
International Journal of Modern Engineering Research (IJMER)

 www.ijmer.com Vol.2, Issue.4, July-Aug 2012 pp-2867-2875 ISSN: 2249-6645

www.ijmer.com 2867 | P a g e

Susrutha Babu Sukhavasi
1
, Suparshya Babu Sukhavasi

1
 Sr Sastry K

2
, Ranga Rao Orugu

 3

P.Bosebabu
3
, M.Aravind Kumar

4

1
Faculty, Department of ECE, K L University, Guntur, AP, India.

2
M.Tech -VLSI Student, Department of ECE, K L University, Guntur, AP, India.

3
 Faculty, Department of ECE, Andhra Loyola College Of Eng &Tech ,Vijayawada, AP, India.

4
M.Tech -VLSI Student, Padmasri Dr.B.V.Raju Institute of Technology, Medak, A.P, India.

Abstract : In this paper, necessary modules have been

implemented to make architecture to insert into motion

estimation. The significant function of motion estimation

(ME) in a video coder, testing such a module is of priority

concern. While focusing on the testing of ME in a video

coding system, this work presents an error detection and

data recovery (EDDR) design, based on the residue-and

quotient (RQ) code, to embed into ME for video coding

testing applications. An error in processing elements (PEs),

i.e. key components of a ME, can be detected and recovered

effectively by using the proposed EDDR design.

Experimental results indicate that the modules required for

proposed EDDR design for ME testing can detect errors and

recover data with an acceptable area overhead and timing

penalty. Importantly, the proposed EDDR design performs

satisfactorily in terms of throughput and reliability for ME

testing applications.

Keywords – Motion Estimation,SAD Tree,Error detection

and recover circuits.

I. INTRODUCTION
 Methodologies

Coding approaches such as parity code, Berger

code, and residue code have been considered for design

applications to detect circuit errors. Residue code is

generally separable arithmetic codes by estimating a residue

for data and appending it to data. Error detection logic for

operations is typically derived by a separate residue code,

making the detection logic is simple and easily

implemented. For instance, assume that N denotes an

integer, N1 and N2 represent data words, and m refers to

the modulus. A separate residue code of interest is one in

which N is coded as a pair. N m is the residue N of m

modulo . Error detection logic for operations is typically

derived using a separate residue code such that detection

logic is simply and easily implemented. However, only a bit

error can be detected based on the residue code.

Additionally, an error can not be recovered effectively by

using the residue codes. Therefore, this work presents a

quotient code, which is derived from the residue code, to

assist the residue code in detecting multiple errors and

recovering errors. In order to simplify the complexity of

circuit design, the implementation of the module is generally

dependent on the addition operation. Additionally, based on

the concept of residue code, the following definitions shown

can be applied to generate the RQ code for circuit design.

the corresponding circuit design of the RQCG is easily

realized by using the simple adders (ADDs). Namely, the

RQ code can be generated with a low complexity and little

hardware cost.

Fig 1: Circuit Diagram

 Sum Of Absolute Difference Calculation

By utilizing PEs, SAD shown in as follows, in a

macro block with size N X N of can be evaluated:

 Where rxi,j,qxi,j and ryi,j ,qyi,j denote the

corresponding RQ code of Xi,j , Yi,jand modulo M.

Importantly, and represent the luminance pixel value of

Cur_pixel and Ref_pixel, respectively.

 PIXEL VALUES

Fig 2: Circuit Diagram

NUMERIC CALCULATION

 A numerical example of the 16 pixels for a 4X 4

macroblock in a specific PEi of a ME is described . We

presents an example of pixel values of the Cur_pixel and

Ref_pixel. Based on, the SAD value of the 4X 4 macroblock

is

According to describe about RQ Code for modulo operation

is assumed M=2^6-1=63 RQ code for SAD value

RT=RPEi=|2124|63=45 and QT=QPEi=|2124/63|=33.

Design of Modules to Implement a Structure by Discrete Reckoning

Codes for Embedding Into Video Coding Testing Applications

International Journal of Modern Engineering Research (IJMER)

 www.ijmer.com Vol.2, Issue.4, July-Aug 2012 pp-2867-2875 ISSN: 2249-6645

www.ijmer.com 2868 | P a g e

II. MAIN MODULE’S:
1. SAD TREE

2. RQ CODE GENERATION

3. ERROR DETECTION CIRCUIT

4. DATA RECOVERY CIRCUIT

MODULE DESCRIPTION:

 2.1 SAD TREE

 We propose a 2-D intra-level architecture called the

Propagate Partial SAD The architecture is composed

of PE arrays with a 1-D adder tree in the vertical direction.

Current pixels are stored in each PE, and two sets of

continuous reference pixels in a row are broadcasted

to PE arrays at the same time. In each PE array with a

1-D adder tree, distortions are computed and summed by a

1-D adder tree to generate one-row SAD. The row

SADs are accumulated and propagated with

propagation registers in the vertical direction The reference

data of searching candidates in the even and odd

columns are inputted by Ref. Pixels 0 and Ref Pixels

1, respectively. After initial cycles, the SAD of the first

searching candidate in the zero th column is

generated, and the SADs of the other searching candidates

are sequentially generated in the following cycles. When

computing the last searching candidates in each

column, the reference data of searching candidates in

the next columns begin to be inputted through another

reference input. In Propagate Partial SAD, by broadcasting

reference pixel rows and propagating partial-row SADs in

the vertical direction, it provides the advantages of fewer

reference pixel registers and a shorter critical path. Since

Rt(Qt) is equal to RPEi (QPEi) EDC is enabled and a signal

“0” is generated to describe a situation in which the specific

PEi is error-free. Conversely, if SA1 and SA0 errors occur

in bits 1 and 12 of a specific , PEi i.e. the pixel values of

PEi= 2124. for video coding systems, motion estimation

(ME) can remove most of temporal redundancy, so a high

compression ratio can be achieved. Among various ME

algorithms, a full-search block matching algorithm

(FSBMA) is usually adopted because of its good quality and

regular computation. In FSBMA, the current frame

is partitioned into many small macroblocks (MBs) of size

For each MB in the current frame (current MB), one

reference block that is the most similar to current MB is

sought in the searching range of size in the reference frame.

