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Abstract: Asymmetric sophisticated interactions between parts of a system that is embedded in the environment which 

changes from time to time leads to modularisation and to growing complexity because the environment has also evolved as a 

result of the activity of its inhabitants. The author has analysed research on modularity in biology and his own results in this 

field. Examples of a complex system and programmable self-assembling are given. Recognition and exploitation of 

modularity in artificial and natural systems are demonstrated. A particular role of horizontal gene transfer as a novel 

hypothesis on biological modularity is given special attention to. A formal model of compositional evolution under 

supervision of the environment that changes over time is considered. Some examples of the bottom-up design for artificial 

genetic networks of increasing complexity are obtainable. Different kinds of behaviour for virtual creatures – sperm cells 

and ova – are shown. Presented case studies may be useful for the development of a common theory of biological design. 
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I. Introduction 
Modularity is an old concept in biological science, which is based on the ancient belief that modularity was a real 

and universal property of Nature. In the 18th century, comparative anatomists such as Georges Cuvier and Geoffroy Saint-

Hilaire identified structural modules representing parts of organisms. Joseph Needham in the 1930’s proposed that 

development can be decomposed into separate elements [1]. In modern times, Walter Fontana, Günter Wagner, Uri Alon, 

and many others have contributed much to the field [2-6]. Here is a list of recently discovered rules: 

• A constant environment that does not change over time leads to non-modular structures 

• In contrast, the modular structure can spontaneously emerge if environment changes over time 

• Variability in the natural habitat of an organism promotes modularity 

• Modularity can also dramatically speed up evolution 

• Adaptation of bacteria to new or changing environments is often associated with the uptake of foreign genes through 

horizontal gene transfer (HGT). 

 

My own research suggests that HGT is the important force, which contributes significantly to modularity [7]. The 

living systems contain detectable modules such as gene clusters, protein domains, organelles, cells, and tissues and organs 

with specific biological functions. Just as Richard Watson has written: “the existence of modularity in Nature is now 

becoming testable” [8], the modularity was revealed in complex biological networks and regulation systems [9-13]. In 

particular, correlation in high-throughput data and phylogenetic profiles were used for detecting functional modules [14-16]. 

The main goals of this paper are (1) to assign a role of modularization as the minimalist economic principle for the 

adaptation to variable environment, (2) to stress the significance of the interaction between modules, and (3) to underline the 

role of horizontal gene transfer (HGT) in adaptation and evolution because HGT was a major effort in my “evolution by 

communication” study [17]. We conjecture from previous results that modularity will help to answer the following 

questions: How can evolution lead to modular systems? Why does modularity exist in biology? Why do complex systems 

fail or die? 

The article is divided into five major parts. The first part is a brief introduction to the field of complexity; the 

fundamental problem of science with an example of complex system behavior, as well as demonstrations of self-assembly. 

The second part of the manuscript is about recognition of modules in artificial reality and natural systems. In addition, a case 

study will be presented of how an inspiration from natural modularity can help resolve real technical challenges. The third 

part is dedicated to answering a crucial question concerning the origin of modularity based on the analysis of distributed 

bacterial sulfur metabolism. This section is about the nature of mutations and describes a generalization of copy, cut, and 

paste mechanisms. The fourth part of the paper looks at the bright possibilities of modular design. It will bring the 

modularity of genetic networks in pi-calculus with examples of elements of networks and genetic motifs. Finally, the ideas 

of scalable design, emergent behavior, and compositional evolution of biological systems will be considered. Readers will be 

invited to a speculation about the role of horizontal gene transfer in the biological complexity. The main point presented in 

this document is the significant role of the transfer and interaction of modules in adaptation, which is still in the shadow of 

the general evolution paradigm. An example of the program code is included in the Appendix. 

