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Abstract: This paper describes the initial steps in the 

development of an object detection system for manipulation 

purposes to be embedded in a mobile robot. The goal is to 
design a neural network based recognition module. The 

neural network module and additional image processing 

algorithms which are used to convert the image into useful 

information for the neural network and the control of the 

whole system is designed using the soft core processor in 

the FPGA. The neural network implementation can be 

performed using the VHDL coding and processor can be 

designed using the Xilinx EDK tool. 
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I. INTRODUCTION 
Image recognition systems are widely used in 

different industries such as production plants to detect 

faulty components, to select a piece on a conveyor or as 

surveillance systems that are capable of detecting intrusion, 

differentiating people or observing their motion. Object 

positions and environmental conditions have to be acquired 

in real-time. The term Visual Servoing refers to a useful 

capability for both manipulator arms and mobile robots [1]. 
Visual Servoing involves moving a robot or some part of a 

robot to a desired position using visual feedback [2]. 

However, fast and computation intensive tasks are 

difficult to implement in small and low power consumption 

electronic systems required in robot-like systems. The goal 

of this research is to develop an efficient hardware/software 

implementation of an object recognition system for an 

autonomous robot. This recognition system is based on an 

artificial neural network. In addition, some image 

processing modules to provide the network with useful data 

have been designed. Some other works that use neural 
network based systems for Visual Servoing can be found in 

[3], [4], [5]. However, in general most of such 

implementations are PC-based architectures. 

The implementation presented here is carried out 

in a FPGA (Field Programmable Gate Array). The very 

high integration of present FPGAs enable the 

accommodation of all the components of a typical 

embedded system (processor core, memory blocks, 

peripherals, specific hardware,...) on a single chip, 

commonly referred to as system-on-a-programmable chip 

(SoPC). The design described here is based on such a 

SoPC. In particular the neural network module together 
with the control of the whole system are implemented as 

software in the embedded processor core  

 

 

 

II. SYSTEM  ARCHITECTURE 
 The initial approach to afford the recognition 

problem has been limited to the recognition of simple 
shapes, but in such a way that it could be extrapolated to 

any shape, for example those of hand tools. For the 

experiments performed up to now, some different colour 

wood pieces (cubes, cylinders, rectangular prisms and 

triangular prisms) have been used. Hence, four possible 

shapes have to be recognized: square, circle, rectangle and 

triangle.  

Usually, image processing algorithms are 

implemented in software and run on a PC. However, in 

applications with high restrictions in response time or low 

consumption requirements (like the system described here), 

hardware specific implementations are needed . The main 
objection of the image recognition techniques for its 

realization in hardware is the high complexity of the 

existent algorithms. For this reason, in this paper a method 

optimized for its hardware implementation is presented. 

 

2.1. IMAGE PRE-PROCESSING 

The pre-processing stage converts the images into 

useful information for the neural classification system. 

Once a binary image is obtained, the amount of information 

contained in it is reduced to preserve only the information 

considered more relevant for the recognition. An edge 
extraction technique grounded on the chain-code algorithm 

[6] has been chosen. The bases of the chain-code algorithm 

were introduced in 1961 by H. Freeman [7], who described 

a method which permits the encoding of arbitrary 

geometric configurations, as a way to make it easier for a 

digital computer to manipulate them. It is a lossless 

compression algorithm for binary images, which provides a 

useful way to depict an object and to derive its features for 

later applications in pattern recognition. 

Chain-codes are used to represent the contour of 

an object by means of a sequence of small vectors of unit 

length, each one representing the direction of the contour at 
that point. The number of possible directions is determined, 

being the 8-connected neighborhood and the 4-connected 

neighborhood configurations the most commonly used. The 

4-connected set of directions, also referred to as external 

chain-code or crack code in some sources, is the one 

employed in this work (Figure 1). 
 

