
International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.4, July-Aug. 2012 pp-1564-1571 ISSN: 2249-6645

 www.ijmer.com 1564 | Page

K. Phaneendra
1
, Venu Madhav Sunkara

2
, R. Vijaya

3
, G. Rajendra

4

*(Department of MCA, LBRCE College/ JNTU Kakinada, India)
** (Department of Computer Science, KL University, Vaddeswaram)

*** (Department of MCA, LBRCE College/ JNTU Kakinada, India)

**** (Department of MCA, LBRCE College/ JNTU Kakinada, India)

ABSTRACT: Virtualization technology is being used

intensively in data centers, cluster systems, enterprises and
organizational networks, Hence the capability of Virtual

Machine (VM) Migration importance has been increased for

maintaining high performance, improved manageability and

fault tolerance. Live Migration allows virtual machine

monitor to move the running virtual machine from one

physical server to another with zero downtime, continuous

service availability and complete transaction integrity. In this

paper we, present a performance evaluation of parameters

that affect live migration and varying in the performance

depending on workload.

Keywords: Virtual Machine (VM), Migration Time (MT),

Down Time (DT), Dirty Page, Virtualization.

I. INTRODUCTION
System virtualization is the ability to abstract and pool

resources on a physical platform. This abstraction decouples

software from hardware and enables multiple operating
system images to run concurrently on a single physical

platform without interfering with each other. As a technique,

system virtualization has existed for decades on mainframes.

In the past, industry standard x86-based machines, with their

limited computing resources. Virtualization can increase

utilization of computing resources by consolidating the

workloads running on many physical systems into virtual

machines running on a single physical system. Virtual

machines can be provisioned on-demand, replicated and

migrated. Virtual machine (VM) migration, which is the

ability to move a VM from one physical server to another
under virtual machine monitor (VMM) control, is a capability

being increasingly utilized in today’s enterprise

environments.

 Implemented by several existing virtualization

products, live migration can aid in aspects such as high-

availability services, transparent mobility, consolidated

management, and workload balancing [1]. While

virtualization and live migration enable important new

functionality, the combination introduces novel security

challenges. A virtual machine monitor that incorporates a

vulnerable implementation of live migration functionality

may expose both the guest and host operating system to
attack and result in a compromise of integrity. Given the

large and increasing market for virtualization technology, a

comprehensive understanding of virtual machine migration

security is essential. However, the security of virtual machine

migration has yet to be analyzed.

After a live migration, guest software continues to

maintain an identical view of the pre and post migration

hardware. In this paper we discuss Processors provide

support for a VMM to hide differences in software-visible

processor features during Live.

1.1 SHORT BACKGROUND ON VM TECHNOLOGY

Initially very popular in the 1960’s, for instance in

the context of shared mainframe computers, this technology

was subsequently abandoned in favour of multiprogrammed

efficient commodity operating systems, running on

increasingly cheaper and more widely available hardware.

However, the virtual machine technology, initially based on

the principle of exporting (possibly multiple) virtualized

software versions of the machine hardware to upper layers

(originally the operating system) came back to fashion in the

past years. Reasons for this come-back spanned the need for

easier management of large scale distributed systems or MPP
machines [2], or the need for support for mobility (the easy

checkpointing capability mentioned above) and increased

security (as many commodity OSs had become quite

unmanageable and/or insecure and proved to under-use the

same increasingly cheaper hardware resources that caused the

“retirement” of VMs 20 years ago).However, while they have

indeed come back, VMs are less interesting now for resource

multiplexing but more as a way to “circumvent” existing

“popular” Operating Systems that have become

unmanageable and provide little opportunities for activities

like checkpointing or sandboxing. Issues and challenges of
VM implementations include minimizing virtualization

overhead and exporting a virtualized interface identical or as

similar as possible to the virtualized machine to ensure

compatibility.

