
International Journal of Modern Engineering Research (IJMER) 

  www.ijmer.com                  Vol.2, Issue.4, July-Aug 2012 pp-2935-2937              ISSN: 2249-6645 

www.ijmer.com                                                                  2935 | P a g e  

 

 

 

 

 

B. Sravanthi
1
, Ch. Madhuri Devi

2 

1M.tech.Student, Sri Indu College of Engineering & Technology, Hyderabad 
2Associate Professor, Sri Indu College of Engineering & Technology, Hyderabad 

 

 

Abstract: Compressed sensing is a technique that consists 

providing efficient, stable and fast recovery algorithms 

which, in a few seconds, evaluate a good approximation of 

a compressible image from highly incomplete and noisy 

samples. In this paper, using adaptive nonlinear filtering 
strategies in an iterative framework can be avoiding the 

recovery image problem. In this technique has more 

efficient, stability and low computational cost. The 

experimental shows that the PSNR, CPU time and recovery 

image. 

 

Index Terms—Compressed sensing, L1-minimization, 

median filters, nonlinear filters, sparse image recovery, 

total variation. 
 

I. Introdction 
Compressed sensing is a new paradigm for signal 

recovery and sampling. It states that a relatively small 

number of linear measurements of a sparse signal can 

contain most of its salient information and that the signal 

can be exactly reconstructed from these highly incomplete 

observations. The major challenge in practical applications 

of compressed sensing consists in providing efficient, stable 
and fast recovery algorithms which, in a few seconds, 

evaluate a good approximation of a compressible image 

from highly incomplete and noisy samples. 

It follows that signals that have a sparse 

representation in a transform domain can be exactly 

recovered from these measurements by solving an 

optimization problem of the form 

                       ΦWTα=ΦX                  (1) 

Here 

Φ is an M*N measurement matrix and α=Wu. The number 

M of given measurements for which we obtain the perfect 

recovery depends upon the length and the sparsity level K 
of the original signal, and on the acquisition matrix [1], [3]. 

If the unknown x signal has sparse gradient, it has been 

shown in [2], [3] that it can be recovered by casting problem 

(1) as 

                                              Φu=Φx               (2) 

This formulation is particularly suited to the image 

recovery problem, since many images can be modeled as 

piece- wise-smooth functions containing a substantial 

number of jump discontinuities. Exact measurements are 

often not possible in real problems, so if the measurements 

are corrupted with random noise, namely we have 
                                     Y=Φx+e                           (3) 

Where e is the error signal and x is the input image. 

Sparse signals are an idealization that we rarely encounter in 

applications, but real signals are quite often compressible 

with respect to an orthogonal basis. This means that, if 

expressed in that basis, their coefficients exhibit exponential 

decay when sorted by magnitude. As a consequence, 

compressible signals are well approximated by k-sparse 

signals and the compressed sensing paradigm guarantees 

that from M linear measurements we can obtain a 

reconstruction with an error comparable to that of the best 

possible k-terms approximation within the sparse fying 

basis [4][2]. 

In this paper is organized as follows. Proposed 
method in section II. Section III describes the comparative 

perfomance. The simulation results are presented in Section 

IV. Concluding remarks are made in Section V. 

 

II. Proposed Method 
In this paper, we consider an extension of this 

nonlinear filtering approach to the multi dimensional case. 

We focus on a recovery problem where the optimal 

solution, in addition to satisfying the acquisition constraints, 
has minimal “bounded variation norm,” namely, it 

minimizes. The optimal reconstruction is evaluated by 

solving a sequence of total variation regularized 

unconstrained sub problems, where both isotropic and 

anisotropic TV estimates have been considered. 

The nonlinear filtering strategy has been proposed 

in the context of a penalized approach to the compressed 

sensing signal recovery problem. suitable filter is used 

according to the considered minimization problem and a 

fast flexible algorithm has been realized for its solution. The 

procedure of proposed method as shown below 
i)  Initialization of parameters 

ii) Updating bound constrains 

iii) Apply constraint non linear filter step  

iv) Convergence test of proposed method 

v) Updating outer iteration 

From a theoretical point of view, the non linear 

adaptive filter  is attractive since it can deal with a general 

class of nonlinear systems while its output is still linear with 

respect to various higher power system coefficients. 

