𝑑𝑞
𝒖(𝑞) 

𝑞=𝜏+𝜂 (𝜏)
=

𝜕𝑭 𝒙p  𝜏+𝜂 𝜏   

𝜕𝒙
𝒖 𝜏 +

𝜂𝜏+𝑮𝒙p𝜏+𝜂𝜏.                                                (6) 

In the perturbed oscillator, the orbital deviation vector u( τ ) 

= x( τ ) - xp( τ ) evolves as [du( τ ) / dτ] = [∂F(xp( τ )) / ∂x] 

u( τ ). The vector Z( τ ) tangent to the periodic orbit xp( τ ), 
which is the unique solution to 

𝑑𝒁

𝑑𝜏
= − 

𝜕𝑭 𝒙p  

𝜕𝒙
 
𝑡

𝒁,                                                              (7) 

where t is transpose and the normalization condition 

𝒁 ∙
𝑑𝒙p

𝑑𝜏
= 1                                                                          (8) 

is satisfied for every τ. Z( τ ) is the adjoint solution to the 

linearization around the limit cycle. The first element of the 

adjoint solution, ZV(τ), is the PRC widely used in 
computational neuroscience. Eq. (3) is then reduced to the 

evolution equation for η: 

𝜂  𝜏 = 𝒁 𝜏 + 𝜂 𝜏  
𝑡
∙ 𝑮  𝒙p 𝜏 + 𝜂 𝜏   .                         (9) 

Introducing phase variables defined by θ = (τ+η) / Tp (∈ [0, 

1)), Eq. (9) is rewritten as 

𝑑𝜃

𝑑𝜏
=

1

𝑇p
+

1

𝑇p
 𝒁 𝜃 ′ 𝑡 ∙ 𝑮  𝒙p 𝜃

′  𝑑𝜃 ′1

0
= 𝑓 + 𝑓 𝑍𝑉 𝜃∆𝐼 +

𝑓 𝒁𝒚 ∙ 𝑷 𝜃∆𝜇,                                                                   (10) 

where f = f (I0, T0) = [1 / Tp] and  ∙ 𝜃 =  𝑑𝜃 ′1

0
.  

Next, f (I0, T0) can straightforwardly be expanded in 

(ΔI, Δμ). The quadratic Taylor series is obtained: 

𝑓 𝐼0 + ∆𝐼, 𝜇0 + ∆𝜇 = 𝑓 𝐼0 , 𝜇0 +
𝜕𝑓 𝐼0 ,𝜇0 

𝜕𝐼
∆𝐼 +

𝜕𝑓 𝐼0 ,𝜇0 

𝜕𝜇
∆𝜇 + 𝑂(∆𝐼2 + ∆𝜇2).                                            (11) 

Eqs. (10) and (11) gives us following relational expressions: 

𝜕𝑓

𝜕𝐼
= 𝑓 𝑍𝑉 𝜃 ,                                                                     (12) 

𝜕𝑓

𝜕𝜇
= 𝑓 𝒁𝒚 ∙ 𝑷 𝜃 .                                                               (13) 

Using Eq. (8),  

𝜕𝑓

𝜕𝜇
= 𝑓−𝑓 𝑍𝑉 𝑄 + 𝐼0  𝜃   ≡ 𝑓  1− 𝑍𝑉

𝑑𝑉

𝑑𝜏
 𝜃  =

 𝑓−𝑓 𝑍𝑉𝑄 𝜃−𝑓 𝑍𝑉 𝜃  𝐼0 =  𝑓  1 −  𝑍𝑉𝑄 𝜃 −
1

𝑓
 
𝜕𝑓

𝜕𝐼
  𝐼0 .            

(14) 

[∂f/∂μ] < 0 is thus satisfied with 

 𝑍𝑉𝑄 𝜃 >  1 −
1

𝑓
 
𝜕𝑓

𝜕𝐼
  𝐼0. 