The most common used criterion of the similarity is the

sum of absolute differences (SAD).

where cur and ref are pixel values in the current

MB (current pixel) and reference block (reference pixel),

respectively, is one searching candidate in the search range,

Distortion is the difference between the current pixel and the

reference pixel, and SAD is the total distortion of

this searching candidate. The row column) SAD is the

summation of distortions in a row (column). After all

searching candidates are examined, the searching candidate

that has the smallest SAD is selected as the motion

vector of the current MB. Although FSBMA provides the

best quality among various ME algorithms, it consumes the

largest computation power. In general, the computation

complexity of ME varies from maximum of a typical

video coding system. Hence, a hardware accelerator of ME

is required. Variable block-size motion estimation

(VBSME) is a new coding technique and provides

more accurate predictions compared to traditional fixed

block-size motion estimation (FBSME).With FBSME, if an

MB consists of two objects with different motion directions,

the coding performance of this MB is worse. On the

other hand, for the same condition, the MB can be divided

into smaller blocks in order to fit the different motion

directions with VBSME. Hence, the coding performance

is improved. VBSME has been adopted in the latest video

coding standards, including H.263 , MPEG-4 , WMV9.0 ,

and H.264/AVC . For instance, in H.264/AVC, an MB

with a variable block size can be divided into seven kinds of

blocks including 4x4, 4x8, 8x4, 8x8, 8x16, 16x8, and 16x16.

Although VBSME can achieve a higher compression ratio, it

not only requires huge computation complexity but also

increases the difficulty of hardware implementation for ME.

Traditional ME hardware architectures are designed for

 FBSME, and they can be classified into two

categories.

Fig3: Partial SAD tree

 One is an inter-level architecture, where each

processing element (PE) is responsible for one SAD of a

specific searching candidate and the other is an intra-level

architecture, where each PE is responsible for the distortion

of a specific current pixel .

The concept of the proposed SADTree architecture. The

proposed SAD Tree is a 2-D intra-level architecture and

consists of a 2-D PE array and one 2-D adder tree with

propagation registers Current pixels are stored in each PE,

and reference pixels are stored in propagation registers

for data reuse. In each cycle, current and reference pixels

are inputted to PEs. Simultaneously, continuous reference

pixels in a row are inputted into propagation registers to

update reference pixels. In propagation registers,

reference pixels are propagated in the vertical direction row

by row. In SAD Tree architecture, all distortions of a

searching candidate are generated in the same cycle, and

by an adder tree, distortions are accumulated to derive

the SAD in one cycle. In order to provide a high utilization

and data reuse, the snake scan is adopted and

reconfigurable data path propagation registers are developed

in the proposed SAD Tree, which consists of five basic steps

from A to E. The first step, A, fetches pixels in a row

and the shift direction of propagation registers is

downward. When calculating the last candidates in a

column, one extra reference pixel is required to be

inputted, that is, step B. When finishing the computation of

one column, the reference pixels in the propagation registers

International Journal of Modern Engineering Research (IJMER)

 www.ijmer.com Vol.2, Issue.4, July-Aug 2012 pp-2867-2875 ISSN: 2249-6645

www.ijmer.com 2869 | P a g e

are shifted left in step C. Because the reference data

have already been stored in the propagation registers,

the SAD can be directly calculated. The next two steps, D

and E, are the same as steps A and B except that the shift

direction is upward. After finishing the computation of one

column in the search range, we execute step C and then

go back to step A. This procedure will iterate until all

searching candidates in the search range have been

calculated. the data reuse between two successive

searching candidates can be maximized

SUB MODULES’S

 PROCESSING ELEMENT

 ADDER TREE

 HALF ADDER

 FULL ADDER

 RIPPLE CARRY ADDER

2.1.1 PROCESSING ELEMENT

 A ME (Motion Estimation) consists of many PEs

incorporated in a 1-D or 2-D array for video encoding

applications. A PE generally consists of two ADDs (i.e. an

8-b ADD and a 12-b ADD) and an accumulator (ACC).

