
International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.4, July-Aug. 2012 pp-2735-2741 ISSN: 2249-6645

www.ijmer.com 2735 | Page

Aditya Putta
1
, B. Chinna rao

2
, P. M. Francis

3

1M. tech (PG student) Gokul Eng College
2Prof. &Head,Dept.of ECE, Gokul Eng College
3Asst.Prof. in Dept. of ECE, Gokul Eng College

Abstract: Rapid demand on system-on-chip(SoCs) and

communication increases with the help of very-large-scale

integration (VLSI) circuits, even though prime factor is to

reduce the Power consumption and the thermal wall have

become the major factors limiting the speed of while

interconnect is becoming a primary power consumer. High
bandwidth is desired to enhance parallelism for better

performance, and the power efficiency on this bandwidth is

critical to the overall SoC power consumption. Current bus

architectures such as AMBA, Core connect, and Avalon are

convenient for designers but not efficient on power. This

paper proposes a physical synthesis scheme for on-chip

buses and bus matrices to minimize the power consumption,

without changing the interface or arbitration protocols. By

using a bus gating technique, data transactions can take

shortest paths on chip, reducing the power consumption of

bus wires to minimal. Routing resource and bandwidth

capacity are also optimized by the construction of a
shortest-path Steiner graph, wire sharing among multiple

data transactions, and wire reduction heuristics on the

Steiner graph. Experiments indicate that the gated bus from

our synthesis flow can save more than 90% dynamic power

on average data transactions in current AMBA bus systems,

which is about 5–10% of total SoC power consumption,

based on comparable amount of chip area and routing

resources.

Index Terms: Algorithm, communication graph, data

throughput, physical synthesis, power efficiency, Steiner
graph.

I. Introduction
AS the feature size of process technology scales down,

system-on-chips (SoCs) are capable of integrating more

components and gaining higher complexity. Since clock

frequency on single components is reaching a limit due to

power and thermal limitations, better performance will be

mostly exploited through parallelism [1], [3]. As a result,
two factors determine that on-chip communication

architectures are becoming a critical aspect in future

systems. First, the communication latency and bandwidth

among system components may become a bottleneck of

performance. Second, the percentage of power consumed on

inter-component communications in the whole system

power has scaled up to a significant level [9], [13], [15].

Industrial on-chip bus standards include AMBA [29], [31],

CoreConnect [30], Avalon [32], and so on. These existing

standards can provide an interface for IP developers and a

communication solution for system designers. Compared to
the network-on-chip [10] type of communications, buses are

small on silicon footprint, fast in terms of latency, and easy

to implement. Moreover, the implementations can be

reconfigured according to specific applications, enabling

designers to apply various optimizations for best

performance on available resources. The advantages of

simplicity make buses popular in industrial SoC designs.

However, current bus architectures are not power efficient

on transferring data through bus lines. And since this part of

power is scaling up as technology advances [13], it becomes

a necessity to introduce physical level optimization on bus

synthesis to minimize the power consumed by inter-
component communication on bus lines. When high

bandwidth is required on these buses, wire efficiency may

also become low, which ultimately limits the system

bandwidth capacity and performance. We propose a

physical synthesis scheme for on-chip buses to eliminate the

disadvantages in existing bus architectures, but not to

change the existing protocols and component interfaces.

Based on shortest-path Steiner graphs, efficiency on bus

lines is maximized without the need to redesign system

components and IP modules. Routing resource is also

reduced without compromising low power. The cost on our
new scheme is the additional silicon resource consumed by

distributed controls and switches, which is scaling down by

Moore’s law. Under technology trends, this physical

synthesis scheme is capable of bringing a large

improvement on power and performance based on current

state-of-the-art on-chip buses and bus matrices.

A. Related Work

An elaborate power analysis on AMBA on-chip bus is

performed in [15]-[18] where the detailed decomposition of

power consumed by system components is obtained by
simulation on NEC’s gate-level power estimator. Power

saving techniques have been explored and applied

extensively to break through the “power wall” of VLSI

circuit performance. Clock gating [5] is nowadays widely

used to reduce dynamic power, and power gating [20] is

used to avoid unnecessary static power. In bus

communications, a large part of the power is consumed on

the wires of bus lines [15], which is relatively scaling up

with technology and applications [9], [13]. Techniques of

clock gating can be used on bus lines to achieve a similar

goal, which is to mask off signals wherever they are not

needed. Bus segmentation in [6] has such effect to help
reduce dynamic power, but the effect is largely limited by

tree structures topologies. Also in [18], a power

performance tradeoff is analyzed on bus matrices, where a

bus matrix is composed of a set of tree structured buses. We

extend the structures from trees to graphs, using Steiner

graph connections for a thorough optimization of “bus

gating” to minimize the communication power. Topologies

have been mostly discussed in bus optimizations, while the

physical/geometrical information is not being emphasized.