 
Figure1: Example of the external chain code of a binary 

image 

Design of a Neural Network Based Image Recognition System 

Using Configurable VLSI 
 



International Journal of Modern Engineering Research (IJMER) 

  www.ijmer.com                  Vol.2, Issue.4, July-Aug 2012 pp-2821-2824              ISSN: 2249-6645 

www.ijmer.com                                          2822 | P a g e  

First of all, the region of the image where the 

object lays must be determined, in terms of the density of 

white pixels. Then, the origin of the object in the image 

must be fixed. In the algorithm presented in this paper, the 
origin is considered to be the left-most white pixel of the 

first line in the object region. Once the origin is fixed, the 

object is outlined in clockwise manner and the directions of 

the boundary are stored until the algorithm reaches back the 

initial point. 

Using this algorithm, each object is represented by 

a sequence of numbers, which length is different for each 

case, depending on the size of the object in the image and 

its shape. 

In order to make the lengths equal and to reduce 

even more the codification, in such a way that it can be 

used as the input for the neural network, the sequence is 
normalized by dividing it into a fixed number of smaller 

sequences. Each of them is processed to obtain the slope 

between its end points. Thus, each object is represented by 

a fixed length sequence which contains the slopes of the 

contour. In turn, these slopes can only take a definite 

number of values, so that the translation to a digital system 

is more direct. 

 

2.2. NEURAL CLASSIFICATION 

The classification module consists of an artificial 

neural network where the inputs are the values provided by 
the image pre-processing stage. Based on these data the 

neural network classifies the shape of the target object. The 

neural network has multi-layer perceptron architecture [8], 

consisting of an input layer, a hidden layer and an output 

layer. 

The number of input neurons has been set to 16, 

which forces the sequence obtained from the image 

processing stage to be of this length. The hidden layer has 

32 neurons with a tan-sigmoid activation function. Lastly, 

the output layer consists of 4 output neurons, one for each 

possible shape, and no activation function is applied. The 

architecture of the neural network is presented in Figure 2. 
 

 
Figure 2: Architecture of the proposed neural network 

 

The network is trained by means of the back-

propagation algorithm, using the gradient-descendent 

method. The training set is made up of 16 sequences 

obtained from different images of different object shapes, 

along with the corresponding target output for each 

sequence. This set is divided into three different subsets: 

the 60% of the samples are used for training, the 20% for 

validation (useful for early-stopping of the training process) 

and the remaining 20% for test (for estimating the network 
s ability to generalize). The training algorithm of the 

network is performed in Matlab, by means of the Neural 

Network Toolbox [9]. 

 

III. HARDWARE/SOFTWARE PARTITION 
Nowadays, the so called SoPC (system-on-a-

programmable chip) take advantage from the flexibility of 

software and the high performance of hardware. Their 

proliferation has been possible thanks to the high 

integration levels achieved in the microelectronic industry, 

which allow the inclusion of a small microprocessor inside 

the programmable chip. This fact allows the designing of 

efficient heterogeneous hardware/software architectures on 

a single chip. Historically, the most common way for the 

implementation of neural networks has been a program 

running on a personal computer or a workstation. This is 

due to the fact that software implementations offer a high 
flexibility and give the users the possibility of modifying 

the topology of the network, the type of the processing 

elements or the learning rules, according to the 

requirements of their application. However, biological 

neural networks, in which artificial neural networks are 

inspired, operate highly in parallel. Hence, implementing 

them on a sequential computer does not seem the most 

efficient way to do it. 

Dedicated hardware implementations, on the other 

hand, offer a number of important advantages, because they 

exploit the inherent parallelism of neural networks and also 

are much faster and robust if compared to software 
solutions. 

Furthermore, they provide a physically reduced 

and low-power solution, useful for applications where 

including a personal computer or a workstation might not 

be feasible (such as the case of autonomous robots). These 

are the main reasons why it has been decided to implement 

the recognition algorithms on an embedded system and, 

more specifically, the neural network on the hardware 

partition of the system. 
 

