
International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.4, July-Aug. 2012 pp-2742-2747 ISSN: 2249-6645

www.ijmer.com 2742 | Page

B. Prasad kumar, B. Chinna rao, P. M. Francis
1M. tech (PG student) GITAS

2Prof. & Head, Dept. of ECE, GITAS
3Asst. Prof. in Dept. of ECE, GITAS

Abstract: Network intrusion detection system is used to

inspect packet contents against thousands of predefined

malicious or suspicious patterns. Because traditional

software alone pattern matching approaches can no longer

meet the high throughput of today’s networking, many
hardware approaches are proposed to accelerate pattern

matching. Among hardware approaches, memory-based

architecture has attracted a lot of attention because of its

easy reconfigurability and scalability. In order to

accommodate the increasing number of attack patterns and

meet the throughput requirement of networks, a successful

network intrusion detection system must have a memory-

efficient pattern- matching algorithm and hardware design.

In this paper, we propose a memory-efficient pattern-

matching algorithm which can significantly reduce the

memory requirement. For Snort rule sets, the new

algorithm achieves 21% of memory reduction compared
with the traditional Aho–Corasick algorithm. In addition,

we can gain 24% of memory reduction by integrating our

approach to the bit-split algorithm which is the state-of-

the-art memory-based approach.

Index Terms: Aho–Corasick (AC) algorithm, finite

automata, pattern matching.

I. Introduction

The purpose of a signature-based network intru-sion

detection system is to prevent malicious network

attacks by identifying known attack patterns. Due to

the in-creasing complexity of network traffic and the

growing number of attacks, an intrusion detection

system must be efficient, flexible and scalable.The

primary function of an intrusion detection system is to

perform matching of attack string patterns. Because string

matching is the most computative task in network intrusion
detection (NIDS) systems, many hardware approaches are

pro-posed to accelerate string matching. The hardware

approaches may be classified into two main categories, the

logic [5], [8], [13],[16], [21], [26] and the memory

architectures [4], [6], [7], [11], [14], [15], [22]–[24], [27]–

[29] In terms of reconfigurability and scalability, the

memory architecture has attracted a lot of attention because

it allows on-the-fly pattern update on memory without

resynthesis and relay out

Fig 1 DFA for matching “bcdf” and “pcdg”

Fig 2 basic memory architecture

The basic memory architecture works as follows. First, the

(attack) string patterns are compiled to a finite-state

machine (FSM) whose output is asserted when any

substring of input strings matches the string patterns. Then,

the corre-sponding state transition table of the FSM is

stored in memory. For instance, Fig. 1 shows the state

transition graph of the FSM to match two string patterns

“bcdf” and “pcdg”, where all tran-sitions to state 0 are

omitted. States 4 and 8 are the final states indicating the

matching of string patterns “bcdf” and “pcdg”,
respectively. Fig. 2 presents a simple memory architecture

to implement the FSM. In the architecture, the memory

address register consists of the current state and input

character; the decoder converts the memory address to the

corresponding memory location, which stores the next state

and the match vector information. A “0” in the match

vector indicates that no “suspicious” pattern is matched;

otherwise the value in the matched vector indicates which

pattern is matched. For example in Fig. 2, suppose the

current state is 7 and the input character is . The decoder

will point to the memory location which stores the next

state 8 and the match vector 2. Here, the match vector 2
indicates the pattern “pcdg” is matched. Due to the

increasing number of attacks, the memory re-quired for

implementing the corresponding FSM increases to the

memory size, reducing the memory size has become

Novel Pattern Matching using FSM Algorithm for Memory

Architecture

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.4, July-Aug. 2012 pp-2742-2747 ISSN: 2249-6645

www.ijmer.com 2743 | Page

imperative. Certain complicated virus string patterns can be

represented by regular expressions. For example, the

pattern for detecting the internet radio protocol is

represented as “membername*session*player” For memory

architecture, only few pre-vious works [15], [29] proposed
to reduce the complexity of reg-ular expressions. Still,

majority of the patterns are exact string patterns. For

example in Snort V2.4, there are 85% of exact string

patterns. In this paper, we focus on reducing the memory

size of the exact string patterns. We observe that many

string patterns are similar because of common sub-strings.