Next, the 8-b ADD (a pixel has 8-b data) is used to estimate

the addition of the current pixel (Cur pixel) and reference

pixel (Ref_pixel). Additionally, a 12-b ADD and an ACC

are required to accumulate the results from the 8-b ADD in

order to determine the sum of absolute difference (SAD)

value for video encoding applications Notably, some

registers and latches may exist in ME to complete the data

shift and storage. encoding applications. Notably, some

registers and latches may exist in ME to complete the data

shift and storage. The PEs are essential building blocks and

are connected regularly to construct a ME. Generally, PEs

are surrounded by sets of ADDs and accumulators that

determine how data flows through them. PEs can thus be

considered the class of circuits called ILAs, whose testing

assignment can be easily achieved by using the fault model,

cell fault model (CFM). Using CFM has received

considerable interest due to accelerated growth in the use of

high-level synthesis, as well as the parallel increase in

complexity and density of integration circuits (ICs). Using

CFM makes the tests independent of the adopted

synthesis tool and vendor library. Arithmetic modules, like

ADDs (the primary element in a PE), due to their regularity,

are designed in an extremely dense configuration. A ME

generally consists of PEs with a size of 4 x 4. However,

accelerating the computation speed depends on a large PE

array, especially in high-resolution devices with a large

search range such as HDTV. Additionally, the visual quality

and peak signal-to-noise ratio (PSNR) at a given bit

rate are influenced if an error occurred in ME process. A

testable design is thus increasingly important to ensure the

reliability of numerous PEs in a ME. Moreover, although the

advance of VLSI technologies facilitate the integration of a

large number of PEs of a ME into a chip, the logic-per-pin

ratio is subsequently increased, thus decreasing significantly

the efficiency of logic testing on the chip. As a commercial

chip, it is absolutely necessary for the ME to introduce

design for testability (DFT). Motion estimation is the

process of determining motion vectors that describe the

transformation from one 2D image to another; usually from

adjacent frames in a video sequence. It is an ill-posed

problem as the motion is in three dimensions but the images

are a projection of the 3D scene onto a 2D plane. The

motion vectors may relate to the whole image (global

motion estimation) or specific parts, such as rectangular

blocks, arbitrary shaped patches or even per pixel. The

motion vectors may be represented by a translational model

or many other models that can approximate the motion of a

real video camera, such as rotation and translation in all

three dimensions and zoom. Closely related to motion

estimation is optical flow, where the vectors correspond to

the perceived movement of pixels. In motion estimation an

exact 1:1 correspondence of pixel positions is not a

requirement. Applying the motion vectors to an image to

synthesize the transformation to the next image is called

motion compensation. The combination of motion

estimation and motion compensation is a key part of video

compression as used by MPEG 1, 2 and 4 as well as many

other video codec’s.

 2.1.2 ADDER TREE

 In this module Half Adder is a digital

combinational circuit that is used for the addition of two bits

and provides an output in the form of a sum bit and a carry

bit. The logical functional equations that relate the outputs S

and C of a half adder circuit to the input bits are given below

Sum(S) = A ex-OR B

Carry(C) = A.B

Thus a half adder circuit can easily be synthesized

by using 1 ex-OR gate and 1 AND gate. Since a half

adder circuit can only be used to add two bits, it becomes

obsolete in case of multi-bit addition in practical

applications.

Fig 4: Logic Diagram

APPLICATIONS:

 In electronics, an adder or summer is a digital circuit

that performs addition of numbers. In many computers

and other kinds of processors, adders are used not only

in the arithmetic logic unit(s), but also in other parts of

the processor, where they are used to calculate

addresses, table indices, and similar.

 Although adders can be constructed for many numerical

representations, such as binary-coded decimal or

excess-3, the most common adders operate on binary

numbers.

 In cases where two's complement or ones' complement

is being used to represent negative numbers, it is trivial

to modify an adder into an adder–subtractor. Other

signed number representations require a more complex

adder.

 Fig5: Truth Table

International Journal of Modern Engineering Research (IJMER)

 www.ijmer.com Vol.2, Issue.4, July-Aug 2012 pp-2867-2875 ISSN: 2249-6645

www.ijmer.com 2870 | P a g e

2.1.3 FULL ADDER:

 In this module describe about full adder operation.

The limitation of a half-adder is that it cannot accept a carry-

in bit. the carry-in bit represents the carry-out of the

previous low-order bit position. Thus a half-adder can be

used only for the two least significant digits when adding

two multi bit binary numbers, since there can be no

possibility of a propagated carry to this stage. In multi bit

addition, a carry bit from a previous stage must be taken into

account, which gives rise to the necessity for designing a

full adder. A full adder can accept two operands bits, ai and

bi, and a carry-in bit ci from previous stage; it produces a

sum bit si and a carry-out bit c0. sum bit si is 1 if there is an

odd number of 1’s at the inputs of the full adder, whereas

the carry-out c0 is 1 if there are two or more 1’s at the

inputs. The sum and carry out bits will be 0 otherwise. In

ripple carry adder, the carry signals must ripple through all

the full adders before the outputs stabilize to the correct

values; hence such an adder is often called a ripple adder.

addition is to be performed the carry-out generated from the

least significant stage of the adder propagates through the

successive stages and produces a carry-in into the most

significant stage of the adder. The time required to perform

addition in a ripple adder depends on the time needed for the

propagation of carry signals through the individual stages of

the adder. Thus ripple carry addition is not instantaneous.

The greater the number of stages in a ripple carry adder the

longer is the carry propagation time, and consequently the

slower the adder.

 Fig 6: Full Adder Using Half Adder

Fig7: Truth table

APPLICATIONS:

1. Addition is an essential function in fundamental

arithmetic operations.

2. It is also the most copiously used operation in

application-specific processors and digital signal

processing application (DSP).

3. Full-adder has been introduced by integrating the full-

adder into a multiplier-less finite impulse response

(FIR) filter that is commonly used in the multi rate filter

bank for biomedical applications.