 

II. Complexity 
Let me begin with a bit of philosophy. A fundamental problem in science is why matter grows in complexity. As 

Herbert Simon wrote in the introduction to the book ‘Modularity: understanding the development and evolution of natural 

complex systems’ [18], “Complexity arises then … components interact with each other in ways ... more than uniform, 

frequent elastic collisions. Interactions among components can lead to all kinds of nonlinear behavior.” The phase space of 

complex systems usually exhibits irregular surfaces of local minima and maxima, or even demonstrates bifurcations and 

chaotic behavior. According to Simon, if we take the phrase “survival of the fittest” literally, then the theory of evolution has 
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validity only in a world where maxima are attainable and the paths toward them are discoverable, which is seldom the case 

in the real world. 

As an example, I wish to present some amazing data obtained when I was a student, the divergence of astrocytes for 

GFA content depending on malignation [19, 20]. GFA, which means Glial Fibrillary Acidic Protein, is a neurospecific 

protein, which is a marker of nervous cells such as astrocytes. It is the biomarker of the neoplasia of the Central Nervous 

System (CNS). We investigated a distribution of GFA protein for different cancer cells in CNS. Because there was a 

divergence of nervous cells for GFA protein content depending on malignation, which was not easy to diagnose, the linear 

and nonlinear regression functions were applied gradually. Distributions of soluble and insoluble forms of GFA protein in 

the normal and malignant nervous cells were finally well described by the canonical cusp catastrophes, i.e. Whitney cusp 

surfaces (Figure 1). 

Unfortunately, ordinary mathematical methods no longer lead to solutions in closed form and moreover, the 

complexity can carry us beyond the simulation capacities. Examples of 3D and 2D fractal structures in Figure 2 are results of 

the diffusion limited aggregations (DLA) generated within a computer. Figure 3 presents screenshots of the assembling by 

adhesion rules. The exercise was to form a chessboard pattern in the presence of DLA. The seed of crystallization is in the 

bottom-left corner. Figure 3a demonstrates a random initial position of tiles and Figures 3b-d present the final solutions for 

different parameters of diffusion [21]. One can see that it is impossible to create the chessboard pattern without gaps, but 

Nature does it better. The great problem is to find those tricky rules of interactions between soft living particles, for instance 

repair rules, examples of robustness, and so on. 

With respect to Herbert Simon’s point of view on complexity, I would like to recall his definition of modularity in 

the terms of interactions. He wrote: “… the frequencies of interaction among elements in any particular subsystem of a 

system are an order of magnitude or two greater than the frequencies of interaction between the subsystems. We call this … 

nearly decomposable (ND) system.” [22]. In other words, ND systems are made up of separate parts where there is far more 

relations within each part than between different parts. ND is not the same as modularity but it gives a clue about an essential 

property of any modular system; this model is very general. Simon continued later: “A system may be characterized as 

modular to the extent that each of its components operates primarily according to its own, intrinsically determined principles. 

Modules within a system or process are tightly integrated but relatively independent.” 

 

III. Recognition of modules 
Examples of modularity are quite natural in today’s software design, everyday engineering practice like electronics, 

optics, and even in DNA-nanotechnology such as DNA-origami building blocks, modular DNA folding, and DNA-protein 

interactions in the case of binding complex GCN4 bZIP with DNA [23]. A modular design facilitates development and 

maintenance of complex technical devices. In natural science, modularity is represented by a search for fundamental units 

and basic elements, for instance, elementary particles, chemical elements, molecules and compounds, gene clusters, 

metabolic pathways, etc. The search for modularity is the identification of sets of base elements and construction rules to 

recognize simplicity in complex systems.  

Figure 4 demonstrates an example in nanotechnology, the result of computer added design of endohedral 

metallofullerenes on the basis of quantum mechanical calculations within the density function theory (DFT). Cobalt-clusters 

and carbon-fullerenes were considered as independent modules which can be in different positions and could interact in 

different ways. We were able to use this approach to plan experiments rationally and to find an empirical rule for the 

interaction between Co- and C-atoms that describes the magnetic moment of the complex as a function of number and length 

of chemical bonds: the magnetic moment M per Me-atom of given complex is proportional to the average Me–C bond length 

L divided by the total number N of Me–C bonds in the complex [24, 25]. 