Eq. (14) means that the value of [∂f/∂μ] is determined by 

values of  𝑍𝑉𝑄 𝜃  and [1 - (∂f/∂I)(I0/f)]. It also gives us a 

condition for frequency transition that [∂2f/∂μ2] changes 

from the positive to the negative as μ gradually increases via 
μ = μc. μc represents that [∂f/∂μ] takes the maximum. 

IV. SIMULATION RESULT 
Using Eq. (14), we systematically investigate frequency 

characteristics (the frequency decrease and oscillatory 

transition) of the HH oscillator undergoing a SHCO 
bifurcation, in terms of I and μ, referring to dynamical 

mechanisms of a SNIC bifurcation shown in [7]. 

Firstly, let us explain reasons why frequency 

decreases, in terms of firing properties in the HH oscillator. 

Fig.5 shows regions for [∂f/∂μ] < 0 and [∂f/∂μ] > 0 on the I-μ 

phase diagram, being associated with Fig. 4. In Fig. 5, (ISN, 

μSN) = (0.16, 0.45) classifies a SN bifurcation into two 

categories: One is the SNIC bifurcation when μ > 0.45 while 

the other is the SN bifurcation when μ < 0.45. Immediately 

after SN or SHCO bifurcations, [∂f/∂μ] < 0 is widely 

occupied in the μ range. The range is however rapidly 
diminished as I increases. When I > 0.26, we cannot find 

any range for [∂f/∂μ] < 0. This is in a good agreement with 

changes of the f-μ curve in Fig. 4. 

Fig. 6(a) shows whether or not  𝑍𝑉𝑄 𝜃  is larger 

than [1 - (∂f/∂I)(I0/f)] in Eq. (12) for μ = 1, to determine the 

positive or negative value of [∂f/∂μ]. [∂f/∂μ] < 0 if  𝑍𝑉𝑄 𝜃  > 

[1 - (∂f/∂I)(I0/f)]. In contrast, [∂f/∂μ] < 0 if  𝑍𝑉𝑄 𝜃  < [1 - 

(∂f/∂I)(I0/f)]. Fig. 6(b) represents another evaluation of 

[∂f/∂μ] in Eq. (12). [∂f/∂μ] > 0 if  𝑍𝑉 ∙ [𝑑𝑉/𝑑𝜏] 𝜃  < 1. To be 

more precise, 𝑍𝑉 ∙ [𝑑𝑉/𝑑𝜏] for almost all θ is greater than 1 

at I=0.161. This can easily expect  𝑍𝑉 ∙ [𝑑𝑉/𝑑𝜏] 𝜃  < 1 so 

that [∂f/∂μ] < 0. However as I increases from 0.161, the θ 

region that 𝑍𝑉 ∙ [𝑑𝑉/𝑑𝜏]  takes greater than 1 is reduced. 

Thereby,  𝑍𝑉 ∙ [𝑑𝑉/𝑑𝜏] 𝜃  is less than 1 so that [∂f/∂μ] > 0.  

 

Fig. 5. I-μ phase diagram for the class I HH model. The 

left region show the stationary state of f = 0 while the 

middle (or right) region shows [∂f/∂μ] < 0 (or [∂f/∂μ] > 

0). In the diagram, the regions of μ > 0.45 and μ < 0.45 

are respectively SN and SNIC bifurcations. 
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Secondly, we confirm a frequency transition of the 

low to the high level for μ > 6 and I=0.161 in Fig. 4. For this, 
we numerically calculate [∂f/∂μ] as a function of I. In Fig. 

7(a), the [∂f/∂μ]-I curve has the sharper positive slope, 

[(∂/∂I)(∂f/∂μ)] > 0, around onsets of oscillations for μ = 5.8. 

However, the curve monotonically decays when μ > 6. This 

implies that the phase transition of the frequency happens. 

In fact, when μ increases at I=0.161, [∂2f/∂μ2] switches from 

the positive to the negative at μ = μc exhibiting [∂2f/∂μ2] = 0. 