Power Efficient and Reuse of Memory with Steiner Graphs

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.4, July-Aug. 2012 pp-2735-2741 ISSN: 2249-6645

www.ijmer.com 2736 | Page

B. Paper Overview

In this paper, to obtain the bus getting architecture and

optimize bus communications, and get minimal tradeoff

power maximal bandwidth, and minimal total wire length.

the protocols are of AMBA AHB [29] and AXI [31], since
they are most popular in industrial designs. And apply

optimizations which is biased toward minimal power, but

also favors bandwidth and routing resource.To construct a

minimal shortest-path Steiner graph, and to reduce its scale

with a minimal increment on path lengths. The overall

optimization flow can be viewed as three major steps:

Step 1: generating the shortest-path Steiner graph H (for

minimal power);

Step 2: deciding edge weights on H

Fig 1 AMBA AHB bus

Fig 2 AMBA AXI full bus matrix (drawn)

Step 3: applying incremental modifications on H (for

minimal wire length).

The rest of this paper is organized as follows. Section II

introduces some background information on bus

architecture and bus gating. Section III shows the heuristics
for minimizing power and Section IV for minimizing wire

length. Experiments are illustrated in Section V. Finally,

Section VI gives our conclusions on bus matrix, with

comparisons to network-on-chips and analogies to city

traffic planning.

II. Bus Architectures and Bus Gating

Background
Standard on-chip buses like AMBA were designed to

enable fast and convenient integration of system

components into the SoC, where simplicity is one of the

major objectives. When the bus power consumption comes

to a significant level that we cannot afford to ignore [15],

power optimization will be desirable. We introduce a “bus

gating” technique [23] to minimize the power on bus lines

with a small compromise on design simplicity.

A. AMBA On-Chip Bus and Bus Matrix Architectures

The AMBA AHB on-chip bus [29] and bus matrix [31] are

drawn in Figs. 1 and 2. The components connected by these

buses can be classified into masters and slaves. Masters are

typically microprocessors, each can start a transaction with
one slave device at a time, where the slave is selected by

giving an address to the decoder. Slave devices respond to

masters passively. When conflicting requests come from

multiple masters, arbiters will decide the order of services.

The main difference between the bus and bus matrix is on

multiple access from masters. The basic bus allows one

master access at a time, while the bus matrix may allow

multiple accesses. In a full bus matrix like Fig. 2, the

masters and slaves are connected like a bi-clique, and each

slave has an arbiter. Full bus matrices have largest

bandwidth capacity, typically applied for maximum

performance.

B. Power and Wire Efficiency of Gated Bus Using Steiner

Graphs

The power efficiency of a bus architecture like Fig. 1 is low

because the bus lines from masters to slaves are connecting

all the slave devices by a single large wire net. The same is

on slave-to-master connections. While the communication

is one-to-one, the signals are sent to all the receivers

regardless of whether they are needed, which results in

wasted dynamic power on bus wires and component

interfaces. Moreover, this low power efficiency is still being
worsened by the technical scaling of global wires [13] and

the increasing number of components integrated into SoCs.

Gated bus is a solution to save the wasted dynamic power.

The simplest way is to add a de-multiplexer after each

multiplexer in Fig. 1, and add a de-multiplexer after each

master device in Fig. 2, so that the signals only propagate to

where they are needed. This method works in a similar way

as clock gating [5], [11], and can be even more effective

because the signal receivers here have much less complex

behaviors than in a clock tree. For tree structured buses,

distributing the multiplexer and de-multiplexer into the wire

net [Fig. 3(a)] helps to save both power and wires. For wire
length, while the single multiplexer needs independent lines

from every sender, the lines can be shared with distributed

multiplexers and form a Steiner arborescence [7], [21], [22].