Various design choices exist, such as providing a

“classic” VM architecture – such as Xen or VMWare ESX

Server [3] (laying underneath the Operating system and thus

maximizing performance) or a “hosted” architecture, such as

VMWare Workstation (laying “on top” of a host operating

system, as an application and improving). Another important

design choice is that of slightly modifying the virtualized

interface to be exported to replace portions of the instructions
set which are not easily virtualizable by different and more

efficiently implementable equivalents. This approach is

called paravirtualization and it is applied in VM

implementations such as Xen or Disco [4]. VMs can provide

important benefits that can be useful in many contexts,

including migration. Firstly, they have the serious advantage

of abstracting away the details of underlying hardware and

Parameter Dependent Performance Optimization In Live

Migration Of Virtual Machine

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.4, July-Aug. 2012 pp-1564-1571 ISSN: 2249-6645

 www.ijmer.com 1565 | Page

exporting a uniform view of the virtualized machine,

therefore providing an elegant solution to the resource

heterogeneity problem. Additionally, they provide a complete

encapsulation of the machine software state, therefore the

VM can be easily and very conveniently checkpointed,

suspended and restarted at will. Consequently, VMs can be

dynamically mapped to physical machines or migrated much

easier than processes.

Therefore, the implementation complexity of

migration implementation, which we saw that was a limiting
factor in the case of process migration, is greatly reduced.

Besides migration-empowered applications like dynamic load

balancing, fault tolerance or Internet Suspend-Resume [5]

type applications, VM can be used for things like convenient

distribution of software packages (for instance Oracle

delivers packages of readily installed and configured

software under the form of VMs) or for damage containment

and “forensics” against worm or hacker attacks.

1.2 VIRTUAL MACHINE MIGRATION

There are many ways to migrate a VM. In static
migration, the VM is shutdown using OS-supported methods;

its static VM image is moved to another VMM and restarted.

In cold migration, the VM is suspended using OS supported

or VMM-supported methods. The suspended VM image is

moved to a VMM on a different machine and resumed. In

live migration, the VMM moves a running VM instance

nearly instantaneously from one server to another. Live

Migration allows for dynamic load balancing of virtualized

resource pools, hardware maintenance without downtime and

dynamic failover support. As long as the hardware in the pre

and post migration environment is identical, guest software

should behave in exactly the same way before and after the
migration. It is when guest software runs in a different

hardware environment after a migration that certain

challenges can arise[6]. Note that even though a VMM

presents a virtual platform to guest software, there could be

certain interfaces, depending on VMM design, which guest

software can directly use to determine underlying hardware’s

capabilities.

After the reboot/restart following a static migration,

guest software should go through its platform discovery

phase and be able to adjust to any differences in underlying

(virtual) hardware. Following a cold migration, guest
software may continue to maintain an identical view of the

pre and post migration hardware. When suspended using OS-

supported methods, some operating systems will re-scan the

hardware upon resume. Depending on their policies and the

hardware differences between current and previous hardware,

the OSes may refuse to resume and require a reboot. After a

live migration, guest software continues to maintain an

identical view of the pre and post migration hardware.

1.3 Issues with VM migration

However, things get a little more complicated. More

precisely, to perform a correct migration, besides the
checkpointed state of the VM, the memory image of that VM

also has to be migrated, for the state to be correctly

preserved. All this should be done while programs in the VM

are still running; therefore memory pages are still getting

dirtied. Therefore, we see that increased simplicity comes at a

certain price, since the VM’s memory image and state is

undoubtedly much larger than the process’ checkpointed state

in the case of process migration.

Additionally, as with all migrations, resources used

by processes running within the migrated VM should still be

available after the migration attached. Since these resources

might be hard to migrate (because of large sizes or

consistency constraints for instance), this brings back the

problem of residual dependencies. For instance, the problem

of migrating the file system present on the virtual disk of a
Virtual Machine [7]. In the context of Virtual Machine

migration, “residual dependencies” are especially important,

considering that the size of a virtual machine can be much

larger than that of a process. While migrating the entire VM,

as we have seen, has the advantage that support for check

pointing is readily provided, unlike in the case of a regular

process, the VM’s address space, and especially it’s virtual

disk are of considerable size, therefore leaving residual

dependencies may be unavoidable to ensure reasonable

migration times (at least with current typical network

resources)[8]. As with all migration systems, transparency
remains an issue also for VM migration.

II. LIVE MIGRATION
Virtual machine live migration is a virtualization

process that moves a virtual machine (VM) from one

physical host server to another. It moves the memory and

state of a VM without shutting down the application, so users

will generally not detect any significant interruption in

application availability. The process captures the complete
memory space occupied by the VM along with the exact state

of all the processor registers currently operating on the VM

then sends that content across a TCP/IP link to memory space

on another server. Processor registers are then loaded, and the

newly moved VM can pick up its operation without missing a

step.