The peak of the [∂f/∂μ]-μ curve is diminished and then 

disappears for larger I (Fig. 7(b)). When I approaches to the 

bifurcation point (ISN), we obtain the following condition for 

a frequency transition: 

lim𝜇→𝜇𝑐
+

𝜕𝑓

𝜕𝜇
= +∞,       lim𝜇→𝜇𝑐

−
𝜕𝑓

𝜕𝜇
= +∞. 

From bifurcation analysis of Fig. 2(a), let μ be μc when VSN 

= Vmin (μc). Periodic motions of a trajectory on the LC 

around μ = μc can be described as followings: Membrane 

potential dynamics immediately before depolarization is 
extraordinary slow for μ < μc, because a trajectory is 

converge to the LC through the SN equilibrium, thereby 

leading to a significant phase delay. However when μ > μc, a 

trajectory passes on the LC via the saddle to increase [dV/dτ]. 

We notice [∂f/∂μ] > 0 after a frequency transition. 

This is the same result as the HH oscillator undergoing the 

AH bifurcation [19]. Therefore, we have found that, for any 

I in the oscillation range,  

 Class I oscillation: [∂f/∂μ] takes both the positive and 

negative values if μ < μc, and has the positive value if μ 

> μc. 

 Class II oscillation: [∂f/∂μ] takes the positive value for 
any μ.    

V. DISCUSSION 
Calculations of [∂f/∂μ] have ruled out the ambiguity in the 

conventional classification with different PRC forms, to 

give clearer classification regardless of the PRC forms. The 
PRC was traditionally classified into two types: Type I takes 

almost all positive values for any phase while type II has the 

obvious negative values as well [20][21]. However, the type 

I PRC even takes the negative value for extreme narrow 

phase range and its shape continuously changes to the type 

II with an increase in I (as shown in red lines of Fig. 8). 

There was an open question about definition of the PRC 

classification. 

In comparison with the [∂f/∂μ] results for the class I, 

the typical class II f-I curve has been analyzed by using the 

original HH neuron that starts oscillations with a finite 

frequency through the AH bifurcation. The result is only 
[∂f/∂μ] > 0 for any I in the oscillation range. We may 

conclude that, in the class I for the SHCO bifurcation, the 

[∂f/∂μ] takes both the positive and negative values, 

meanwhile [∂f/∂μ] > 0 in the class II for the AH bifurcation.  

We have thus shown that computing [∂f/∂μ] is 

significantly potential for oscillation classification. One may 

criticize that the analysis studied here only supports the 

conventional classification with different bifurcation 

mechanisms of the SN (or SNIC) and AH.  

In order to evade such criticism, the two-

dimensional Hindmarsh-Rose (2DHR) model, which retains 

the analytic tractability of the FitzHugh-Nagumo model 

[22][23], is employed [24]. All bifurcations requested, those 
being, the AH, the SNIC and the SN are computed in the 

2DHR model with appropriate parameter sets. The [∂f/∂μ]-I 

curve for each bifurcation is then computed. As the result, 

the AH, SNIC and SN bifurcations have been categorized 

into two types: 

 Category I ([∂f/∂μ] > 0 and [∂f/∂μ] < 0): The SNIC 

bifurcation. 

 Category II ([∂f/∂μ] > 0): The AH and SN bifurcations.  

As far as we know, the AH and SN bifurcations were not 

categorized into the same. On the contrary, the SN has so far 

been regarded to belong to the category for the SNIC 
bifurcation. In fact, the condition that only [∂f/∂μ] > 0 is 

showed even if the Terman-Wang (TW) model [25][26] is 

used [19]. The TW model is one of the analytic tractable 

neuron models, which generates oscillations via the SN 

bifurcation.  

(a)  

(b)  

Fig. 6. (a)  𝑍𝑉𝑄 𝜃  (red line) and [1 - (∂f/∂I)(I0/f)] (green 

line) represent as functions of I when μ=1. (b) 𝑍𝑉 ∙
[𝑑𝑉/𝑑𝜏] is a function of θ (∈[0, 1)) at each level of I 

=0.161, 0.2, 0.26 and 0.3. 
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These [∂f/∂μ] results are supposed to give us 

important indications about conventional classifications with 

different bifurcation mechanisms, or different PRC forms. 