2.1.4 RIPPLE CARRY ADDER

A standard 8-bit ripple-carry adder built as a cascade from

eight 1-bit full-adders. Click the input switches or use the

following bind keys: ('c') for carry-in, for A0..A7 and ('1','2',

..., '8') for B0..B7. To demonstrate the typical behavior of

the ripple-carry adder, very large gate-delays are used for

the gates inside the 1-bit adders - resulting in an addition

time of about 0.6 seconds per adder. Note that each stage of

the adder has to wait until the previous stage has calculated

and propagates its carry output signal. Obviously, the

longest delay results for operands like A = 0b0000000,

B=0b11111111 or A=0b01010101 and B=0b10101010

(select these, and then switch carry-in to both 0 and 1, and

watch the circuit to settle). Therefore, the total delay of a

ripple-carry adder is proportional to the number of bits.

Faster adders are often required for bit widths of 16 or

greater. A carry-look ahead adder (CLA) is a type of adder

used in digital logic. A carry-look ahead adder improves

speed by reducing the amount of time required to determine

carry bits. It can be contrasted with the simpler, but usually

slower, ripple carry adder for which the carry bit is

calculated alongside the sum bit, and each bit must wait

until the previous carry has been calculated to begin

calculating its own result and carry bits (see adder for detail

on ripple carry adders). The carry-look ahead adder

calculates one or more carry bits before the sum, which

reduces the wait time to calculate the result of the larger

value bits. The Kogge-Stone adder and Brent-Kung adder

are examples of this type of adder.Arithmetic operations like

addition, subtraction, multiplication, division are basic

operations to be implemented in digital computers using

basic gates likr AND, OR, NOR, NAND etc. Among all the

arithmetic operations if we can implement addition then it is

easy to perform multiplication (by repeated addition),

subtraction (by negating one operand) or division (repeated

subtraction).Half Adders can be used to add two one bit

binary numbers. It is also possible to create a logical circuit

using multiple full adders to add N-bit binary numbers. Each

full adder inputs a Cin, which is the Cout of the previous

adder. This kind of adder is a Ripple Carry Adder, since

each carry bit "ripples" to the next full adder. The first (and

only the first) full adder may be replaced by a half

adder.The block diagram of 4-bit Ripple Carry Adder is

shown here below The layout of ripple carry adder is

simple, which allows for fast design time; however, the

ripple carry adder is relatively slow, since each full adder

must wait for the carry bit to be calculated from the previous

full adder. The gate delay can easily be calculated by

inspection of the full adder circuit. Each full adder requires

three levels of logic. In a 32-bit [ripple carry] adder, there

are 32 full adders, so the critical path (worst case) delay is

31 * 2(for carry propagation) + 3(for sum) = 65 gate delays.

Arithmetic Module Generator (AMG) supports various

hardware algorithms for two-operand adders and multi-

operand adders. These hardware algorithms are also used to

generate multipliers, constant-coefficient multipliers and

multiply accumulators. In the following, we briefly describe

the hardware algorithms that can be handled by AMG.

Fig8: Ripple Carry Adder

International Journal of Modern Engineering Research (IJMER)

 www.ijmer.com Vol.2, Issue.4, July-Aug 2012 pp-2867-2875 ISSN: 2249-6645

www.ijmer.com 2871 | P a g e

The most straightforward implementation of a final

stage adder for two n-bit operands is a ripple carry adder,

which requires n full adders (FAs). The carry-out of the ith

FA is connected to the carry-in of the (i+1)th FA. Figure

shows a ripple carry adder for n-bit operands, producing n-

bit sum outputs and a carry out.

III. RQ CODE GENERATION
Coding approaches such as parity code, Berger

code, and residue code have been considered for design

applications to detect circuit errors . Residue code is

generally separable arithmetic codes by estimating a residue

for data and appending it to data. Error detection logic for

operations is typically derived by a separate residue code,

making the detection logic is simple and easily

implemented. The basic problem we have to resolve is that

memory and communications technology isn't totally

reliable; we have to expect and be ready to deal with errors

in the hardware. This document will describe two very

different technologies for detecting, and maybe correcting,

errors that may occur in data storage and transmission. The

first approach to be described is more appropriate for

environments like memory: a relatively small amount of

data is fetched in parallel. This approach, called "error

detecting and correcting codes," is based on defining a

distance between two bit strings in terms of the number of

bits that have to change to get from the first string to the

second. Extra bits are added to each string, which are set so

that some minimum number of bits must change to get from

one valid string to another. If the received string isn't valid,

it is assumed that the correct string is the one "closest" to the

received string. The second approach is more appropriate to

environments in which relatively large amounts of data are

to be transferred, but they are transferred serially. In this

approach a "signature" is appended to the data string; the

number of bits in the signature is much less than the number

of bits that would be required to do an error correcting code.

This approach will lead to adding checksums or cyclic

redundancy checks to the string. R. W. Hamming wrote the

paper that both opened and closed this field in 1950. His

interest was in providing a means of self-checking in

computers, which were just being developed at the time he

wrote this. the paper appeared in the Bell System Technical

Journal, April, 1950. Definitely worth tracking down in the

library and reading The Hamming distance between two bit

strings is the number of bits you have to change to convert

one to the other: this is the same as the number of edges you

have to traverse in a binary hypercube to get from one of the

vertices to the other. The basic idea of an error correcting

code is to use extra bits to increase the dimensionality of the

hypercube, and make sure the Hamming distance between

any two valid points is greater than one.