Most VM live migrations occur between similar

hypervisors, so the migrated VM retains its name and other

unique identifiers. Even though the VM is on a different

server, it's the exact same machine as far as the users are

concerned. Live migration is a key benefit of virtualization,

allowing workloads to move in real time as server or data
center conditions change [9]. Consider the impact on

business continuity: A virtual server scheduled for

maintenance can migrate its workloads to a spare server or to

other servers that have extra computing capacity. Once the

maintenance is complete and the server returns to service,

these workloads can all migrate back to the original server

without disruption.

Live migration helps server consolidation by

allowing IT administrators to balance workloads across data

center servers, ensuring that each server is used efficiently

without being overtaxed. Live migration helps with disaster
recovery too because VMs can just as easily be moved from

one site to another, relying on spare servers at a remote site to

receive and operate the migrated VMs.

All of the major virtualization software platforms

include VM live migration tools. These include VMware

VMotion (part of vSphere), Microsoft Live Migration (part of

Hyper-V R2) and Citrix Systems XenServer live migration.

Migration tools typically allow administrators to prioritize

http://searchservervirtualization.techtarget.com/sDefinition/0,,sid94_gci1219658,00.html

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.4, July-Aug. 2012 pp-1564-1571 ISSN: 2249-6645

 www.ijmer.com 1566 | Page

the movement of each VM so that failover and failback

processes occur in a predictable and repeatable manner.

Mission-critical VMs usually take priority and are often

moved to spare servers with ample computing resources.

Secondary VMs can be addressed next, although the

migration software may be left to move noncritical VMs

automatically based on the computing resources on each

available server. Migration audits allow administrators to

locate VMs and track their movements to refine and optimize

ongoing migration behaviours. Live migration works
between almost all virtual host servers, but it's important to

test migration behaviours between servers with various

processor manufacturers. Processors from Intel and AMD

both include extensions that provide hardware assistance for

virtualization tasks, including migration. However, Intel VT

and AMD-V processors use different architectures to

facilitate migration, and moving VMs between Intel and

AMD-based servers may result in unexpectedly poor

migration performance.

2.1 Live Migration options for storage configurations
In addition to network settings, there are some

storage connection types that must also be carefully

configured on Hyper-V hosts for Live Migration to run

properly. A Virtual Hard Disk (VHD) attachment, for

instance, is arguably the simplest for Live Migration
purposes. When VHDs are attached to a highly available

VM, they must also exist on shared storage. This setup

ensures that every cluster node can automatically access the

disk when a VM migrates. For pass-through disks, another

storage configuration, additional care is necessary. These

disks have a direct relationship with both VMs and their

hosts, which must be considered before performing Live

Migration. A pass-through disk must be exposed to the host

and then passed through to the VM. Pass-through disks are

supported in a clustered configuration; but the cluster must be

informed of any new pass-through disks by refreshing the

VM configuration after it has been attached. Pass-through
disks must be managed like other cluster resources. The

storage area network connections to the cluster must be

exposed to every potential cluster host.

III. Design
At a high level we can consider a virtual machine to

encapsulate access to a set of physical resources. Providing

live migration of these VMs in a clustered server

environment leads us to focus on the physical resources used

in such environments: specifically on memory, network and

disk. This section summarizes the design decisions that we

have made in our approach to live VM migration. We start by

describing how memory and then device access is moved

across a set of physical hosts and then go on to a high-level
description of how a migration progresses.

3.1 Migrating Memory

Moving the contents of a VM's memory from one
physical host to another can be approached in any number of

ways. However, when a VM is running a live service it is

important that this transfer occurs in a manner that balances

the requirements of minimizing both downtime and total

migration time. The former is the period during which the

service is unavailable due to there being no currently

executing instance of the VM; this period will be directly

visible to clients of the VM as service interruption. The latter

is the duration between when migration is initiated and when

the original VM may be finally discarded and, hence, the

source host may potentially be taken down for maintenance,

upgrade or repair. It is easiest to consider the trade-offs

between these requirements by generalizing memory transfer

into three phases:

Push phase
The source VM continues running while certain

pages are pushed across the network to the new destination.