 

2.1. What is a module? As was shown above, the idea of modularity is intuitive but is hard to formulate. To give an 

example; Uwe Strähle and Patrick Blader wrote: “... we define a module as an assembly of biological structures that fulfill a 

function in an integrated and context insensitive manner. Function as defined here is not merely the interaction of molecules 

but an interaction that yields a biological output which is characteristic of the module. Furthermore, the application of the 

module is flexible. To be recognized as a module, it has to be used either in different processes in the same organism or in 

different organisms, exploiting its invariant functional properties in the same or different processes. A module is therefore 

characterized by its reiterated use.” [26]. It looks rather difficult. I am sure some readers have recognized this problem. In 

view of Uri Alon having defined modularity in a more laconic way; a “property of a system which can be separated into 

nearly independent sub-systems” [27]. In other words, modularity is defined through a process that starts by recognizing 

patterns, shapes, or events that are repeated at some scale of observation. Modularity is a hallmark of biological organization 

and an important source of evolutionary novelty. Modularity is a sign of the universal principle of economy in Nature.  

Biological systems present both genotypic and phenotypic modularity. Most biological functions are carried out by 

particular groups of genes and proteins so that one can split the structure into functional modules. For example, proteins 

work in groups, such as complexes and pathways. I like this simple definition: a module is a set of genes that act together to 

carry out a specific function. The modularity of biological networks is puzzling and the recognition of modularity came as a 

surprise. In this situation: (1) find modules, relations between modules, the origin of modules, (2) understand the hierarchy 

of a modular system and a reason of the entanglement within modules and between modules because modularity is the basis 

of our ability to separate problems into smaller parts that can be studied independently to assign functions to genes, proteins, 

metabolic and signaling pathways. In my opinion, the answers to the following questions could have given a key to control 

an evolutionary process: (1) How does a system evolve and fail? (2) What is the limit of evolvability? In addition, I would 
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like to point out that evolvability is the ability to respond to a challenge by producing the correct variation.  

 

2.2. Natural modularity (dsr and sox gene clusters). I investigated dsr and sox gene clusters coding enzymes for bacterial 

community sulfur metabolism (dsr means the dissimilatory sulfate reduction and sox means the sulfide oxidation). Studies 

on environmental DNA databases such as Community Cyberinfrastructure for Advanced Marine Microbial Ecology 

Research and Analysis – CAMERA for short, allowed me to confirm the major role of HGT in modularity. The correlation 

between the dsr and sox clusters for the experimental set of 41 stations around the world was R = 0.86, which demonstrates 

the complementarity of dsr and sox metabolic pathways in environmental populations. Genes tend to group in modules that 

facilitate the propagation of specific functions within a community of organisms. To confirm this observation, the AprA tree 

was produced using A.pompejana symbiont reference and NCBI BLAST pairwise alignments. However, it was impossible to 

map AprA tree to 16S rRNA phylogenetic tree because putative HGT affected the canonical phylogenetic tree. I revealed a 

hierarchical modularity in the bacterial sulfur metabolism. The example included a repressor of phase-1 flagellin within the 

large sulfite reductase 4Fe-4S domain [7]. 

 

IV. Origin of modularity 
According to the Günter Wächtershäuser, William Martin, and Eugene Koonin scenario of the origin of life [28, 

29], the sulfur metabolism was a very ancient invention of Nature. The data obtained from modern DNA-sequence databases 

allowed me have a look back 3.5-3.8 billion years, when unicellular life emerged on our planet. This logic helped me to 

merge the origin of life with the origin of modules. Modularity could be explained as an adjustment for evolvability. I 

concluded that modularity is an unavoidable design feature of organic life [7]. Evidences of HGT and modular nature of 

prokaryotic genomes are very good news for engineers who are trying to design complex metabolic pathways. Such artificial 

modular designs might include a kernel (housekeeping genes) and modules involved in a process of adaptation toward a 

particular environment. Travelling groups of genes could be easily embedded in almost any system. 