 If the Hamming distance between valid strings is only

one, a single-bit error results in another valid string.

This means we can't detect an error.

 If it's two, then changing one bit results in an invalid

string, and can be detected as an error.

Unfortunately, changing just one more bit can

result in another valid string, which means we can't know

which bit was wrong: so we can detect an error but not

correct it.

 3.1 CONCURRENT ERROR DETECTION (CED)

While the extended BIST schemes generally focus

on memory circuit, testing-related issues of video

coding have seldom been addressed. Thus, exploring the

feasibility of an embedded testing approach to detect errors

and recover data of a ME is of worthwhile interest.

Additionally, the reliability issue of numerous PEs in a ME

can be improved by enhancing the capabilities of concurrent

error detection (CED).The CED approach can detect errors

through conflicting and undesired results generated from

operations on the same operands. CED can also test the

circuit at full operating speed without interrupting a system.

Thus, based on the CED concept, this work develops a novel

EDDR architecture based on the RQ code to detect errors

and recovery data in PEs of a ME and, in doing so, further

guarantee the excellent reliability for video coding testing

applications. Error detection logic for operations is typically

derived using a separate residue. code such that detection

logic is simply and easily implemented. However, only a bit

error can be detected based on the residue code.

Additionally, an error can’t be recovered effectively by

using the residue codes. Therefore, this work presents a

quotient code, which is derived from the residue code,

to assist the residue code in detecting multiple errors and

recovering errors. the corresponding circuit design of the

RQCG is easily realized by using the simple adders (ADDs).

Namely, the RQ code can be generated with a low

complexity and little hardware cost. Concurrent test

methods enable integrated circuits to verify the correctness

of their results during normal operation. While this ability is

highly desirable, especially in high safety applications,

designing a cost-effective concurrently testable circuit is a

challenging task. Quality assessment of concurrent test

methods relies on several parameters, including the model

of detectable faults or errors, the worst-case detection

latency, and the incurred area overhead. Additionally, an

important consideration is whether a concurrent test method

is intrusive or non-intrusive, i.e. whether the original circuit

is modified or left intact, respectively. The importance of

concurrent test in only accentuated by the plethora and

variety of previous research efforts in this area. Several low-

cost, non-intrusive, concurrent fault detection (CFD)

methods have been proposed for stuck-at faults in

combinational circuits. C-BIST employs input monitoring to

perform concurrent self-test. While hardware overhead is

very low, the method relies on an ordered appearance of all

possible input vectors before a signature indicating circuit

correctness can be calculated, resulting in very long

detection latency. This problem is alleviated in R-CBIST,

where the requirement for a uniquely ordered appearance of

all input combinations is relaxed at the cost of a small RAM.

Alternatively, latency is reduced through the comparison-

based method which uses additional logic to predict the

circuit responses for a complete test set. Towards the high-

cost end, several concurrent error detection (CED) zero-

latency methods have been proposed for both combinational

and sequential circuits. Reducing the area overhead below

the cost of duplication typically requires redesign of the

original circuit, thus leading to intrusive methodologies. In

more and more applications, cryptographic operations are

performed on embedded processors. Some of the most

important applications in this context are payment,

identification, access control, digital rights management and

International Journal of Modern Engineering Research (IJMER)

 www.ijmer.com Vol.2, Issue.4, July-Aug 2012 pp-2867-2875 ISSN: 2249-6645

www.ijmer.com 2872 | P a g e

IP protection. In order to guarantee the security of these

applications, it is necessary to implement countermeasures

against physical attacks on the embedded processors. During

the last 15 years numerous physical attacks have been

published that allow the extraction of secret information

based on the observation or manipulation of an embedded

device and its environment. Typical examples of physical

attacks are timing attacks, power analysis attacks and fault

attacks . While timing and power analysis attacks have

received much attention already immediately after their

publication, not so much attention has been paid on fault

attacks so far. However, fault attacks become increasingly

important. Meanwhile there exist several publication that

discuss methods to induce faults in order to reveal secret

information. In general there are two types of fault attacks.

SUBMODULES

 COMPARATOR

 PRIORITY ENCODER

 MULTIPLEXER

 SUBTRACTOR

 QUASI BLOCK

3.1.1 COMPARATOR

 A digital comparator or magnitude comparator is a

hardware electronic device that takes two numbers as input

in binary form and determines whether one number is

greater than, less than or equal to the other number.

Comparators are used in a central processing units (CPU)

and microcontrollers. Examples of digital comparator

include the CMOS 4063 and 4585 and the TTL 7485 and

74682-'89. The analog equivalent of digital comparator is

the voltage comparator. Many microcontrollers have analog

comparators on some of their inputs that can be read or

trigger an interrupt. A digital comparator is an electronic

circuit or device capable of accepting two binary signals and

performing tests on those signals to determine their

equivalence to each other. The simplest form of a digital

comparator compares two binary signals, known in

computer processing as bits, and uses a series of logical

gates to determine if the two bits are equal or if one is

greater than the other based on binary logic in which each

signal is given the value of either zero or one. Most digital

comparator circuits are designed to accept multiple bits for

comparison, where in many applications the bits are

combined by external software or hardware into actual

numbers. At the heart of most central processing units

(CPUs) in computers and other digital devices, a comparator

performs a large portion of the logical operations that allow

a computer function. Outside of computers, digital

comparators also are used in some devices in which analog

input is converted into digital information that is measured

or monitored, such as in some testing meters. The way a

digital comparator functions starts with the input of

information. The comparator can only handle binary data,

meaning that whatever the input mechanism is, the signal

coming into the circuit can only have two states, which

commonly are referred to as zero and one. When a bit is

compared to another bit, it can be tested in one of three

ways by the digital comparator. The first is equivalency,

meaning the result of comparing one bit to another will

result in a positive, or true, result if both of the bits equal

one or if both of the bits equal zero. Individual bits also can

be checked to see of one is greater than or less than another.