An arborescence is a directed tree such that every root-to-

leaf path is shortest. On the receivers’ side with distributed

de-multiplexers, the bus lines change from a rectilinear

Steiner minimum tree [12], [14] to a minimum rectilinear

Steiner arborescence (MRSA). By the research in [2], this

change increases the wire length by only 2–4% on average.

So the total bus wire length can be reduced by the

distributing the multiplexer/de-multiplexers, while the
dynamic power can also be reduced at the same time. There

is a small control overhead for sending the signals over the

arborescence, but compared to the bus width and data

throughput, this dynamic power overhead is negligible.

Based on the same tree topology, effective bus gating can

be applied by distributing the control over the entire tree

(arborescence). On bus matrices, however, simply adding

de-multiplexers may increase the total wire length, because

when the number of master-to-slave paths becomes large,

each path will need its own bus wires [as in Fig. 3(b)]. To

reduce wire length in the bus matrix, also to further reduce
power on the basic bus, we adopt the structures of Steiner

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.4, July-Aug. 2012 pp-2735-2741 ISSN: 2249-6645

www.ijmer.com 2737 | Page

graphs. A Steiner graph is a generalization of Steiner trees,

without the limitation of tree structure that there is only one

root placed at a certain point, which cannot be on the

shortest path of every connection. By removing the

constraint of tree topologies, we gain higher freedom to
choose shortest paths for reduced power on data

Fig 3 Bus gating using distributed mux and de-mux. (a) On

single bus. (b) On bus matrix.

Fig 4 Shortest-path Steiner graph Gn and its bus

implementation.

transactions, and to let the paths share wires for reduced.

Shortest-path Steiner graphs have advantage on power

efficiency as shown above. Naturally, graph structures also

have advantage on communication bandwidth over trees.

Our objective of bus gating and bus matrix synthesis is to

perform a balanced optimization on power and bandwidth

even when available routing resource is limited.

III. Bus Matrix Graph Construction
The flow we use is to first construct a shortest-path Steiner
graph based on the given placement of Vs U Vt and

communication graph Gc and then decide the weight ω(e)

on each edge. The single-source case is the MRSA problem,

which is well studied in previous work such as [7] and [21].

Although it is proved to be NP-complete in [22], heuristic

algorithms can provide close-to-optimal solutions of Steiner

arborescences.

RSA algo

Given a source s and n terminals t1, · · · , tn,

v1, · · · , vN are the Hanan grid nodes of {s, t1, · · · ,

tn}sorted by decreasing distance to s
Q←Ø

For I = 1 to N do

Else if

If there is Tj at Vi then Q←QUVi

X← Q∩{Vj:\\P(s-p(vj)) =|| P(s) – P(Vi)||+||P(Vi)-P(Vj)||}

If (|x|> 2) then merge the nodes in X rooted at Vi

Q←(Q∩X’)U{Vj} return the arborescence at s’

Our shortest-path Steiner graph is constructed by multiple

iterations of a revised MRSA construction.

A. k-IDeA/G Heuristic for MRSA

The RSA/G heuristic for the MRSA problem was first

introduced in [21], and is proved to be 2-approximate.

Given a single source and n terminals, the basic flow is to

start with n subtrees and iteratively merge a pair of subtree

roots v and v’ such that the merging point is as far from the

source as possible, so that the wires can be shared as much

as possible. It terminates when only one subtree remains.
For efficient implementation, the RSA/G first sorts all the

nodes on the Hanan grid [26]

In each iteration, it removes up to k nodes from v1, · · ·.. ,

vn some nodes are skipped it will reduse the memory and

utilize the same location as adress when running the RSA/G

algorithm. By removing the nodes, some SMO merges are

skipped, which in some cases can result in a better overall

solution. All the combinations of the k or fewer skipped

nodes are tried in an iteration, and the best set of skipped

nodes are marked as permanently deleted. The iterations are

repeated until no further improvement occurs.

B. Shortest-Path Steiner Graph by Multiple MRSAs

 For a shortest-path Steiner graph with multiple sources s1,

· · · , sm, the idea behind single source MRSA is still valid.

In fact, our algorithm constructs the Steiner graph H just by

iteratively constructing the MRSA rooted at every source.