 

3.1. Nature of mutations. Unfortunately, biological reality is much too complex to be captured by a linear mapping of genes 

to phenotypes. However, it is a reasonable mechanistic assumption that the genome produces adaptive variants. Such a 

genome is able to get access to regions of the phenotype that may be adaptive in two ways: (1) by the mechanisms of 

compositional evolution which combine interdependent genetic modules that have evolved previously in parallel, and (2) 

using small gradual changes like point mutations. In other words, it means (1) the change of topology of genetic networks, 

and (2) the change of parameters which are induced in DNA sequences. 

An example from experiments on the CAMERA database is in Figure 5, the alignment of the protein reads from 

microorganisms living in the gutless worm O.algarvensis to the AprA polypeptide from bacterium V.okutanii. I was able to 

show different patterns of variability for AprA protein [7]. Numerous exchanges, deletions and insertions in AprA 

polypeptide were found as are marked in yellow. 

 

3.2. Modularity as a set of construction rules, the cut and paste Argo-machine. An extreme specialization is somewhat 

risky for an organism in diverse conditions. A remodularization of the organism is needed in the changing environment. 

Consider an evolving system – an abstract machine and an environment that is continuously changing creates advice words 

for the machine to stimulate an adaptation of this device to its surroundings (Figure 6a). The input for this machine is special 

words which are generated by the environment. We call these input words ‘oracle’, ‘guide’, or ‘generative’. The output is 

phenotypes which fit the environment. The machine operates on strings, which can code organisms in hierarchical manner. 

This non-deterministic abstract machine searches according to oracle words in the design space proper to its environment by 

cutting, transposing, and pasting a set of tapes [30]. 

The schematic of Argo-machine (AM) with circular tapes is shown in Figure 6d. The AM consists of agents and 

each of these has a head and a tape and can be in different output states. In general, the tape is a nonempty string of symbols 

that may be linear or circular. The head scans the tape according to an input word wi and cuts it at recognized sites. The agent 

arbitrarily pastes the tape. For each tape-configuration there is an appropriate output state of the agent that is checked by the 

environment. Special ‘accept’ and ‘reject’ states take immediate effect. An agent accepts if its output state corresponds to the 

environment state; an agent will reject if less than two matches to the input word exist on the tape. AM can accept if at least 

one agent accepts, reject if all agents reject or loop (Figure 6b). If the environment has changed, it delivers a transposition 

and a new word wi+1. The transposition means to make a copy of the tape from the accepted agent to other ones and join it 

from head-to-tail (Figure 6d). AM continually looks for an agreement with the environment.  

We could describe AM in another way. The system operates on inputs and memory, uploads the memory, and yields 

outputs. Changes in environment generate ‘oracle’ words which guide DNA shuffling and transpositions. A combinatorial 

power of this system is very high. In short, AM is a set of stochastic cut-paste agents, which act in parallel on their own tapes 

according to the instructions (input words), communicate with each other by transpositions of the tape, and interact with the 

environment to compare the output states. Based on the comparison it accepts or runs in a loop to fit to the environment.  

A crucial point of AM is the Argonaut algorithm. Each agent, Argonaut in other words, performs the next actions on 

word w: 

(1) Scans the tape to be sure that it has at least two matches. If not, rejects it. 

(2) Cuts at the matching sites and arbitrarily paste the tape’s fragments. 

(3) Takes the output state according to the new tape. 

(4) Checks the output state with the state of the environment. If satisfied, accepts; otherwise loops. 
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The combinatorial power of the Argonaut algorithm is bigger than polynomial, exponential, and factorial functions 

(Figure 6c). Computation associated with Argo-machine is the shuffling of tapes from the initial set T0 until an accepted state 

is reached – an adaptation. Usually, computation never ends, because the environment changes permanently; if this happens, 

the case, called a catastrophe, leads to a transposition, generates a super-transition from the accept-state to the set of new 

initial-states, and brings a new generative word. A progression of adaptations and catastrophes is an evolution. 