For a sequence of bits, however, comparisons to determine

which set has a higher or lower value need to check each bit

to see which set has a more highly placed most significant

bit, because this determines the actual numerical value of

the bit set. Beyond computer processors, a digital

comparator can be used in some devices that contrast visual

images with digital images, as can be the case in engineering

that relies on computer-aided drafting (CAD) programs to

check if the physically manufactured products match

specifications. They also can be employed to convert analog

signals into digital patterns. A digital comparator also can be

used in conjunction with a number of other devices to act as

a monitor in an industrial setting to see accurate digital

information about the state of a machine.

Table 1:1-bit Comparator

 This is useful if we want to compare two variables

and want to produce an output when any of the above three

conditions are achieved. For example, produce an output

from a counter when a certain count number is reached.

Consider the simple 1-bit comparator above.

3.1.2 PRIORITY ENCODER

 Here we applied input width is 5 bit and output

width is 3 bit by using priority encoder. A priority encoder

is a circuit or algorithm that compresses multiple binary

inputs into a smaller number of outputs. The output of a

priority encoder is the binary representation of the ordinal

number starting from zero of the most significant input bit.

They are often used to control interrupt requests by acting

on the highest priority request. If two or more inputs are

given at the same time, the input having the highest priority

will take precedence. An example of a single bit 4 to 2

encoder is shown, where highest-priority inputs are to the

left and "x" indicates an irrelevant value - i.e. any input

value there yields the same output since it is superseded by

higher-priority input. The output V indicates if the input is

valid. Priority encoders can be easily connected in arrays to

make larger encoders, such as one 16-to-4 encoder made

from six 4-to-2 priority encoders - four 4-to-2 encoders

having the signal source connected to their inputs, and the

two remaining encoders take the output of the first four as

input. The priority encoder is an improvement on simple

encoder circuit in terms of all handling possible input

configurations.

3.1.3 MULTIPLEXER

 In this module will generate reminder code

according to selection line. We applied three input signal as

mux_in and m. we obtain the output (specific signal) from

given input signal.

 If A greater than B is equal to 1 will get mux_in

signal. If A lesser than B we get m signal. Otherwise we get

0(8 bit signal). A data selector, more commonly called a

Multiplexer, shortened to "Mux" or "MPX", are

International Journal of Modern Engineering Research (IJMER)

 www.ijmer.com Vol.2, Issue.4, July-Aug 2012 pp-2867-2875 ISSN: 2249-6645

www.ijmer.com 2873 | P a g e

combinational logic switching devices that operate like a

very fast acting multiple position rotary switch. They

connect or control, multiple input lines called "channels"

consisting of either 2, 4, 8 or 16 individual inputs, one at a

time to an output. Then the job of a multiplexer is to allow

multiple signals to share a single common output. For

example, a single 8-channel multiplexer would connect one

of its eight inputs to the single data output. Multiplexers are

used as one method of reducing the number of logic gates

required in a circuit or when a single data line is required to

carry two or more different digital signals.

3.1.4 SUBTRACTOR

 Here we calculate the difference between input

signal and specific constant value with help of subtraction.

This model converts two rotations A and B into their

difference A-B. This is useful for various applications. For

instance, when you build a treaded vehicle such as a

construction bulldozer, you'd like one motor to control total

motion, and the other the turning. This construction does

that: connect the treads to the (A+B) and (A-B) axles, and

the motors to A and B. Now motor A makes the vehicle go

forward or backward, and B turns it left or right. Of course

you can also run them simultaneously. The great advantage

is that you can now guarantee that the two sides of the

treaded vehicle run at the same speed that does not happen

with 2 motors, they always have a slight power difference.

So it is more likely that it goes straight when you want it to.

3.1.5 QUASI BLOCK

 This block will generate quotient value according

to given input. Here we applied 3 bit input then generate 8

bit signal as output. Coding approaches such as parity code,

Berger code, and residue code have been considered for

design applications to detect circuit errors. Residue code is

generally separable arithmetic codes by estimating a residue

for data and appending it to data. Error detection logic for

operations is typically derived by a separate residue code,

making the detection logic is simple and easily

implemented.

3.1.6 ACCUMULATOR

 In this module consists flip-flop act as a

accumulator. We can store a bit of data. Flip-flop" is the

common name given to two-state devices which offer basic

memory for sequential logic operations. Flip-flops are

heavily used for digital data storage and transfer and are

commonly used in banks called "registers" for the storage of

binary numerical data. There are some circuits that are not

quite as straight forward as the gate circuits we have

discussed in earlier lessons. However, you still need to

learn about circuits that can store and remember

information. They're the kind of circuits that are used in

computers to store program information RAM memory.