While a single arborescence can be optimized by the k-

IDeA heuristic, the m arborescences are individually

optimized with the same idea, plus that these arborescences

also need to share as much wire as possible to optimize the

final Steiner graph. For this purpose, we add additional

heuristics based on the RSA/G to construct multiple
MRSAs one by one. First, starting from the second MRSA

construction, we can reduce terminals by using existing

wires. For each MRSA with source si, the terminals that

need connection from the source can be moved along

existing edges of H toward si. As the example shown in

Fig. 5, with the wires of previous aborescences, we only

need to connect eight nodes instead of the original 16

terminals to form the MRSA rooted at s2, because all the

other terminals can be reached from one of these eight

nodes by a shortest path from s2. This set of nodes (denoted

as T’) can be obtained by checking each terminal tj , move
from tj toward si as much as possible along existing paths

until reaching a vertex (can be a terminal or a Steiner node)

in H where no vertex closer to si can be reached, and add

this vertex to T’. When there are multiple paths in the

graph, we pick the final vertex closest to si, so the rest part

of the path is short and likely to need less wires. Details are

in the routine “Necessitate(v)” Second, we construct the

MRSA based on the set of nodes T’ using as much existing

wires as possible. Compared to the RSA/G heuristic, the

TMO condition is changed to vi’, ∆T’ he SMO condition is

changed, also for the purpose of wire reusing, from |X| ≥ 2
to |X| ≥ 2 or (|X| = 1 and vi∆ H). Because when vi is already

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.4, July-Aug. 2012 pp-2735-2741 ISSN: 2249-6645

www.ijmer.com 2738 | Page

in the graph, it was added into previous MRSAs and can

share wires with the node in X like the case in RSA/G when

|X| ≥ 2. As the example in

Fig 5 Nodes requiring connections (in dotted circles).

Fig. 6 Connecting a node into the Steiner graph.

shows, when X contains only one node {t2}, it should be

connected into H when vi comes to t3, and half of the

connection length can be saved using the existing horizontal

wire. where the routine “connect(u, v)” uses existing wires

if applicable on shortest connections. The k-IDeA iterations

remain unchanged here. And after the shortest-path Steiner

graph is constructed by applying k- IDeA on the m sources,

there are possibly some redundant edges that can be

removed. So the final step is to check each edge (vi, vj) ∆ H,
if H still contains all the source-to-terminal shortest paths

without (vi, vj), then remove it from H.

Fig7 Bipartite graphs of four edges in the bus matrix

 i.e., all the |Vs| × |Vt | = 15 arcs are present. The resulting

bus matrix graph contains five Steiner nodes and 13 edges.
Every arc from a master si to a slave tj has a connection of

minimal length, and the 15 shortest paths shown in Fig. 7

are fixed. To assign a weight on each edge, we take e = (s2,

v1) as example. Six of the 15 paths go through e, so G’(e)

consists of the six corresponding arcs (s1, t3), (s2, t1), (s2,

t2), (s2, t4), (s2, t5), and (s3, t3). The maximum matching

has two edges, because t3 can only connect to one of s1 and

s3. Therefore, ω(e) = 2 is adequate to support all

communication patterns. Fig.7 shows the bipartite graphs of

four edges on the central horizontal line. Despite the
number of connections, most of the edges are weighted 1.

Yet this bus matrix graph is adequate for maximum

bandwidth capacity, i.e., wires will not be the bottleneck of

multiple simultaneous connections. The total weighted wire

length in this bus matrix is 108. Compared to the total path

length 266 if implemented as a full bus matrix in Fig. 2, the

Steiner graph approach saves more than half of the routing

resources.

IV. Tradeoffs on Power, Wire, and Bandwidth

A. Steiner Graph Reduction

Since high bandwidth bus matrices will need significantly

more wires to support parallel communications across the

chip, routing resource may become another limitation as

more components are integrated into SoCs and interactions

increase. Especially when the components are placed in

irregular placement instead of cell arrays, the shortest-path
Steiner graph generated by the algorithm in which bring

additional wire length. We look for changes in the graph

structure which can significantly reduce the wires, while

preserving the short paths at the same time.