To ensure consistency, pages modified during this process

must be re-sent.

Stop-and-copy phase
The source VM is stopped, pages are copied across to the

destination VM, then the new VM is started.

Pull phase
The new VM executes and, if it accesses a page that has not

yet been copied, this page is faulted in ("pulled") across the

network from the source VM.

Although one can imagine a scheme incorporating

all three phases, most practical solutions select one or two of

the three. For example, pure stop-and-copy [10] involves

halting the original VM, copying all pages to the destination,

and then starting the new VM. This has advantages in terms

of simplicity but means that both downtime and total

migration time are proportional to the amount of physical

memory allocated to the VM. This can lead to an
unacceptable outage if the VM is running a live service.

Another option is pure demand-migration [11] in

which a short stop-and-copy phase transfers essential kernel

data structures to the destination. The destination VM is then

started, and other pages are transferred across the network on

first use. This results in a much shorter downtime, but

produces a much longer total migration time; and in practice,

performance after migration is likely to be unacceptably

degraded until a considerable set of pages have been faulted

across. Until this time the VM will fault on a high proportion

of its memory accesses, each of which initiates a
synchronous transfer across the network.

The approach taken in this paper, pre-copy [12]

migration, balances these concerns by combining a bounded

iterative push phase with a typically very short stop-and-copy

phase. By `iterative' we mean that pre-copying occurs in

rounds, in which the pages to be transferred during round n

are those that are modified during round n-1 (all pages are

transferred in the first round). Every VM will have some

(hopefully small) set of pages that it updates very frequently

and which are therefore poor candidates for pre-copy

migration. Hence we bound the number of rounds of pre-

copying, based on our analysis of the writable working set
(WWS) behaviour of typical server workloads. Finally, a

crucial additional concern for live migration is the impact on

active services. For instance, iteratively scanning and sending

a VM's memory image between two hosts in a cluster could

easily consume the entire bandwidth available between them

http://searchservervirtualization.techtarget.com/tip/0,289483,sid94_gci1370496_mem1,00.html
../Local%20Settings/AppData/Local/AppData/Local/AppData/Local/My%20Documents/Downloads/NSDI%20'05%20—%20Technical%20Paper.htm#collective-migration

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.4, July-Aug. 2012 pp-1564-1571 ISSN: 2249-6645

 www.ijmer.com 1567 | Page

and hence starve the active services of resources. This service

degradation will occur to some extent during any live

migration scheme. We address this issue by carefully

controlling the network and CPU resources used by the

migration process; thereby ensuring that it does not interfere

excessively with active traffic or processing.

3.2 Resources for Migration
A key challenge in managing the migration of OS

instances is what to do about resources that are associated

with the physical machine that they are migrating away from.

While memory can be copied directly to the new host,

connections to local devices such as disks and network

interfaces demand additional consideration. The two key

problems that we have encountered in this space concern
what to do with network resources and local storage.

For network resources, we want a migrated OS to

maintain all open network connections without relying on

forwarding mechanisms on the original host (which may be

shut down following migration), or on support from mobility

or redirection mechanisms that are not already present (as

in [13]). A migrating VM will include all protocol state

(e.g. TCP PCBs), and will carry its IP address with it. To

address these requirements we observed that in a cluster

environment, the network interfaces of the source and

destination machines typically exist on a single switched
LAN. Our solution for managing migration with respect to

network in this environment is to generate an unsolicited

ARP reply from the migrated host, advertising that the IP has

moved to a new location. This will reconfigure peers to send

packets to the new physical address, and while a very small

number of in-flight packets may be lost, the migrated domain

will be able to continue using open connections with almost

no observable interference.