However, when string patterns are compiled into an FSM,

the similarity does not lead to a small FSM. Consider the

same example in Fig. 1 where two string patterns have a

common sub-string “cd”. Because of the common sub-

string, state 2 has “similar” state transitions to those of state

6. Similarly, states 3 and 7 have “similar” transitions.
However, states 2 and 6, states 3 and 7 are not equivalent

states and cannot be merged directly. We call a state

machine merging those non-equivalent “similar” states,

merg_FSM.

In this paper, we propose a state-traversal

mechanism on a merge_FSM while achieving the same

purposes of pattern matching. Since the number of states in

merg_FSM can be drastically smaller than the original

FSM, it results in a much smaller memory size. We also

show that hardware needed to support the state-traversal

mechanism is limited. Experimental results show that our
algorithm achieves 21% of memory reduction compared

with the traditional AC algorithm for total string patterns of

Snort [24]. In addition, since our approach is

complementary to other memory reduction approaches, we

can obtain substantial gain even after applying to the

existing state-of-the-art algorithms. For example, after

integrating with the bit-split algorithm [27], we can gain

24% of memory reduction.

II. RELATED RESEARCHES
In this section, we review several related researches in this

area. In the past few years, many algorithms and hardware

designs are proposed to accelerate pattern matching. The

hard-ware approaches can be classified into two main

categories, logic and memory architectures. The logic

architectures mostly use on-chip logic resources of field-

programmable gate array (FPGA) to convert regular

expression pattern into parallel state machines or

combinatorial circuits because FPGA allows for updating

new attack patterns. Sidhu et al. [26] proposed algorithm to

compile regular expression patterns into combi-natorial
circuits based on nondeterministic finite automaton (NFA).

Hutchings et al. [13] developed a module generator that

shared common prefixes to reduce the circuit area on

FPGA. Moscola et al. [21] presented a content-scanning

module on FPGA for an internet firewall. Clark et al. [8]

improved area and throughput by adding predecoded wide

parallel inputs to traditional NFA implementations. Baker

et al. [5] presented a pre-decoded multiple-pipeline shift-

and-compare matcher which reduced routing complexity

and comparator size by con-verting incoming characters

into many bit lines. Lin et al. [16] proposed a sharing
architecture which significantly reduces circuit areas by

sharing common infix and suffix sub-patterns.From the

perspectives of reconfigurability and scalability, memory

architectures are attractive because memory is flexible and

scalable. The Aho–Corasick (AC) algorithm [1] is the most

popular algorithm which allows for matching multiple

string patterns. Aldwairi et al. [2] proposed a configurable

string matching accelerator based on a memory
implementation of the AC FSM. Tan et al. [27] proposed

the bit-split algorithm partitioning a large AC state machine

into small state machines to significantly reduce the

memory requirements. Jung et al. [14] presented an FPGA

implementation of the bit-split string matching architecture.

Piyachon et al. [22] proposed to reduce the memory size by

relabeling states of AC state machine. Ad-ditionally,

Piyachon et al. [23] proposed to use Label Transition Table

and CAM-based Lookup Table to significantly reduce the

memory size. Cho et al. [6], [7] proposed a hash-based

pattern matching co-processor where memory is used to

store the list of substrings and the state transitions.
Dharmapurikar et al. [11] proposed a pattern matching

algorithm which modifies the AC algorithm to consider

multiple characters at a time. Furthermore, the content

addressable memories (CAM) is also widely used for string

matching because it can match the entire pattern at once

when the pattern is shifted past the CAM. Gokhale et al.

[12] used CAM to perform parallel search at a high speed.

Sourdis et al. [25] applied the pre-decoded tech-nique for

the CAM-based pattern matching to reduce the area.

Additionally, Yu et al. [30] presented a ternary content

address-able memory (TCAM)-based multiple-pattern
matching which can handle complex patterns, correlated

patterns, and patterns with negation.

 The hash-based approach was proposed to utilize

Bloom filter for deep packet inspection. Dharmapurikar et

al. [10] proposed a hashing-table lookup mechanism

utilizing parallel bloom filters to enable large number of

fixed-length strings to be scanned in hardware. Lockwood

et al. [19] proposed an intelligent gateway based on Bloom

filter that provides Internet worm and virus protection in

both local and wide area networks.

III. REVIEW OF AC ALGORITHM
 In this section, we review the AC algorithm.

Among all memory architectures, the AC algorithm has

been widely adopted for string matching in [2], [14], [15],

[22], [23], [27] because the algorithm can effectively

reduce the number of state transitions and therefore the

memory size. Using the same example as in Figs. 1 and 3

shows the state transition diagram derived from the AC

algorithm where the solid lines represent the valid

transitions while the dotted lines represent a new type of
state transition called the failure transitions.