Fig. 8 Searching for mergeable parallel segments (in

vertical direction).

when the double edges are geometrically very close to each

other, combining them into one edge only slightly increases

the length of some connections, while possibly saving much

more wire length. Fig. 8shows the effect of merging parallel

segments in narrow rectangles. The total edge length is

greatly reduced, while the increment on average path length
is relatively small. Although fewer edges will generally

result in larger edge weight, the total weighted edge length

(wire length) can still be reduced by this merging operation

due to improved wire sharing among paths. Thus, if we

relax the requirement on the path length in definition 4,

from the exact Manhattan distance ||P(u)−P(v)|| to within (1

+ ε)||P(u) − P(v)||, we can merge the double parallel edges

to save wires. Assume we have a vertical narrow rectangle

with dimensions h×w, and we merge the two vertical edges

to a single edge placed in middle. The total edge length may

be reduced by h, while the lengths of some connection paths

increase by w2+ w2 = w. So if the h/w ratio is high, this
operation can be very helpful on relieving routing

congestion, while preserving the low power consumption of

a bus matrix. In the wire length reduction algorithm, we

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.4, July-Aug. 2012 pp-2735-2741 ISSN: 2249-6645

www.ijmer.com 2739 | Page

repeatedly search for pairs of parallel double lines in the bus

matrix graph, and for each pair, calculate its potential

reduction ∆l on edge length and possible increment ∆p on

path lengths. The pair with highest ∆l/∆p ration is merged,

and the modified graph will have a new set of connection
paths and edge weights. If the added total wire length is

really reduced, we keep the merging operation and continue

to the next iteration, otherwise discard the operation.

Eventually, there will be no positive wire length reduction

in the graph, and we have a series of bus matrix graphs with

decreasing wire length and increasing path lengths, where a

comprise can be chosen. The process of searching for

vertical mergeable parallel segments is illustrated in Fig. 8.

(Horizontal lines are processed in the same way with x-y

coordinates switched.) First, the vertical line segments in

the Steiner graphs are sorted by their x coordinates, denoted

as u1, u2, · · · , uk. Then for each pair of segments ui, uj (i
< j) with a common y interval [y1, y2], if between i and j

there is no other vertical segment on [y1, y2], ui and uj are a

pair of mergeable segments. On the parallel segments ui and

uj , let cl denote the count of horizontal lines connected to

the left, cr denote the count of lines connected to the right,

and cm the count of lines connecting ui and uj in the

middle. Assume cl < cr, so the combined vertical segment

may not be at the middle but have an offset δ to the right of

the midpoint. The reduction on total edge length ∆l is by

combining the vertical segments of length h and changing

the lengths of related horizontal connections. The two
vertical segments are reduced to one, which reduces edge

length by h. The central cm edges of length w are totally

removed. However, the lengths of cl connections on the left

are increased by ω/2 +δ and the lengths of cr connections

on the right are increased by ω/2 –δ To sum up ∆l =h+Cmω

- Cl(ω/2 +δ) – Cr(ω/2 –δ) On the possible increment on path

lengths, since the left vertical segment is pushed rightward

by w2 +δ, a path may need to detour and add ∆p = w + 2δ of

distance. So the ratio is

∆l/∆p = h+Cmω-Cl(ω/2+δ)-Cr(ω/2-δ)/ω+2δ

= Cr-Cl/2+h-(Cr-Cm)ω/ω+2δ

Fig 9 Merging stages of iterations

In Fig. 9, the stages of the merging iterations applied on a

Steiner graph. First, the long and narrow rectangles are

removed, followed by wider rectangles. still can achieve a

significant reduction on total wire length in average cases

Notice that the segment merging operation also helps to
merge Steiner nodes which are generated very close to each

other. In practice, locally congested Steiner nodes can be

hard to implement, because each node needs the area for a

switch box and its control unit. Our operation does not

guarantee to resolve all closely placed nodes, since it

prioritizes longer segments, and may leave small square-

shaped sub graphs unchanged. Nevertheless, this situation

can be easily resolved by a post-processing algorithm,

which scans each Steiner node (denoted as vi), look at vi’s

close neighbors within a small d×d box and compute the

density of Steiner nodes in the area. For a box with too

many nodes, we can shrink all the nodes in that box into
one, and implement it by a single switch. The changes on

the bus matrix graph by this operation are limited in the

small box areas.