 

V. Modularity of genetic networks in pi-calculus, a modular “table of elements” 
The model in our case is an abstraction that summarizes the property of a modular structure. Some people believe 

that Nature uses a restricted number of models to establish a set of relations among modules. I used this à la Wolfram 

approach, introduced in 2002 by Stephen Wolfram in his book [31]. In contrast to Wolfram’s 1D-cellular automata, my 

research was based on pi-calculus to build genetic networks. The pi-calculus was invented in 1992 by Robin Milner with the 

aim of describing interactive systems [32]. As a next step, the stochastic pi-calculus was proposed by Corrado Priami in 

1995 [33], while Andrew Phillips from Microsoft developed SPiM language and designed a stochastic simulator (Stochastic 

Pi-Machine, SPiM for short) that performed a Gillespie algorithm [34, 35]. I used SPiM language to write a code for the 

SPiM simulator (see Appendix).  

The following primitives in SPiM calculus were used to make networks with different topologies: decay 

(degradation of a transcription factor), null gate (constitutive transcription), gene product (protein transcription factor), neg 

gate (negative regulation), pos gate (positive regulation). I built genetic circuits of increasing complexity from those five 

basic primitives. Furthermore, I investigated the circuits such as negative and positive genetic regulators, genetic switches, 

oscillators, impulse generators, feedback and feedforward loops, genetic memory elements, and bifan motifs. 

My work in the ‘silicon laboratory’ represented the bottom-up scenario of compositional design in terms of SPiM 

calculus. Most models chosen arbitrarily worked well at standard values of parameters. The topology and complexity of 

networks played a significant role in their behavior. New networks emerged easily, sometimes because of duplications and 

transpositions of the earlier ones. These operations resembled natural genetic mechanisms such as vertical and horizontal 

gene transfer – essential operators of biological evolution. Some variations in parameters were similar to ‘point mutations’ 

leading to an optimization (adaptation) of the system to a desirable pattern of behavior [36]. 

 

4.1. Basic genetic gates. Figure 7 presents the basic genetic gates, such as negative and positive regulators without input, 

with regulated input, also the cases of autoregulation. For each plot, an abscissa indicates the time of simulation with an 

ordinate that is the number of protein molecules. Simulations were started in the absence of proteins by doing a constitutive 

transcription. The number of protein molecules initially increased along with the time of simulation and finally levelled off 

at the equilibrium between production and degradation. The constitutive expression and the output were higher for the 

negative regulator than for the positive one. 

To see a response of genetic elements, an input allowed linear increases from 0 to 100 individual molecules then 

decreased linearly to 0. The input molecules were injected into the system at a certain times. As a result of the reaction, the 

negative gate behaved like an inverter whereas the positive gate increased the output signal almost 10 times. The results of 

negative and positive autoregulations are also shown in Figure 7. 

 

4.2. Repressilator. A repressilator consists of three neg gates that mutually repress each other as shown on the picture 

(Figure 8). Simulation of the repressilator at nominal parameters resulted in an irregular duration of protein cycles. The 

decreased rate of gene unblocking ηp=0.001 and the increased protein binding r =10.0 allowed an improvement of the 

regularity of oscillations. Populations of proteins stabilized nearly 100 molecules in each cycle with the same duration of 

impulses. The program code for this experiment is given in the Appendix. 

 

4.3. Bi-stability and memory. Previous experiences were used to design a genetic memory element. The closed chain from 

four neg elements demonstrated bi-stable characteristics. The system arbitrarily started from expression (a,c) or (b,d) 

proteins. Fortunately, the circuit established stable behavior at a standard range of parameters. After it dropped to an 

arbitrary state, the system survived for a long time (Figure S1a,b, insertions). However, the circuit was sensitive to external 

inputs. For example, when the system is in state bd, then a programmable input a can change its state to a new state ac, to be 

exact, the production of b and d proteins can be changed to a and c proteins by input a (Figure S1c). Moreover, if input a no 

longer exists, the system nevertheless stays at the state ac and does not turn back until the specific input b changes the 

system’s state again (Figure S1d).  