The failure transition is explained as follows.

Given a cur-rent state and an input character, the AC

machine first checks whether there is a valid transition for

the input character; oth-erwise, the machine jumps to the

next state where the failure transition points. Then, the

machine recursively considers the same input character

until the character causes a valid transi-tion. Consider an

example when an AC machine is in state 1 and the input

character is . According to the AC state table in Fig. 4,

there is no valid transition from state 1 given the input

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.4, July-Aug. 2012 pp-2742-2747 ISSN: 2249-6645

www.ijmer.com 2744 | Page

Fig. 3. State diagram of an AC machine.

Fig4 . AC state table

Fig 5 . Merging similar states

character . When there is no valid transition, the AC

machine takes a failure transition back to state 0. Then in

the next cycle, the AC machine reconsiders the same input

character in state 0 and finds a valid transition to state 5.

This example shows that an AC machine may take more

than one cycle to process an input character In Fig. 3, the

double-circled nodes indicate the final states of patterns. In

Fig. 3, state 4, the final state of the first string pattern

“bcdf”, stores the match vector {P2,P1} = {01} and state 8,

the final state of the second string pattern “pcdg”, stores the
match vector of {P2,P1} = {10} Except the final states, the

other states store the match vector {P2,P1} = {00} to

simply express those states are not final states.

IV. STATE TRAVERSAL MECHANISM

ONAMERG FSM
In our design, we reuse those memory spaces storing zero
vectors {00} to store useful path information called

pathVec. First, each bit of the pathVec corresponds to a

string pattern. Then, if there exists a path from the initial

state to a final state, which matches a string pattern, the

corresponding bit of the pathVec of the states on the path

will be set to 1. Otherwise, they are set to 0. Consider the

string pattern “bcdf” whose final state is state 4 in Fig. 7.

The path from state 0, via states 1, 2, 3 to the final state 4

matches the first string pattern “bcdf”. There-fore, the first

bit of the pathVec of the states on the path, {state 0, state 1,

state 2, state 3, and state 4}, is set to 1. Similarly, the path
from state 0, via states 5, 6, 7 to the final state 8 matches

the second string pattern “pcdg”. Therefore, the second bit

of the pathVec of the states on the path, {state 0, state 5,

state 6, state 7, and state 8}, is set to 1. In addition, we add

an additional bit, called ifFinal, to indicate whether the

state is a final state. For example, because states 4 and 8 are

final states, the ifFinal bits of states 4 and 8 are set to 1, the
others are set to 0. As shown in Fig. 7, each state stores the

pathVec and ifFinal as the form, “pathVec_ ifFinal”.

Compared with the original AC state machine in Fig. 3, we

only add an additional bit to each state. We have mentioned

that in this example, states 2 and 6, states 3 and 7 are

similar because they have similar transitions. How-ever,

they are not equivalent. Note that two states are equivalent

if and only if their next states are equivalent. In Fig. 7,

states 3 and 7 are similar but not equivalent because for the

same input , state 3 takes a transition to state 4 while state 7

takes a failure transition to state 0. Similarly, state 2 and

state 6 are not equiv-alent states because their next states,
state 3 and state 7, are not equivalent states. In our

algorithm, we define such similar states as pseudo-

equivalent states. The definition is as follows.

Definition: Two states are defined as pseudo-equivalent

states if they have identical input transitions, identical

failure transitions, and identical ifFinal bit, but different

next states.In Fig. 7, states 2 and 6 are pseudo-equivalent

states be-cause they have identical input transitions ,

identical failure transitions to state 0 and identical ifFinal

bit 0. Also, state 3 and state 7 are pseudo-equivalent states.

In our algorithm, the pseudo-equivalent states 2 and 6 are
merged to be state 26 and states 3 and 7 are merged to be

state 37, as shown in Fig. 8. The pathVec_ifFinal are

updated by taking the union on the pathVec_ifFinal of the

merged states. Therefore, the pathVec_ifFinal of states 26

and 37 are modified to be {11_0} In addition, we need a

register, called preReg, to trace the precedent pathVec in

each state. The width of preReg is equal to the width of

pathVec. Each bit of the preReg also corresponds to a

string pattern. The preReg is updated in each state by per-

forming a bitwise AND operation on the pathVec of the

next state and its current value. By tracing the precedent

path entering into the merged state, we can differentiate all
merged states. When the final state is reached, the value of

the preReg indicates the match vector of the matched

pattern. During the state traversal, if all the bits of the

preReg become 0, the machine will go to the failure mode

and choose the failure transition as in the AC algorithm.