V. Bus Matrix Control Units and Wires
Apart from path lengths and data wire lengths, the control

overhead needs to be considered for a complete

optimization. Although the data lines consume the major

amount of routing resource because they are usually at least
64 bit (32 bit × 2-way) wide, control overhead is increased

compared to traditional bus architectures by adopting

Steiner graphs. We need a lot of switches at Steiner nodes

to guide the on-chip traffic, and each switch needs a certain

number of control signals depending on its node degree and

edge weights. Each slave device has an arbiter which

handles the requests from masters and decides the

connection. The result is sent to the central switch control

unit, where all the connection paths are stored. Depending

on the set of active paths, the central switch control sends

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.4, July-Aug. 2012 pp-2735-2741 ISSN: 2249-6645

www.ijmer.com 2740 | Page

control signals to all the switches on each path, which

together instantly create the master-to-slave connection

requested by the master device.

VI. Experimental Results

In our experiments, we implement all the related

algorithms, including the shortest-path Steiner graph

generation, Steiner graph reduction by parallel line

merging, and the edge weight maximum matching. The

programs are tested on Windows Vista platform with a 2.2

GHz Intel Core2 processor. The running time is short on all

the test cases, because the algorithms are time/space

efficient, and also because most SoC bus matrices will not

need to connect too many components (under 32 in our
cases). The test cases we use are mostly artificial, hand

made (T0 and T1), or randomly generated (T2∆12). They

are the same cases used in [23] and [24]. In each test case,

the master and slave devices are distributed over a 10mm ×

10 mm square. The power consumption is estimated by the

driven capacitance

Fig 10 the effect of merging parallel segments with address

location

of data transactions, and can be calculated as a linear
combination of path length and switches along the path.

Path lengths are minimized by the bus matrix graph

construction, since wires are the major power consumer.

For the purpose of data completeness, we add the power

overhead from the switches on Steiner nodes. According to

[27] and [28], we estimate that under 90 nm technology,

each mux or demux in crossbar switches has about the same

capacitance as 25 μm of wires. The total wire length on data

wires and control overhead are added straightforwardly.

Data wire length is the sum of weighted edge length in the

bus matrix graph.

The objective can be minimum power (i.e., average path
length), minimum wire length, or a combination of the two.

At the top of each column:

1) ∑Lvs,vt is the sum of Manhattan distances on all the

master-slave pairs;

2) Ltree is the average induced path length (major dynamic

power) of master-slave connections in tree structured

AMBA AHB buses or bus matrices;

3) Lpath is the average path length (major dynamic power)

of master-slave connections in the bus matrix graph;
4) Pswitch is the added percentage of power overhead in

data transactions by the switches on Steiner nodes;

5) ∑Lwire is the total data wire length;

6) ∑Wctrl is the added percentage of control wire overhead.

In the minimal power section, the average path length is

exactly ∑Lvs,vt /(mn), while the total wire length is about

one ourth to one third of the total connection length.

Compared to traditional bus implementation in [23], the

dynamic power saving is mostly over 90% even with the

switching overhead added. Overhead on dynamic power

increases with the number of components increasing, which

requires more bandwidth and larger switches. The
percentage is generally under 20% on random cases with

under 30 components. So the overall dynamic power here is

close to optimal. On the overhead of control wires, the

percentage is mostly under 10%, because the number of

control signals required is usually very low compared to the

64 bit wide data lines.

In the minimal wire section, the bus matrix graphs are

reduced by the parallel line merging heuristic. As a result

the wire length on most cases is greatly reduced Compared

to the reduced wire length, the increase on average path

length is much lower, mostly around 10% and all under
20%. The power overhead percentage is also increased,

because although the Steiner nodes are reduced, the

switches along each path are not reduced as much in

number, but increased in size. Still, these solutions are

relatively power efficient, and we have series of

intermediate solutions between minimal power and minimal

wire are available for choice.

To see how the path lengths reflect communication power

in SoCs, we calculate the bus power consumption with a

fixed set of parameters. Assuming 1V of power voltage, 0.2

fF/μm

of wire capacitance, 4 Gb/s of transaction bit rate, and 20%
of bus matrix activity rate, Table V lists the estimated

power on bus matrix in each of our test cases. Again we can

see a large reduction on total bus power (Ppath + Pswitch)

compared to Ptree by traditional Steiner tree structures

between certain master-slave pairs may only happen at

some specific conditions. So instead of a set of arcs A in the

communication graph, we can have a series of arc sets

A1,A2, · · ·,Ac, each one smaller than the original set A,

denoting a set of simultaneous connections.