 
4.4. Synchronous FFBL. I discovered that the coherent feedforward and feedback loops (FFBL) circuit can be in four 

different states corresponding to particular patterns of protein expression: I, red – low basal production of b and c proteins, 

II, green – intensive stable production of b and c, III, blue – spontaneous synchronous outputs of a and c, and IV, black – 

exhaustive expression of a and c proteins with gaps. These essential states were significantly influenced by stochastic 

fluctuations. Nevertheless, I did not observe any transition from one state to another when the parameters were fixed (Figure 

S2). 

 

4.5. Asynchronous FFBL. An incoherent FFBL circuit showed even more sophisticated outputs. Sometimes the system 

demonstrated unstable dynamic behavior. I found this circuit in the following states: I, red – decoherent small amounts of b 
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and large amounts of c proteins, II, green – low level of b protein and intermediate level of c protein, III, blue – flip-flops 

between a and c production, and IV, black – asynchronous low c and intermediate a proteins expression. In addition, I 

introduced the next states: Ia, orange – for low b with intermediate and high c levels, as well as state IIa, yellow – for 

intermediate b and high c proteins expression. It should be remembered that synchronous and asynchronous FFBL are the 

common features of real genetic networks (Figure S3).  

 

VI. Scalable design 

5.1. Compositional mechanisms of modularity; interaction, communication. As I mentioned, instead of small gradual 

changes like point mutations, the mechanisms of compositional evolution combine interdependent genetic modules that have 

evolved previously in parallel. Examples of compositional mechanisms in Nature include recombination, hybridization, 

symbiotic encapsulation and horizontal gene transfer (HGT), as exhibited in the history of major evolutionary transitions. 

Modules must persist as identifiable units to be assembled into a Goldschmidt’s ‘hopeful monster’ [37]. Different species are 

constantly exchanging genes, often with viruses as the messengers. Microbes can pass on fragments of DNA to each other 

during horizontal gene transfer. Even an entire pathway can be transferred if the respective genes are placed close to each 

other on the DNA sequence [38]. Furthermore, ‘travelling’ pathways exert their functions in cells with different genetic 

background and in changing environments. 

Interspecies gene transfer also occurs (at an unknown rate) among more complex species, including humans. We 

demonstrated HGT in some eukaryotic species, such as mussels [39], fish [40], and rabbit [41] in lab conditions. Figure 9 

shows the result of successful pcDNA3-lacZ sperm-mediated gene transfer into fish M.fossilis. In that case, a combination of 

electrical impulses with dimethyl sulfoxide (DMSO) treatment was used to improve the efficacy. 

 

5.2. Design of complex systems: make parts, repeat them, and change them. It is well known that recursive functions 

generate fractals (Figure 2), less known are recursive functions in agents. Unfortunately, collective behavior and interaction 

between agents have been mostly ignored by biochemists and molecular biologists. Here, I give an example of a simple 

system that can produce a complex behavior. 

An artificial world of Sperm Cells and Ova was investigated in the agent-based simulation [42]. If the meeting of a 

Spermatozoon and Ovum leads to a new Spermatozoon and new Ovum with a new genome, then ‘genome mutations’ will 

have occurred. This system demonstrates different kinds of behavior depending on the ‘mutation’ parameter R. 

In detail, each creature has a circular genome consisting of 1024 ‘genes’, only one of them is active and color coded 

with mod1024. The state of each creature is described by following recursive function: 
T(i+1) <- ([T(i) + P(i)] / 2 * R)mod1024 

P(i+1) <- T(i+1), 

where T(i) is the color code of the individual Spermatozoon and P(i) is the color code of the individual Ovum at the time i of 

breeding. R is the mutation parameter on the interval ]0, 4]. 