The architecture is as shown in Figure3.. 

 
Figure 3: Internal Architecture of SoPC 

 

The software partition is built on a MicroBlaze 

(the softcore processor from Xilinx) [10] and includes the 

control of the complete system and, also the image pre-

processing algorithms. 
 

3.1. INTERFACE BETWEEN MODULES 

The interface between both partitions is based on 

the PLB (Processor Local Bus) bus [11], that provides a 

fast and efficient communication mechanism. The 

Processor Local Bus (PLB) consists of a bus control unit, a 

watchdog timer, and separate address, write and read data 

path units with a three-cycle-only arbitration feature. The 

PLB supports read and write data transfers between master 

and slave devices equipped with a PLB bus interface and 

connected through PLB signals. Bus architecture supports 
multiple master and slave devices. Each PLB master is 

attached to the PLB through separate address, read-data, 

PLB BUS 
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and write-data buses. PLB slaves are attached to the PLB 

through shared, but decoupled, address, read-data, and 

write-data buses and a plurality of transfer control and 

status signals for each data bus. 
The Processor Local Bus (PLB) consists of a bus 

control unit, a watchdog timer, and separate address, write 

and read data path units with a three-cycle-only arbitration 

feature. The PLB supports read and write data transfers 

between master and slave devices equipped with a PLB bus 

interface and connected through PLB signals. Bus 

architecture supports multiple master and slave devices. 

Each PLB master is attached to the PLB through separate 

address, read-data, and write-data buses. PLB slaves are 

attached to the PLB through shared, but decoupled, 

address, read-data, and write-data buses and a plurality of 

transfer control and status signals for each data bus. 
Access to the PLB is granted through a central 

arbitration mechanism that allows masters to compete for 

bus ownership. This arbitration mechanism is flexible 

enough to provide for the implementation of various 

priority schemes. Additionally, an arbitration locking 

mechanism is provided to support master-driven atomic 

operations. PLB arbiters can be implemented on the FPGA 

fabric and are available as soft IP cores. The PLB is a fully 

synchronous bus.  

The PLB arbiter multiplexes signals from masters 

onto a shared bus to which all the inputs of the slaves are 
connected. The PLB arbiter handles bus arbitration and the 

movement of data and control signals between masters and 

slaves. The PLB-to-PLB bridge is required when two PLB 

segments are connected. The bridge translates PLB 

transactions on one side into the PLB transactions of the 

other side. The bridge functions as a slave on one PLB side 

and a master on the other. For a typical system with two 

PLB segments, one bridge is necessary for transactions 

originating from the processor. A second bridge is required 

if a peripheral on the other side is master capable and wants 

to address a peripheral on the processor side. Figure4 

provides an example of the PLB connections for a system 
with three masters and three slaves. 

 

 
Figure 4: PLB Interconnection Diagram 

 

3.2 ARCHITECTURE OF THE NEURAL NETWORK 

The architecture of the network is the one 
presented in Figure 2. In a hardware implemented neural 

network, the processing elements (i.e., neurons) have to be 

independent and operate in parallel. They should be 

designed in such a way that their internal calculations are 

optimized, while they should be so simple that the chip area 

occupied by them is the minimum possible. Following 

these requirements, a very small but high performance 

system can be achieved. 

 

The architecture proposed in this paper comprises 

the following modules. 

• A two-layer processing module: the hidden layer and the 

   output layer (the input layer merely transmits the inputs) 
• Three ROM modules, which store the network parameters 

   (weights) for the hidden layer, the output layer and the 

    sigmoid function, respectively. 

• Additional components, such as a multiplexer and a block 

   that calculates the maximum of its inputs. 

• A circuit controller that governs the whole operation of 

   the system. 