FIG 9: M MOD N OPERATION

IV. ERROR DETECTION CIRCIUT
 In this module indicates that the operations of error

detection in a specific PEi is achieved by using EDC, which

is utilized to compare the outputs between TCG and in rder

to determine whether errors have occurred. The EDC output

is then used to generate a 0/1 signal to indicate that the

tested PEi is error-free/errancy. Using XOR operation can

be identify the error if any variation in terms of residue and

quotient value. Because a fault only affects the logic in the

fanout cone from the fault site, the good circuit and faulty

circuits typically only differ in a small region. Concurrent

fault simulation exploits this fact and simulates only the

differential parts of the whole circuit . Concurrent fault

simulation is essentially an event-driven simulation with the

fault-free circuit and faulty circuits simulated altogether. In

concurrent fault simulation, every gate has a concurrent fault

list, which consists of a set of bad gates. A bad gate of gate

x represents an imaginary copy of gate x in the presence of a

fault. Every bad gate contains a fault index and the

associated gate I/O values in the presence of the

corresponding fault. Initially, the concurrent fault list of gate

x contains local faults of gate x. The local faults of gate x

are faults on the inputs or outputs of gate x. As the

simulation proceeds, the concurrent fault list contains not

only local faults but also faults propagated from previous

stages. Local faults of gate x remain in the concurrent fault

list of gate x until they are detected. As we move to the

nanometer age, we have begun to see nanometer designs

that contain hundreds of millions of transistors.

V. DATA RECOVERY CIRCUIT

 In this module will be generate error free output by

quotient multiply with constant value (64) and add with

reminder code. During data recovery, the circuit DRC plays

a significant role in recovering RQ code from TCG.

 Notably, the proposed EDDR design executes the

error detection and data recovery operations simultaneously.

Additionally, error-free data from the tested PEi or data

recovery that results from DRC is selected by a multiplexer

(MUX) to pass to the next specific PEi+1for subsequent

testing. Error concealment in video is intended to recover

the loss due to channel noise, e.g., bit-errors in a noisy

channel and cell- loss in an ATM network, by utilizing

available picture information. The error concealment

techniques can be categorized into two classes according to

the roles that the encoder and the decoder play in

the underlying approaches. Forward error concealment

includes methods that add redundancy in the source to

enhance error resilience of the coded bit streams. For

example, I-picture motion vectors were introduced in

MPEG-4 to improve the error concealment. However, a

syntax change is required in this scheme. In contrast to

this approach, error concealment by post-processing refers

to operations at the decoder to recover the damaged images

based on image and video characteristics. In this way, no

syntax is needed to support the recovery of missing data. we

have only discussed the case in which one frame has been

damaged and we wish to recover damaged blocks using

information that is already contained in the bit-stream.

The temporal domain techniques that we have

considered rely on information in the previous frame to

perform the reconstruction. However, if the previous frame

is heavily damaged, the prediction of the next frame may

International Journal of Modern Engineering Research (IJMER)

 www.ijmer.com Vol.2, Issue.4, July-Aug 2012 pp-2867-2875 ISSN: 2249-6645

www.ijmer.com 2874 | P a g e

also be affected. For this reason, we must consider making

the prediction before the errors have occurred. Obviously, if

one frame has been heavily damaged, but the frame before

that has not been damaged, it makes senses to investigate

how the motion vectors can be extrapolated to obtain a

reasonable prediction from a past reference frame.

Following this notion, we have essentially divided the

problem of error concealment into two parts. The first

part assumes that the previous frames are intact or are close

to intact. This will always be the case for low BER and

short error bursts.

 Furthermore, a localized solution such as the

techniques presented in the previous subsection will usually

perform well. However, if the BER is high and/or the burst

length is long, the impact of a damaged frame can

propagate, hence the problem is more global and

seems to require a more advanced solution, i.e., one which

considers the impact over multiple frames. In the following,

we propose an approach that considers making predictions

from a past reference frame, which has not been damaged.

The estimated motion information which differs from the

actual one may be recovered from that of neighbor blocks.

Because a moving object in an image sequence is larger

than the block size of a minimal block in many occasions,

motion information of neighbor blocks are usually the same

as, or approximate to, current blocks. The concept of global

motion is discussed in many researches on motion

estimation or related interests. In method which reconstructs

the frame with the aid of neighbor motion vector is

successfully applied to motion estimation. Thus, an error

signal “1” is generated from EDC and sent to mux in order

to select the recovery results from DRC.

VI. SIMULATION RESULTS

Fig10: Processing Element

Fig11: SAD TREE

Fig12: RQ Code Generation

Fig13: Error Detection Circuit

Fig14: Error Recover Circuit

Fig15: Motion Estimation

Fig16: Motion Estimation

International Journal of Modern Engineering Research (IJMER)

 www.ijmer.com Vol.2, Issue.4, July-Aug 2012 pp-2867-2875 ISSN: 2249-6645

www.ijmer.com 2875 | P a g e

VII. CONCLUSION

 This paper presents an FPGA implementation of

efficient architecture to make an application embedding into

video code testing applications .The required modules have

been taken and theoretical analysis have done and numerical

calculations were calculated and verified. Combinational

circuits are taken and simulation results have obtained

which are required to built an architecture are explained and

necessary types of codes which are generated to make errors

to be detected and recovered.

Referrences
[1] J. M. Portal, H. Aziza, and D. Nee, “EEPROM memory:

Threshold voltage built in self diagnosis,” in Proc. Int. Test

Conf., Sep. 2003, pp. 23–28.

[2] J. F. Lin, J. C. Yeh, R. F. Hung, and C. W. Wu, “A built-in

self-repair design for RAMs with 2-D redundancy,” IEEE

Trans. Vary Large Scale Integr. (VLSI) Syst., vol. 13, no. 6,

pp. 742–745, Jun. 2005.