After any failure transition, all the bits of the preReg are

reset to 1. the string “pcdf” is ap-plied. Initially, in state 0,

the preReg is initialized to{P2,P1} ={11} After taking the

input character ,P the merg_FSM goes to state 5 and

updates the preReg by performing a bitwise AND operation

on the pathVec {10} f state 5 and the current preReg {11}
The resulting new value of the preReg will be {P2,P1}

={10 AND 11}={10} Then, after taking the input character

, the merg_FSM goes to state 26 and updates the preReg by

performing a bitwise AND operation on the pathVec {11}

of state 26 and the current preReg {10} The preReg

remains{P2,p1}={11AND10} ={10} Further, after taking

the input character , the merg_FSM goes to state 37 and

updates the preReg by performing a bitwise AND operation

on the pathVec {11} of state 37 and the current preReg

{10} The preReg remains {P2P1} = {11AND10}={10}

Finally, after taking the input character , the merg_FSM
goes to state 4. After performing a bitwise AND operation

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.4, July-Aug. 2012 pp-2742-2747 ISSN: 2249-6645

www.ijmer.com 2745 | Page

on the pathVec {01} of state 4 and the current preReg{10}

the preReg becomes{P2P1}={01AND10}={00} According

to our algorithm, during the state traversal, if all the bits of

the preReg become 0, the machine will go to the failure

mode and choose the failure transition as in the AC
algorithm. Therefore, the machine takes the failure

transition to state 0 instead of state 4.

V. LOOP BACK IN MERGED STATES
When certain cases of multiple sections of pseudo-

equivalent states are merged, it may create loop back

problem in a state machine. The reason for the loop back

problem comes from merging common sub-patterns with

different sequences. For example, the two patterns,
“abcdef” and “wdebcg,” have common sub-patterns, “bc”

and “de,” which appear in different sequences. Fig. 16

shows the corresponding state machine. Because of the

common sub-patterns, “bc”, states 2 and 10, states 3 and 11

are pseudo-equivalent states. And, because of the common

sub-patterns, “de”, states 4 and 8, states 5 and 9 are also

pseudo-equivalent states. Merging the pseudo-equivalent

states will create a loop back transition from state 5 to state

2, as shown in

Fig. 6 Merging pseudo-equivalent states with different
sequences.

 The loop transition may cause false positive matching

results. For example, the input string “abcdebcdef” will be

mistaken as a match of the pattern “abcdef.” In other

words, as long as the common substrings appear in

sequence, merging the corresponding pseudo-equivalent

states will not result in loop back transitions. Therefore, in

our program, we record and identify the orders of common

sub-patterns. If the common sub-patterns appear in

sequence, the corresponding pseudo-equivalent states can

be merged without loop back problems. Fig. 18 shows the
pseudo code of our algorithm to find common substrings

without the loop back problem. First, all common sub-

strings are extracted by the longest common substring

algorithm [9]. The algorithm can report all of the common

substrings. Then, the common substrings are labeled as

new sequences. Next, we use the longest common

subsequence (LCS) algorithm [20] to find all of the longest

subsequence common to all strings. The results from the

LCS algorithm guarantee that there will be no loop back

transition. For example, consider the two patterns,

“abcdefghijklm” and “abcwsghidefxyklm.” Using the

longest common substring algorithm, we can extract all of
the common substrings of these two patterns such as “abc”,

“def”, “ghi” and “klm”. Then, we label the substrings

“abc”, “def”, “ghi”, and “klm” as ,αβγδ , and , respectively.

Therefore, the sequence of substrings in “abcdefghijklm” is

labeled as “ ” while the sequence of substrings in

“abcwsghidefxyklm” is labeled as “ ”. We subsequently use

LCS algorithm to find all of the longest common

subsequences among the two new sequences, “αβγδ ” and “

” and the results are “ αβδ” or “ αγδ”. Therefore,we can

merge the subsequences of (“abc”), (“ghi”) and (“klm”) or

the subsequences of (“abc”), (“def”) and (“klm”) without

the loop back problem. Notice that the result of LCS may

not be unique.