The SN bifurcation that occurs on the LC is crucial for the 

aforementioned categorization. To be more precise, the 

necessary condition for [∂f/∂μ] < 0 is that the bi-stability of 
stable equilibrium and a LC attractor exists. Such a bi-

stability cannot be found in the TW model and the 2DHR 

model exhibiting only stable equilibrium.   

Furthermore, the categorization suggested in this 

work does not address that the PRCs are intensively related 

to the emergence of oscillations via bifurcation mechanisms. 

The previous work for class and type classifications [27] 

indicated that type I PRC has the class I oscillations. This 

was however no more than an indication at that moment. In 

Fig. 3(b), the f-I curve for μ =0.25 is the logarithmic class I. 

Nevertheless, type II PRCs are calculated in any frequency 
range. As referred to [28] and described in Eq. (5), more 

precisely, the average of the PRC equals to the slope of the 

f-I curves. Therefore, the categorization suggested above is 

more comprehensive and more sophisticated than the 

conventional classifications.  

The potential task in the near future is to discover 

some still-unknown oscillatory property of the neuronal 

circuit undergoing the corresponding bifurcation. Finding 

novel oscillatory properties allows us to predict bifurcation 

mechanisms hidden in complex behavior of the neuronal 

circuit. Since [∂f/∂μ] is intensively related to f-I relations as 

well as PRCs, at least, it can expect to identify bifurcation 
mechanisms with the more accuracy, compared to only 

observation of the f-I relations or PRCs. In the f-I relations, 

it is difficult to record at the same time the zero and nonzero 

frequencies. The PRCs are observed under the 

environmental noise [29] so that we can difficultly specify 

bifurcation mechanisms.  

Finally, we discuss the temperature scaling factor μ. 

In general, time courses of the ion-channel activations are 

rescaled with 𝜇 = 𝑄10
(𝑇−𝑇𝑒)/10

with temperature T ℃ , 

𝑄10 ~3and environmental temperature Te. In physiological 

experiments, the temperature is usually fixed around either 

room temperature or body temperature so that there is not so 

much temperature variation [5][30]. We may thus have to 
take care of the temperature parameter to observe stable 

oscillatory properties of individual neuron corresponding to 

the recording temperature. Recent model studies are not 

significantly careful for handling with the temperature 

parameter [31][32]. In this work, the experimental 

temperature variation was ignored, because it was crucial 

and interesting for us to systematically investigate 

oscillatory properties of the HH model.    

VI. CONCLUSION 
We studied a frequency decrease and a frequency transition 

with a temperature increase in the HH model undergoing 

SHCO bifurcations. In this study, [∂f/∂μ] was derived by 

perturbation analysis of the stable HH oscillators, in 

combination with [∂f/∂I] and  𝒁𝑽𝑸 𝜽. We showed that the 

PRC was clearly classified by [∂f/∂μ]. More interestingly, 

different bifurcation mechanisms of the AH and the SN 
were commonly categorized. 
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Fig. 7. Results of the Frequency transition when μ > 6. 

(a) [∂f/∂μ]-I curves when μ=5.6, 5.8, 5.85, 5.9, 5.95 and 

6.0. (b) [∂f/∂μ]-μ curves for I = 0.161, 0.162, 0.163, 

0.164 and 0.165. 

 

Fig. 8. [∂f/∂μ]-I curve for μ=1 (red line) shifts to the one 

for μ=0.2 (green line). Correspondingly, the cross point 

of [∂f/∂μ] = 0 (blue circles) moves so that the I range for 

[∂f/∂μ] < 0 is reduced. The PRCs are drawn respectively 

for I = 0.161 and I = 0.3 when μ=1.0, and for I = 0.153 

and I = 0.3 when μ=0.2. 
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