[3] C. L. Hsu, C. H. Cheng, and Y. Liu, “Built-in self-

detection/correction architecture for motion estimation

computing arrays,” IEEE Trans. Vary Large Scale Integr.

(VLSI) Systs., vol. 18, no. 2, pp. 319–324, Feb. 2010.

[4] C. H. Cheng, Y. Liu, and C. L. Hsu, “Low-cost BISDC

design for motion estimation computing array,” in Proc.

IEEE Circuits Syst. Int. Conf., 2009, pp. 1–4.

[5] S. Bayat-Sarmadi and M. A. Hasan, “On concurrent

detection of errors in polynomial basis multiplication,”

IEEE Trans. Vary Large Scale Integr. (VLSI) Systs., vol.

15, no. 4, pp. 413–426, Apr. 2007.

[6] C. W. Chiou, C. C. Chang, C. Y. Lee, T. W. Hou, and J. M.

Lin, “Concurrent error detection and correction in Gaussian

normal basis multiplier over GF 2^M,” IEEE Trans.

Comput., vol. 58, no. 6, pp. 851–857, Jun. 2009.

[7] L. Breveglieri, P. Maistri, and I. Koren, “A note on error

detection in an RSA architecture by means of residue

codes,” in Proc. IEEE Int. Symp. On-Line Testing, Jul.

2006, 176 177.

[8] S. J. Piestrak, D. Bakalis, and X. Kavousianos, “On the

design of selftesting checkers for modified Berger codes,”

in Proc. IEEE Int. WorkshopOn- Line Testing, Jul. 2001,

pp. 153–157.

[9] S. Surin and Y. H. Hu, “Frame-level pipeline motion

estimation array processor,” IEEE Trans. Circuits Syst.

Video Technol., vol. 11, no. 2, pp. 248–251, Feb. 2001.

[10] D. K. Park, H. M. Cho, S. B. Cho, and J. H. Lee, “A fast

motion estimation algorithm for SAD optimization in sub-

pixel,” in Proc. Int. Symp. Integr. Circuits, Sep. 2007, pp.

528–531.

[11] L. Breveglieri, P. Maistri, and I. Koren, “A note on error

detection in an RSA architecture by means of residue

codes,” in Proc. IEEE Int. Symp. On-Line Testing, Jul.

2006, 176 177.

[12] S. J. Piestrak, D. Bakalis, and X. Kavousianos, “On the

design of selftesting checkers for modified Berger codes,”

in Proc. IEEE Int. WorkshopOn- Line Testing, Jul. 2001,

pp. 153–157.

Authors

 Suparshya Babu Sukhavasi was born in India, A.P.

He received the B.Tech degree from JNTU, A.P, and M.Tech

degree from SRM University, Chennai, Tamil Nadu, and India in

2008 and 2010 respectively. He worked as Assistant Professor in

Electronics & Communications Engineering in Bapatla

Engineering College for academic year 2010-2011 and from 2011

to till date working in K L University. He is a member of Indian

Society For Technical Education and International Association of

Engineers. His research interests include Mixed and Analog

VLSI Design, FPGA Implementation, Low Power Design and

Wireless communications, VLSI in Robotics. He has published

articles in various international journals and Conference in IEEE.

Susrutha Babu Sukhavasi was born in India, A.P. He

received the B.Tech degree from JNTU, A.P, and M.Tech degree

from SRM University, Chennai, Tamil Nadu, India in 2008 and

2010 respectively. He worked as Assistant Professor in

Electronics & Communications Engineering in Bapatla

Engineering College for academic year 2010-2011 and from 2011

to till date working in K L University. He is a member of Indian

Society For Technical Education and International Association of

Engineers. His research interests include Mixed and Analog VLSI

Design, FPGA Implementation, Low Power Design and wireless

Communications, Digital VLSI. He has published articles in

various international journals and Conference in IEEE.

S R Sastry Kalavakolanu was born in A.P,India. He

received the B.Tech degree in Electronics & communications

Engineering from Jawaharlal Nehru Technological University in

2010. Presently he is pursuing M.Tech VLSI Design in KL

University. His research interests include Low Power VLSI

Design. He has undergone 3 International Journals and 1

publishment in IEEE.

 M.Aravind Kumar was born in A.P,India He

received his B.Tech degree in Electronics and Communication

Engineering from S.V.H college of Engineering and Technology in

the year 2005. He is presently pursuing masters in VLSI system

design (4th semester) at Padmasri Dr.B.V.Raju Institute of

Technology, Medak(dst), A.P.India.

P.Bose Babu was born in A.P,India, He Completed

M.Tech in VLSI system Design from MVGR COLLEGE OF

ENGG.&TECH, Vizianagaram in 2011 and B.Tech from QIS

College of engineering, in 2009 in Electronics &Communication

engineering. Presently he is Working as Asst.Professor in

ANDHRA LOYOLA college of Engg.& Technology,

Vijayawada,A.P,India.

 Ranga Rao Orugu was born in A.P,India,

Completed M.Tech in Communication Systems at C.R.Reddy

engineering College, Eluru and B.Tech from Sri Saaradhi Institute

of and technology in the year 2009 in Electronics

&Communication engineering. Presently he is Working as

Asst.Professor in ANDHRA LOYOLA college of Engg.&

Technology, Vijayawada,A.P,India.