VII. Conclusion
We optimized on-chip communications referring to the

AMBA AHB bus (matrix) architecture. The weaknesses of

original bus matrices, such as low power efficiency and low

wire efficiency, are resolved by using a Steiner graph

structure. Compared to network-on-chip which has better

bandwidth flexibility, bus matrix has much less latency

Therefore, we believe bus matrix architectures will be

widely applied for efficient communications in various

future systems. The principle of our work on reducing
power is to minimize the data movement on the chip; and

that on reducing wires is to maximize wire sharing among

different connections. Devised algorithms which can

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.4, July-Aug. 2012 pp-2735-2741 ISSN: 2249-6645

www.ijmer.com 2741 | Page

extensively exploit the on-chip physical design space for a

thorough optimization on power and wire efficiency. The

results show promising potentials of bus matrices for low

power and high performance on-chip communications.

More improvements can be explored in future works on
formulations, algorithms, and the overall

Optimization flow.

References
[1] S. V. Adve, V. S. Adve, G. Agha, M. I. Frank, M. J.

Garzar´an, J. C. Hart, W.-M. W. Hwu, R. E. Johnson, L.

V. Kale, R. Kumar, D. Marinov, K. Nahrstedt, D. Padua,
M. Parthasarathy, S. J. Patel, G. Rosu, D. Roth, M. Snir,

J. Torrellas, and C. Zilles, Parallel Computing Research
at Illinois: The Upcrc Agenda. Urbana, IL: Univ. Illinois

Urbana-Champaign, Nov. 2008.

[2] C. J. Alpertt, A. B. Kahng, C. N. Szet, and Q. Wang,
“Timing-driven Steiner trees are (practically) free,” in

Proc. ACM/IEEE Des. Autom. Conf., Sep. 2006, pp.
389–392.

[3] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P.
Husbands, K. Keutzer, D. A. Patterson, W. L. Plishker, J.

Shalf, S. W. Williams, and K. A. Yelick, “The landscape
of parallel computing research: A view from Berkeley,”

Dept. Electric. Eng. Comput. Sci., Univ. California,
Berkeley, Tech. Rep. UCB/EECS-2006-183, 2006.

[4] B. Bollob´as, D. Coppersmith, and M. Elkin, “Sparse
distance preservers and additive spanners,” SIAM J.

Discrete Math., vol. 19, no. 4, pp. 1029– 1055, 2005.
[5] L. A. Ca, Q. Wu, M. Pedram, and X. Wu, “Clock-gating

and its application to low power design of sequential
circuits,” in Proc. IEEE Custom Integr. Circuits Conf.,

vol. 47. Mar. 2000, pp. 415–420.
[6] J. Y. Chen, W. B. Jone, J. S. Wang, H. I. Lu, and T. F.

Chen, “Segmented bus design for low power systems,”
IEEE Trans. Very Large Scale Integr. Syst., vol. 7, no. 1,

pp. 25–29, Mar. 1999.
[7] J. Cong, A. B. Kahng, and K.-S. Leung, “Efficient

algorithms for the minimum shortest path Steiner
arborescence problem with applications to VLSI physical

design,” IEEE Trans. Comput.-Aided Design, vol. 17,
no. 1, pp. 24–39, Jan. 1998.

[8] J. Cong, A. B. Kahng, G. Robins, M. Sarrafzadeh, and C.
K. Wong, “Provably good performance-driven global

routing,” IEEE Trans. Comput.-Aided Design, vol. 11,

no. 6, pp. 739–752, Jun. 1992.
[9] W. Dally, “Keynote: The end of denial architectre and

the rise of throughput computing,” in Proc. ACM/IEEE
Des. Autom. Conf., Jul. 2009, p. xv.

[10] W. Dally and B. Towles, “Route packets, not wires: On-
chip interconnection network,” in Proc. ACM/IEEE Des.

Autom. Conf., Jun. 2001, pp. 684–689.
[11] M. Donno, A. Ivaldi, L. Benini, and E. Macii, “Clock-

tree power optimization based on RTL clock-gating,” in
Proc. ACM/IEEE Des. Autom. Conf., Jun. 2003, pp. 622–

627.
[12] J. Griffith, G. Robins, J. Salowe, and T. Zhang, “Closing

the gap: Nearoptimal Steiner trees in polynomial time,”
IEEE Trans. Comput.-Aided Design, vol. 13, no. 11, pp.