The main component of the processing module is 

the neuron, which is just a MAC (multiply-accumulate) 

block. The MAC is loaded with an initial value (offset or 

bias) and then multiplies each input with its corresponding 

weight and accumulates these values to obtain the sum of 
all them. It is a two-cycle synchronous component (see 

Figure 5). The total number of these MAC blocks is 36 (32 

for the hidden layer and 4 for the output layer). 

 

 
Figure 5: MAC schematic. . 

 

As for the ROM modules, the one that contains the 

weights of the first layer (ROM1) has a size of 512 weights 

with a word length of 12 bits, whilst the one corresponding 

to the second layer (ROM2) contains 128 weights of a word 

length of 8 bits. ROM1 is organized in 16 blocks of 32 
weights, so that for each of the inputs the corresponding 

block of 32 weights is addressed and sent to the first layer 

of neurons. In the same way, ROM2 is divided into 32 

blocks of 4 weights each. Finally, ROM3 is the memory 

that stores the pre-computed sigmoid function and contains 

256 values with a word length of 8 bits. 

The system controller, whose main component is a 

six-bit counter, provides the control signals for the whole 

system. Such signals are the reset signals for all the 

modules, the signals to enable each block, the address 

signals for ROM1and ROM2 and the selection signal for 

the multiplexer. 
The detailed operation of the whole system is 

described next. The 16 input data come serially through the 

PLB bus. Each neuron (MAC block) receives the inputs 

serially, multiplies each of them with the corresponding 

weight (stored in the ROM1 memory) and adds them up. 

The neuron needs only one clock cycle per input to process 

the MAC operation, because while the accumulate 

operation is being done, the next data are already being 

multiplied, creating a pipeline. Furthermore, the 32 neurons 

of the layer work in parallel. Hence, only 17 clock cycles 

(one for each input and one more for the first data, before 
starting the pipeline operation) are needed to perform the 

calculations of the first layer, in spite of the fact that the 

inputs enter the system serially. 
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Once the outputs of the first layer are available, 

they are used to address ROM3, which contains the 

activation function. This memory is the same for all the 

neurons of the first layer. The outputs of this block are the 
sigmoid functions of their inputs. All the accesses to the 

ROM3 are made in parallel, so just a clock cycle is 

required. This ROM module provides 32 outputs that act as 

the inputs to a 32 to 1 multiplexer. The multiplexer makes 

it possible for the inputs to the following layer of neurons 

to arrive serially, in such a way that this layer would work 

like the first one. Thus, each of the 4 neurons of the last 

layer receives the 32 incoming data serially and performs 

the MAC operation, needing 33 clock cycles to finish this 

task (one for each input and an additional one, as in the 

previous layer). 

Finally, the result of these MAC operations are 
carried to a module that calculates which of them has the 

maximum value, needing only one cycle to do so. The 

output of this module represents the shape recognized by 

the network, codified in 2 bits. This data is sent back to the 

software partition through the PLB bus. 

The final output showing the recognition of four 

basic shapes is as shown in Figure 6, which is obtained 

using the Chipscope Pro tool. 

 

 
Figure 6: Results showing the recognition of four basic 

shapes 

 

IV. CONCLUSION AND FUTURE SCOPE 
In this paper a prototype of a vision system for a 

robotic platform to assist in manipulation activities has 

been presented. An FPGA module for embedding the 

object recognition module within a robotic mobile platform 

is being designed. The FPGA module includes the neural 

network and the control and the image processing modules 
are built on a Microblaze.  More work will be done to 

strengthen the overall performance of this system, taking 

into account more variability in object shape and colour 

(real objects). Up to now, the FPGA module includes the 

implementation of the neural network. As further work, the 

rest of the image processing algorithms should also be 

implemented on the chip. They would be included 

preferably on the hardware partition of the SoPC for 

performance reasons, but to do so, a previous analysis has 

to be made in order to study the feasibility of this option. In 

addition, the whole system has to be integrated with the 
robotic platform in order to perform the manipulation 

activities. 
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