Some routers are configured not to accept broadcast

ARP replies (in order to prevent IP spoofing), so an

unsolicited ARP may not work in all scenarios. If the

operating system is aware of the migration, it can opt to send
directed replies only to interfaces listed in its own ARP

cache, to remove the need for a broadcast. Alternatively, on a

switched network, the migrating OS can keep its original

Ethernet MAC address, relying on the network switch to

detect its move to a new port. In the cluster, the migration of

storage may be similarly addressed: Most modern data

centers consolidate their storage requirements using a

network-attached storage (NAS) device, in preference to

using local disks in individual servers. NAS has many

advantages in this environment, including simple centralised

administration, widespread vendor support, and reliance on
fewer spindles leading to a reduced failure rate. A further

advantage for migration is that it obviates the need to migrate

disk storage, as the NAS is uniformly accessible from all host

machines in the cluster

3.3 Pre-copy Migration

Pre-copy migration tries to tackle problems

associated with earlier designs by combining a bounded

iterative push step with a final and typically very short stop-

and-copy[14] phase. The core idea of this design is that of

iterative convergence. The design involves iterating through

multiple rounds of copying in which the VM memory pages

that have been modified since the previous copy are resent to

the destination on the assumption that at some point the

number of modified pages will be small enough to halt the

VM temporarily, copy the (small number of) remaining pages

across, and restart it on the destination host. Such a design

minimises both total migration time and downtime.

3.3.1 Stages in Pre-copy Migration

Pre-copy migration involves 6 stages, namely:

1) Initialisation: a target is pre-selected for future migration.

2) Reservation: resources at the destination host are

 reserved.

3) Iterative pre-copy: pages modified during the previous

 iteration are transferred to the destination. The entire

 RAM is sent in the first iteration.

4) Stop-and-copy: the VM is halted for a final transfer

 round.

5) Commitment: the destination host indicates that it has

 received successfully a consistent copy of the VM.

6) Activation: resources are re-attached to the VM on the
 destination host.

Unless there are stop conditions, the iterative pre-

copy stage may continue indefinitely. Thus, the definition of

stop conditions is critical in terminating this stage in a timely

manner. These conditions are usually highly dependent on

the design of both the hypervisor and the live migration sub-

system but are generally defined to minimise link usage and

the amount of data copied between physical hosts while

minimising VM downtime. However, the existence of these

stop conditions has a significant effect on migration

performance and may cause non-linear trends in the total
migration time and downtime experienced by VMs.

3.3.2. Defining Migration Performance

Migration performance may be evaluated by

measuring total migration time and total downtime. The

former is the period when state on both machines is

synchronised, which may affect reliability while the latter is

the duration in which the VM is suspended thus seen by

clients as service outage. Using the pre-copy migration

model, total migration time may be defined as the sum of the

time spent on all 6 migration stages (Equation 1) from
initialisation at the source host through to activation at the

destination. Total downtime, however, is the time required

for the final 3 stages to complete (Equation 2). While it is

expected that the iterative pre-copy stage will dominate total

migration time, our measurements found that for certain

classes of applications specifically those that do not have a

high memory page modification rate the initialisation,

reservation, commitment and activation stages may add a

significant overhead to total migration time and downtime.

We classify the initialisation and reservation stages together

as pre-migration overhead while the commitment and

activation stages compose post-migration overhead.

TotalMigrationTime = Initialisation + Reservation

 Pre-migrationOverhead

 +∑ pre-copy + stop-and-copy

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.4, July-Aug. 2012 pp-1564-1571 ISSN: 2249-6645

 www.ijmer.com 1568 | Page

 + Commitment + Activation

Post-migrationOverhead Equation (1)

TotalDowntime = Stop-and-copy

 + Commitment + Activation

 Post-migrationOverhead

 Equation (2)

3.3.3. Migration Bounds

Given the stop conditions, it is possible to work out

the upper and lower migration performance bounds for a

specific migration algorithm. We will use a real-world case

to characterise these boundaries. While there exist a range of

live migration platforms, for the remainder of this paper we

will base our analysis on the Xen migration platform. Xen is

already being used as the basis for large scale cloud

deployments [15] and thus this work would immediately

benefit these deployments. Moreover, Xen is open-source

allowing us to quickly and efficiently determine the
migration sub-system design and implementation. Note

however that our measurement techniques, methodology, and

prediction models design basis are applicable to any

virtualisation platform that employs the pre-copy migration

mechanism. The stop conditions that are used in Xen

migration algorithm are defined as follows:

1) Less than 50 pages were dirtied during the last pre-copy

iteration.

2) 29 pre-copy iterations have been carried out.

3) More than 3 times the total amount of RAM allocated to

the VM has been copied to the destination host. The first

condition guarantees a short downtime as few pages are
to be transferred. On the other hand, the other 2

conditions just force migration into the stop-and-copy

stage which might still have many modified pages to be

copied across resulting in large downtime.