1351–1365, Nov. 1994.
[13] R. Ho, K. W. Mai, and M. A. Horowitz, “The future of

wires,” Proc. IEEE, vol. 89, no. 4, pp. 490–504, Apr.
2001.

[14] C.-T. Hsieh and M. Pedram, “An edge-based heuristic
for Steiner routing,” IEEE Trans. Comput.-Aided Design,

vol. 13, no. 12, pp. 1563– 1568, Dec. 1994.
[15] K. Lahiri and A. Raghunathan, “Power analysis of

system-level onchip communication architectures,” in
Proc. Int. Conf. Hardw.-Softw. Codesign Syst. Synthesis,

2004, pp. 236–241.

[16] K. Lahiri, A. Raghunathan, and S. Dey, “Efficient
exploration of the SoC communication architecture

design space,” in Proc. Int. Conf. Comput.- Aided
Design, 2000, pp. 424–430.

[17] S. Pasricha, N. Dutt, E. Bozorgzadeh, and M. Ben-
Romdhane, “Floorplan-aware automated synthesis of

bus-based communication architectures,” in Proc.
ACM/IEEE Des. Autom. Conf., Jun. 2005, pp. 565–570.

[18] S. Pasricha, Y.-H. Park, F. J. Kurdahi, and N. Dutt,
“System-level power performance tradeoffs in bus matrix

communication architecture synthesis,” in Proc. Int.
Conf. Hardw.-Softw. Codesign Syst. Synthesis, 2006, pp.

300–305.
[19] A. Pinto, L. Carloni, and A. Sangiovanni-Vincentelli,

“Constraint-drive communication synthesis,” in Proc.
ACM/IEEE Des. Autom. Conf., Jun. 2002, pp. 783–788.

[20] M. Powell, S. H. Yang, B. Falsafi, K. Roy, and T. N.
Vijaykumar, “Gatedvdd: A circuit technique to reduce

leakage in deep-submicron cache memories,” in Proc.
Int. Symp. Low Power Electron. Design, 2000, pp. 90–

95.
[21] S. K. Rao, P. Sadayappan, F. K. Hwang, and P. W. Shor,

“The rectilinear Steiner arborescence problem,”
Algorithmica, vol. 7, nos. 1–6, pp. 277– 288, 1992.

[22] W. Shi and S. Chen, “The rectilinear Steiner
arborescence problem is np-complete,” in Proc. ACM-

SIAM Symp. Discrete Algorithms, 2000, pp. 780–787.
[23] R. Wang, N.-C. Chou, B. Salefski, and C.-K. Cheng,

“Low power gated bus synthesis using shortest-path

Steiner graph for system-on-chip communications,” in
Proc. ACM/IEEE Des. Autom. Conf., Jul. 2009,pp. 166–

171.
[24] R. Wang, E. Young, R. Graham, and C.-K. Cheng,

“Physical synthesis of bus matrix for high bandwidth low
power on-chip communications,” in Proc. ACM Int.

Symp. Phys. Des., 2010, pp. 91–96.
[25] D. West, Introduction to Graph Theory. Englewood

Cliffs, NJ: Prentice- Hall, 1999.
[26] M. Zachariasen, “A catalog of Hanan grid problems,”

Networks, vol. 38, no. 2, pp. 200–201, 2000.
[27] L. Zhang, H. Chen, B. Yao, K. Hamilton, and C.-K.

Cheng, “Repeated on-chip interconnect analysis and
evaluation of delay, power, and bandwidth metrics under

different design goals,” in Proc. Int. Symp. Quality
Electron. Design, 2007, pp. 251–256.

[28] Y. Zhang, X. Hu, A. Deutsch, A. E. Engin, and C.-K. C.
J. Buckwalter, “Prediction of high-performance on-chip

global interconnection,” in Proc. Int. Workshop Syst.-
Level Interconnect Prediction, 2009, pp. 61– 68.

[29] Amba 2.0 Specification. (1999) [Online]. Available:
http://www. arm.com/products/solutions/AMBA

Spec.html
[30] “Coreconnect bus architecture,” in IBM White Paper.

1999. [31] Amba 3 Specification. (2003) [Online].
Available: http://www.arm.com/ products/solutions/axi

spec.html

http://www/
http://www.arm.com/