First we initialize the all parameter values then 

start with the outer iterations. In outer iteration, the image 
reconstruction problems it is well known that image 

intensity values have to be not negative and <=R,R>0. This 

suggests that we could insert more information in the 

compressed sensing reconstruction problem by adding a 

bound constraint as shown below 

                               Ts u = y                                    (4) 

In the case of input data perturbed by additive white 

Gaussian noise with standard deviation σ 

Y=S(Tx+e) 

                                =Tsx+es                              (5) 

Where e error value between orginal image 

andreconstruction image. After apply the outer iteration 
then to update the bound constraints as shown below 

Compressed Sensing Image Recovery Using Adaptive Nonlinear 

Filtering 
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            (6) 

Where  

Ts is linear operator 

Β < α/2  
V k,I is the proximal operator argument 

The third step of proposed method is the non linear filter 

step.The equation of non linear filter as shown below 

        (7) 

The fourth step of proposed method is convergence 

test. In convergence test, The general compressed sensing 

problem can now be stated using the previous notations. 

The input data can be represented as 

                                   Y=Ts x                               (8) 

In the case of input data perturbed by additive 

white Gaussian noise with standard deviation σ in equation 
(5). If F(u) contains an L-norm the optimization problems 

can be very difficult to solve directly, due to the 

nondifferentiability of . To overcome this problem we use 

the well known penalization approach that considers a 

sequence of un-constrained minimization sub problems of 

the form 

    (9) 

The convergence of the penalization method to the 

solution of the original constrained problem has been 

established (under very mild conditions) lim λk =0 when. 

Unfortunately, in general, using very small penalization 

parameter values makes the unconstrained sub problems 
very ill-conditioned and difficult to solve. In the present 

context, we do not have this limitation, since we will 

approach these problems implicitly, thus, avoiding the need 

to deal with ill-conditioned linear systems. This is obtained 

by evaluating an approximation of the solution of (9) 

iteratively, using an operator splitting strategy (frequently 

considered in the literature to solve -regularized problems 

[5], [6], [7], [8]), and taking advantage of the particular 

structure of the resulting problems. 

 

III. Comparative Perfomance 

To assess the performance of the proposed filters 

for  removal of noise and to evaluate their comparative 

performance, different standard performance indices have  

been used in the thesis. These are defined as follows: 

Peak Signal to Noise Ratio (PSNR): It is measured in 

decibel (dB) and for gray scale image it is defined as: 

   (8) 
Si,j  and Ŝi,j are the input and reconstruction images. The 

higher the PSNR in the restored image, the better is its 

quality.   

Signal to Noise Ratio Improvement (SNRI): SNRI in dB 

is defined as the difference between the Signal to Noise 

Ratio (SNR) of the restored image in dB and SNR of 

restored image in dB i.e.  

SNRI (dB) = SNR of restored image in dB- SNR of noisy 

image in dB   
Where,  

SNR of restored image dB=   

(9) 

The higher value of SNRI reflects the better visual 

and restoration performance. 

 

IV. EXPERIMENTAL RESULTS 

 
Fig.1. original image 

 
Fig.2. Gaussian mask corresponding to 77% under sampling 

 
Fig.3. Sparse mask corresponding to 77% under sampling 

 
 

Fig.4. reconstruction image using non linear filter 

Nonlinear Adaptive Filter With Mask I,M=16402 with 

different noise 

noise PSNR SNR Cpu time iteration 

0 55.15 220 12 25 

0.1 54.98 219 12 26 

 

V. CONCLUSION 
In this paper, avoiding the reconstruction image 

problem using non linear filter technique and prove the 

convergence of the resulting two-steps iterative scheme.In 
this paper, different kinds of measurements and different 

choices of the function  F(u). In fact, since this function 

plays the role of the penalty function in the variational 

approach of the image denoising problem, it is possible to 

exploit the different proposals of the denoising literature in 
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order to select new filtering strategies and the references 

therein), perhaps more suited to the different practical 

recovery problems. 
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