VI. HARDWARE ARCHITECTURE

Fig.7 shows our hardware module which can be configured

for matching 16 or 32 patterns with a state machine

containing 1024 valid transitions at most. In Fig.7,8, the

register, called address_register, is used to store the current

state and the input character. The valid_memory is used to

store the information of valid_state, pathVec, and ifFinal

corresponding to each valid transition while the
failure_memory is used to store the failure_state

corresponding to each failure transition. In this prototype,

we use a hardwired circuit, called A2P, to translate the

content of the address_register to a contiguous scope,

called pos, to utilize the valid_memory. The circuit A2P

can be implemented using hardwired circuit or CAM

[17]. In addition, the signal n_valid is high if there is no

valid transition corresponding to the address_register.

Furthermore, the register

Fig. 7. Hardware module for the new algorithm.

Fig 8 Internal architecture of proposed system

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.4, July-Aug. 2012 pp-2742-2747 ISSN: 2249-6645

www.ijmer.com 2746 | Page

called preReg, is used to trace the precedent pathVec in

each state. The preReg is initiated to be 1 for all bits and is

updated by performing a bitwise AND operation on its

current value and the pathVec from the valid_memory. The

ns_ctrl unit is used to determine the next state by the value
of preReg and n_valid. If the preReg is 0 for all bits or the

n_valid is 1, the ns_sel will output low to let the

failure_state update the current_state register. On the other

hand, if the preReg is not zero and the n_valid is not 1, the

ns_sel will output high to let the valid_state update

the current_state register.

VII. EXPERIMENTAL RESULTS
Using the version 2.4 of Snort rule set, we extract 2217

exact string patterns containing 36 539 characters from the

rule database. The results are compared with the methods

of the AC algorithm and the bit-split algorithm.

Fig 9 string patterns from Snort rule database

The flow of our experiment is shown in Fig.9. In the first
stage, we obtain string patterns from Snort rule database. In

the second stage, we group 32 string patterns as a module

based on the similarity of string patterns. Further, in the

third stage, we use LCS to extract substrings without loop

back problem. Because the solution of LCS may not be

unique, we select the common substrings which have the

largest sharing gain. The sharing gain of common

substrings is defined as the length of common substrings

multiplied by the number of patterns sharing the common

substrings.

Fig 10 the selection line with clk to the pesodo random

order adjustment

For example, three patterns, “1common1”, “2common2”,

and “3common3” have the common substrings common”.

The sharing gain of the common substrings is because the

substring “common” has six characters which are shared by

three patterns. In the final stage, we merge the extracted

common substrings and generate the transition table. Table

I shows the results before and after integrating our

algorithm to the AC algorithm. Columns one, two and three
show the name of the rule set, the number of patterns, and

the number of characters of the rule set. Columns four, five,

and six show the number of state transitions, the number of

states, and the memory size of the AC algorithm. Columns

seven, eight, and nine show the results of our approach.

Column ten shows the memory reduction compared to the

AC algorithm. As shown in Fig. 10, the memory

requirement includes the size of the valid memory and the

failure memory. Because the memory requirement is
proportional to the number of states, our algorithm has

reduced memory size on the traditional AC algorithm.

Fig 11 Final result of memory allocation and ram

adjustment

 Using the traditional AC algorithm, the number of

transitions and states are 6793 and 6804, respectively. The

memory size is 49 267 bytes. Integrating our algorithm to

the AC algorithm, the number of transitions and states are

reduced to 4432 and 3846, respectively. The memory size

is reduced to 30 699 bytes, 38% of memory reduction from
the AC algorithm. For total 2217 string patterns of Snort

rule sets, our algorithm achieves a 21% memory reduction

compared with the AC algorithm. Because the state-of-the-

art bit-split algorithm is based on the AC algorithm, our

algorithm can also be integrated to the bitsplit algorithm to

further reduce memory requirements. Applying the bit-split

algorithm which splits the traditional AC state machine into

4 state machines, the number of transitions and states are

21 949 and 21 993, respectively. The size of memory is

159 202 bytes. Integrating our algorithm to the bit-split

algorithm, the number of transitions and states are reduced
to 14 437 and 12 664, respectively. The size of memory is

reduced to 98 400 bytes. The memory reduction achieves

38%. For total 2,217 string patterns of Snort rule sets,

integrating our algorithm to the bit-split algorithm can

achieve 24% of memory reduction. Furthermore, we have

synthesized the hardware module in Fig. 19 using the

ASIC flow of the UMC 0.18 m technology. The results are

compared with [2], [6], [27], [28], [30] as shown in Fig 11,

columns 2, 3, and 4 shows the number of characters, the

memory size, and the throughput. Column 5 shows the

memory utilization per character while column 6 shows the

memory efficiency which is defined as the following
equation:

𝑴𝒆𝒎𝒐𝒓𝒚 𝒆𝒇𝒇𝒊𝒄𝒆𝒏𝒗𝒚 =
 𝒕𝒉𝒓𝒐𝒖𝒈𝒉𝒑𝒖𝒕𝑿𝑪𝒉𝒂𝒓.𝑵𝒖𝒎

𝑴𝒆𝒎

VIII. CONCLUSION
We have presented a memory-efficient pattern matching

algorithm which can significantly reduce the number of

states and transitions by merging pseudo-equivalent states

while maintaining correctness of string matching. In

addition, the new algorithm is complementary to other

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.4, July-Aug. 2012 pp-2742-2747 ISSN: 2249-6645

www.ijmer.com 2747 | Page

memory reduction approaches and provides further

reductions in memory needs. The experiments demonstrate

a significant reduction in memory footprint for data sets

commonly used to evaluate IDS systems.

REFERENCES
[1] A. V. Aho and M. J. Corasick, “Efficient string

matching: An AID to bibliographic search,” Commun.
ACM, vol. 18, no. 6, pp. 333–340, 1975.

[2] M. Aldwairi, T. Conte, and P. Franzon, “Configurable
string matching hardware for speeding up intrusion

detection,” Proc. ACM SIGARCH Comput. Arch. News,
vol. 33, no. 1, pp. 99–107, 2005.

[3] M. Alicherry, M. Muthuprasanna, and V. Kumar,
“High speed pattern matching for network IDS/IPS,” in

Proc. IEEE Int. Conf. Netw. Protocols
[4] B. Brodie, R. Cytron, and D. Taylor, “A scalable

architecture for high-throughput regular-expression
pattern matching,” in Proc. 33

rd
 Int. Symp. Comput.

Arch. (ISCA), 2006, pp. 191–122.
[5] Z. K. Baker and V. K. Prasanna, “High-throughput

linked-pattern matching for intrusion detection
systems,” in Proc. Symp. Arch. For Netw. Commun.

Syst. (ANCS), Oct. 2005, pp. 193–202.
[6] Y. H. Cho and W. H. Mangione-Smith, “A pattern

matching co-processor for network security,” in Proc.

42nd IEEE/ACM Des. Autom. Conf., Anaheim, CA,
Jun. 13–17, 2005, pp. 234–239.

[7] Y. H. Cho and W. H. Mangione-Smith, “Fast
reconfiguring deep packet filter for” in Proc. 13th Ann.

IEEE Symp. Field Program. Custom Comput. Mach.
(FCCM), 2005, pp. 215–224.

[8] C. R. Clark and D. E. Schimmel, “Scalable pattern
matching on high speed networks,” in Proc. 12th Ann.

IEEE Symp. Field Program. Custom Comput. Mach.
(FCCM), 2004, pp. 249–257.

[9] G. Dan, Algorithms on Strings, Trees and Sequences:
Computer Science and Computational Biology.

Cambridge, U.K.: Cambridge University Press, 1997.
[10] S. Dharmapurikar, P. Krishnamurthy, T. Sproull, and J.

Lockwood,“Deep packet inspection using parallel
bloom filters,” in Proc. 11

th
 Symp. High Perform.

Interconnects, Aug. 2003, pp. 44–53. [26] R. Sidhu and
V. K. Prasanna, “Fast regular expression

matchingusing FPGAS,” in Proc. 9th Ann. IEEE Symp.
Field-Program. CustomComput. Mach. (FCCM), 2001,

pp. 227–238.
[11] S. Dharmapurikar and J. Lockwood, “Fast and scalable

pattern matching for content filtering,” in Proc. Symp.
Arch. for Netw. Commun. Syst. (ANCS), Oct. 2005, pp.

183–192.
[12] M. Gokhale, D. Dubois, A. Dubois, M. Boorman, S.

Poole, and V. H. Granidt, “Towards gigabit rate
network intrusion detection,” in Proc. the Eleventh

Annual ACM/SIGDA International Conference on

Field- Programmable Logic and Applications (FPL
’03), 2002, pp. 404–413.