1) Bounding Total Migration Time (Equation 3):

Consider the case of an idle VM running no applications. In

this case the iterative pre-copy stage will terminate after the

first iteration as there is no memory difference.

Consequently, the migration sub-system needs only to send

the entire RAM in the first round. The total migration lower

bound is thus the time required to send the entire RAM
coupled with pre- and post-migration overheads. On the other

hand, consider the case where the entire memory pages are

being modified as fast as link speed. In this scenario, the

iterative pre-copy stage will be forced to terminate after

copying more than 3 times the total amount of RAM

allocated to the VM. Migration then re-sends the entire

modified RAM during the stop-and-copy stage. The total

migration upper bound is thus defined as the time required

sending 5 times the VM size less 1 page1 plus pre- and

postmigration overheads.

Overheads + (VMSize / LinkSpeed) <= TotalMigrationTime
<= (Overheads + ((5 * VMSize – 1) * page) / LinkSpeed)

 Equation (3)

2) Bounding Total Downtime (Equation 4): Similarly, the

total downtime lower bound is defined as the time required

for the post-migration overhead, assuming that the final stop

and copy stage does not transfer any pages. This occurs either

when the VM is idle or the link speed is fast enough to copy

all dirtied pages in the pre-copy stage. On the other hand, the

total downtime upper bound is defined as the time required to

copy the entire RAM in the stop-and-copy stage coupled with

the post-migration overhead.

Post-migrationOverhead <= TotalDowntime <=

(Post-migrationOverhead + (VMSize / LinkSpeed))

 Equation (4)

3.3.4 Difference in Bounds

 Modelling bounds is useful as it enables us to reason about

migration times provided that we know the link speed and

VM memory size. These bounds are the limits in which the

total migration time and total downtime are guaranteed to lie.

Given a 1,024 MB VM and 1 Gbps migration link, for

example, the total migration time has a lower bound of 13
and upper bound of 50 seconds respectively. Similarly, the

downtime has a lower bound of .314 and upper bound of

9.497 seconds respectively. Table I illustrates the migration

bounds for some common link speeds. While the downtime

lower limit is fixed (as it is dependent purely on post-

migration overhead) all other bounds vary in accordance to

link speed due to their correlation with the VM memory size.

As the table indicates, the bounds vary significantly. For

bigger VM memory sizes (which is common in current

installations [16]) we have even larger differences. Thus,

using bounds is at best an imprecise exercise and does not

allow for accurate prediction of migration times. Building
better predictions requires understanding the relationship

between factors that impact migration performance.

Table I: Migrationbounds.Mt:Total Migration Time

(Seconds). Dt: Total Downtime (Milliseconds). Lb: Lower

Bound. Ub: Upper Bound. Vm Size= 1,024 Mb.

Speed MTLB MTUB DTLB DTUB

100 Mbps 92.2 s 437.1 s 311 ms 90,466.5 ms

1 Gbps 11.7 s 43.95 s 311 ms 9,347.3 ms

Fig.1Migration Time Lower Bound and Upper Bound in Sec

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.4, July-Aug. 2012 pp-1564-1571 ISSN: 2249-6645

 www.ijmer.com 1569 | Page

Fig.2 Down Time Lower Bound and Upper Bound in Sec

 Fig.3 100 Mbps Total Down Time

 Fig. 4 100 Mbps Total Migration Time

 Fig.5 1 Gbps Total Down Time

 Fig.6 1 Gbps Total Migration Time

IV. PARAMETERS AFFECTING MIGRATION
There are several factors that we need to study as a

prerequisite for accurate migration modelling. In this section,

we explore these factors and their impact on total migration

time and downtime. Moreover, stop conditions that may

force migration to reach its final stages are generally what

governs migration performance. Obviously, this is

implementation specific which is exemplified by but not

limited to Xen support for live migration. Migration link

bandwidth is perhaps the most influential parameter on

migration performance. Link capacity is inversely

proportional to total migration time and downtime. Higher

speed links allow faster transfers and thus require less time to
complete. Figure 1 illustrates migration performance for a

1,024 MB VM running a micro-benchmark that writes to

memory pages with rates up to 300,000 pages/second on100

Mbps, 1 Gbps links. It represents the impact of each link

speed on total migration time and downtime.