[13] B. L. Hutchings, R. Franklin, and D. Carver, “Assisting
network intrusion detection with reconfigurable

hardware,” in Proc. 10 th Annu. IEEE Symp. Field-
Program. Custom Comput. Mach. (FCCM), 2002, pp.

111–120.
[14] H. J. Jung, Z. K. Baker, and V. K. Prasanna,

“Performance of FPGA implementation of bit-split
architecture for intrusion detection systems,” presented

at the 20th Int. Parallel Distrib. Process. Symp.
(IPDPS),Rhodes Island, Greece, 2006.

[15] S. Kumar, S. Dharmapurikar, F. Yu, P. Crowley, and J.
Turner, “Algorithms to accelerate multiple regular

expressions matching for deep packet inspection,” in
Proc. ACM SIGCOMM Comput. Commun. Rev.,2006,

pp. 339–350.

[16] C. H. Lin, C. T. Huang, C. P. Jiang, and S. C. Chang,
“Optimization of pattern matching circuits for regular

expression on FPGA,” IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 15, no. 12, pp.1303–1310,

Dec. 2007.
[17] H. Lu, K. Zheng, B. Liu, X. Zhang, and Y. Liu, “A

memory-efficient parallel string matching architecture
for high-speed intrusion detection,” IEEE J. Sel. Areas

Commun., vol. 24, no. 10, pp. 1793–1804, Oct. 2006.
[18] J. V. Lunteren, “High-performance pattern-matching

for intrusion detection,” in Proc. IEEE INFOCOM,
2006, pp. 1–13.

[19] J. W. Lockwood, J. Moscola, M. Kulig, D. Reddick,
and T. Brooks,“Internet worm and virus protection in

dynamically reconfigurable hardware,” presented at the
Military Aerosp. Program. Logic Device(MAPLD),

Washington, DC, Sep. 2003, E10.
[20] D. Maier, “The complexity of some problems on

subsequences and supersequences,” J. ACM, vol. 25,
no. 2, pp. 322–336, 1978.

[21] J. Moscola, J. Lockwood, R. P. Loui, and M. Pachos,
“Implementation of a content-scanning module for an

internet firewall,” in Proc. 11
th
 Ann. IEEE Symp. Field-

Program. Custom Comput. Mach. (FCCM), 2003, pp.

31–38.
[22] P. Piyachon and Y. Luo, “Compact state machines for

high performance pattern matching,” in Proc. 41nd
IEEE/ACM Des. Autom. Conf.,2007, pp. 493–496.

[23] P. Piyachon and Y. Luo, “Design of high performance

pattern matching engine through compact deterministic
finite automata,” in Proc. 42

nd
 IEEE/ACM Des. Autom.

Conf., 2008, pp. 852–857.
[24] M. Roesch, “Snort- lightweight intrusion detection for

networks,” in Proc. 15th Syst. Administration Conf.
(LISA), 1999, pp. 229–238.

[25] I. Sourdis and D. Pnevmatikatos, “Pre-decoded CAMs
for efficient and high-speed NIDS pattern matching,” in

Proc. 12th Annu. IEEE Symp. Field Program. Custom
Comput. Mach. (FCCM), 2004, pp. 258–267.

[27] L. Tan and T. Sherwood, “A high throughput string
matching architecture for intrusion detection and

prevention,” in Proc. 32nd Annu. Int. Symp. Comput.
Arch. (ISCA), 2005, pp. 112–122.

[28] N. Tuck, T. Sherwood, B. Calder, and G. Varghese,
“Deterministic memory-efficien string matching

algorithms for intrusion detection,”in Proc. 23nd Conf.
IEEE Commun. Soc. (INFOCOMM), Mar. 2004, pp.

2628–2639.
[29] F. Yu, Z. Chen, Y. Diao, T. V. Lakshman, and R. H.

Katz, “Fast and memory-efficient regular expression
matching for deep packet inspection,” in Proc.

ACM/IEEE Symp. Arch. Netw. Commun. Syst. (ANCS),
2006, pp. 93–102.

[30] F. Yu, R. H. Katz, and T. V. Lakshman, “Gigabit rate
packet patternmatching using TCAM,” in Proc. 12th

IEEE Int. Conf. Netw. Protocols (ICNP), 2004, pp.
174–183.