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.4, July-Aug. 2012 pp-1564-1571 ISSN: 2249-6645

 www.ijmer.com 1570 | Page

As link bandwidth increases, the point in the curve

when migration performance starts to degrade rapidly shifts

to the right roughly with the same ratio. Page dirty rate is the

rate at which memory pages in the VM are modified which,

in turn, directly affects the number of pages that are

transferred in each pre-copy iteration. Higher page dirty rates

result in more data being sent per iteration which leads to

longer total migration time. Furthermore, higher page dirty

rates results in longer VM downtime as more pages need to

be sent in the final transfer round in which the VM is
suspended.

Figure 1 shows the effect of varying the page dirty

rate on total migration time and downtime for each link

speed. The relationship between page the dirty rate and

migration performance is not linear because of the stop

conditions. If the page dirty rate is below link capacity, the

migration sub-system is able to transfer all modified pages in

a timely fashion, resulting in a low total migration time and

downtime. On the other hand, if the page dirty rate starts

approaching link capacity, migration performance degrades

significantly. Total downtime at low page dirty rates is
virtually constant and approximately equal to the lower

bound (Equation 4). This is because the link has enough

capacity to transfer dirty pages in successive iterations

leading to a very short stop-and-copy stage. When the page

dirty rate increases to the point that 29 iterations are not

sufficient to ensure a short final copy round or when more

than 3x the VM size have been transferred, migration is

forced to enter its final stage with a large number of dirty

pages yet to be sent.

Consequently, total downtime starts to increase in

proportion to the increase in the number of modified pages

that need to be transferred in the stop-and copy stage. Total
downtime further increases until the defined upper bound in

which it has to send the entire VM memory. Total migration

time also increases with an increasing page dirty rate. This is

attributable to the fact that more modified pages have to be

sent in each pre-copy round. Moreover, the migration sub-

system has to go through more iteration with the hope to have

a short final stop-and-copy round. For page dirty rates near

link speed, total migration time approaches its upper bound

(Equation 3) as migration stops when 3x VM size has been

transferred. Then, it starts to fall back towards its lower

bound.
For extremely high page dirty rates (compared to

link speed), migration is forced to reach its final transfer

stage after 29 iterations having sent virtually no pages.2 It

then has to transfer the entire RAM in the final iteration. This

is exemplified clearly for the 100 Mbps link in Figure 4, in

which the total migration time drops back to its lower bound

(almost all dirty pages are skipped in every iteration except

the final one) while having a total downtime (Figure 3) at its

upper bound (as the entire RAM has to be transferred in the

stop-and-copy stage).

The first pre-copy iteration tries to copy across the

entire VM allocated memory. The duration of this first
iteration is thus directly proportional to the VM memory size

and subsequently impacts total migration time. On average,

total migration time increases linearly with VM size. On the

other hand, the total downtime for low page dirty rates is

almost the same regardless of the VM size as the migration

sub-system succeeds in copying all dirtied pages between

successive iterations resulting in a short stop-and-copy stage.

When the link is unable to keep up with the page dirty rate,

larger VMs suffer longer downtime (linearly proportional to

the VM size) as there are more distinct physical pages that

require copying in the stop-and-copy stage.

 Pre- and post-migration overheads refer to operations that

are not part of the actual transfer process. These are

operations related to initialising a container on the destination

host, mirroring block devices, maintaining free resources,
reattaching device drivers to the new VM, and advertising

moved IP addresses. As these overheads are static, they are

significant especially with higher link speeds. For instance,

pre-migration setup constitutes around 77% of total migration

time on a 1Gbps link for a 512 MB idle VM. More

importantly, post-migration overhead is an order of

magnitude larger than the time required for the stop-and-copy

stage. To conclude this section, there are several parameters

affecting migration performance. These parameters may be

classified as having either a static or dynamic effect on

migration performance. Parameters having static effects are
considered as unavoidable migration overheads. On the other

hand, parameters having dynamic effects on migration affect

only the transfer process. Dynamic parameters are typically

related to the VM specification and applications hosted inside

it.

We show that the page dirty rate and link speed are the major

factors influencing migration times. We also show how

particular combinations of these factors can extend expected

total migration time and downtime. Finally, we observe that

the pre- and post-migration overheads become significant

compared to the iterative pre-copy and stop-and-copy stages,

especially for VMs that have low page dirty rates and are
being migrated over high speed links.

V. CONCLUSION
In this paper, we studied live migration behaviour in

precopy migration architectures, specifically using the Xen

virtualisation platform. We show that the link speed and page

dirty rate are the major factors impacting migration

behaviour. These factors have a non-linear effect on

migration performance largely because of the hard stop
conditions that force migration to its final stop-and-copy

stage. In a virtualised environment, administrators can

dynamically change VM placements in order to plan

maintenance, balance loads, or save energy. Live migration is

the tool used.

Future Scope

The experiments that we have carried out prove that

the migration link speed is the most influential parameter on

performance. We have been working on local area networks

assuming live migration inside one datacentre. However,
moving workloads between different data centres, especially

for cloud providers, is also useful. We plan to further utilise

the models to study migration behaviour on wide area

networks.

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.4, July-Aug. 2012 pp-1564-1571 ISSN: 2249-6645

 www.ijmer.com 1571 | Page

REFERENCES

1. Casas, J., Clark, D. L., Conuru, R., Otto, S. W., Prouty,

R. M., and Walpole, J. (Spring 1995). MPVM: A

Migration Transparent Version of PVM. Computing

Systems, 8(2):171–216.

2. Rosenblum M., Garfinkel T. Virtual Machine Monitors:

Current Technology and Future Trends, Computer, vol.

38, no. 5, pp. 39-47, May, 2005.

3. P. Barham et al., Xen and the Art of Virtualization.

4. E. Bugnion et al., “Disco: Running Commodity

Operating Systems on Scalable Multiprocessors,”ACM

Trans. Computer Systems, vol. 15, no. 4, 1997, pp. 412-

447.

5. M. Kozuch et al., Internet Suspend Resume, WMCSA,

2002.

6. POPEK, G. J., GOLDBERG, R. P Formal

Requirements for Virtualizable Third Generation

Architectures. Communications of the ACM 17 (7): 412

–421.

7. D. Milojicic, F. Douglis, Y. Paindaveine, R. Wheeler,

and S. Zhou. Process migration. ACM Computing

Surveys, 32(3):241.299, 2000.

8. C. P. Sapuntzakis, R. Chandra, B. Pfaff, J. Chow, M. S.

Lam, and M.Rosenblum. Optimizing the migration of

virtual computers. In Proc. of the 5th Symposium on

Operating Systems Design and Implementation (OSDI-

02), December 2002.

9. Live Migration with AMD-V™ Extended Migration

Technology,AMD white paper,2008,www.amd.com.

10. Andrew Whitaker, Richard S. Cox, Marianne Shaw,
and Steven D. Gribble. Constructing services with

interposable virtual hardware. In Proceedings of the

First Symposium on Networked Systems Design and

Implementation (NSDI '04), 2004.

11. E. Zayas. Attacking the process migration bottleneck.

In Proceedings of the eleventh ACM Symposium on

Operating systems principles, pages 13.24. ACM Press,

1987.

12. Marvin M. Theimer, Keith A. Lantz, and David R.

Cheriton. Preemptable remote execution facilities for

the V-system. In Proceedings of the tenth ACM

Symposium on Operating System Principles, pages
2.12. ACM Press, 1985.

13. S. Osman, D. Subhraveti, G. Su, and J. Nieh. The

design and implementation of zap: A system for

migrating computing environments. In Proc. 5th

USENIX Symposium on Operating Systems Design and

Implementation (OSDI-02), pages 361.376, December

2002.

14. C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C.

Limpach, I. Pratt, and A. Warfield, “Live migration of

virtual machines,” in Proc. USENIX Symposium on

Networked Systems Design and Implementation
(NSDI’05), Berkeley, CA, USA, 2005, pp. 273–286.

15. Amazon Elastic Compute Cloud (Amazon EC2).

Amazon Web Services LLC. [Online]. Available:

http://aws.amazon.com/ec2/

16. S. Hacking and B. Hudzia, “Improving the live

migration process of large enterprise applications,” in

Proc. ACM International Workshop on Virtualization

Technologies in Distributed Computing (VTDC’09),

New York, NY, USA, 2009, pp. 51–58.

http://aws.amazon.com/ec2/