 

5.3. Emergent behavior depending on mutation parameter. The system demonstrated ordered (R<=1) and complex (R>1) 

regimes, such as (1) stable focus, R=1, (2) periodic, R=1.01, and (3) chaotic, R=3 regimes, as well as (4) strange attractor, 

R=4 (Figure 10). This complex and unexpected behavior of the artificial world of two agents – Sperm Cells and Ova – 

appeared from the collective dynamics of the distributed creatures and parallel execution of the recursion.  

 

VII. Conclusion 
Search for modularity in Nature is similar to pattern recognition, a native ability of the human mind. However, the 

discovery of hidden rules and algorithms leading to modularity is not an easy mission. The first attempt to describe 

evolutionary processes in terms of modules was carried out by John Holland in his building block hypothesis [43]. Richard 

Watson introduced three different algorithmic paradigms of evolution [8]. Watson classified systems on the basis of 

interdependency of variables. He considered weak, modular and arbitrary interdependencies of variables; smooth, spike and 

ruffle fitness landscapes; different optimization methods such as hill-climbing, divide-and-conquer decomposition, 

exhaustive and random search; different kinds of complexity on the basis of the number of variables and the number of 

values for each variable. Finally, Watson provided an evolutionary analogy for each class that is to say gradual evolution, 

compositional evolution, and impossible analogy or ‘intelligent design’. 

The author of this manuscript has seen the origin of modularity in a specific interaction between components of 

complex systems. Exchange of modules has appeared as a formal origin of living entities. It is my firm belief that interaction 

between a given system or multiple systems (agents) and an environment leads to the change of this environment along with 

a new adaptive behavior of its inhabitants. These kinds of interactions lead to a progressive increasing complexity of the 

system and environment as a result of more sophisticated interactions between components, see [44]. In this full of life 

situation resulting from the ‘Red Queen Effect’, a natural de novo design is preferable in the sense of economy than a 

possible reconstruction of ‘old’ creatures. I expect this imaginable picture is a possible response to the great question of why 

complex systems finally fail or die.  

An astonishing observation on the global bacterial sulfur metabolism that the lateral gene transfer affected 16S 

rRNA phylogeny leads me to the following important conclusion: “the lateral gene transfer supports the modularization on 

the global scale” with the corollary: “the recombination provides modularization in protein structures”. I have explained in 

this paper the model of the abstract Argo-machine, which is driven by ‘oracle’ words that are generated in turn by the 

environment. The model was inspired by data on Argonaute proteins and siRNA/RISC complex [45], also by ping-pong 
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amplification loop mechanism and the existence of transposon-rich piRNA genome clusters [46], by rampant horizontal gene 

transfer in prokaryotes [47, 48], as well as by my own experiments on sperm-mediated gene transfer [39-41], and the latest 

achievements in the field of SMGT [49, 50]. The view of molecular genetics and epigenetics mechanisms like the ‘molecular 

computation’ is in my opinion a very fruitful concept. A good example is research on developmental genome rearrangements 

in ciliates provided by Landweber and Kari [51]. A few simple rules and algorithms embedded in autonomous agents can 

lead to a broad variety of the system behaviour that is also demonstrated within this paper in terms of an agent-based 

approach. The problem of interaction between modules is very important in the practice of genetic engineering because of 

the desirable compatibility between modules in synthetic design. That was the reason to discuss xenologs versus orthologs in 

my research on sulfur metabolism in environmental bacterial populations [7].  

Before I finish, I would like to summarize the key points: 

• A module is the part which operates independently of other components in the system 

• Functional modularity is independence in space and time 

• Modularity is driven by the interaction and communication of components  

• A set of modules can be joined in different ways when the environment changes (e.g. HGT) 

• Origin of modularity is in the compositional evolution 

• Modularity expands parallel development and enhances evolvability 

• Specific interaction between modules is a subject of compositional design of complex systems 

• Modularity is the relationship between the whole and the parts. 

 

I believe that the understanding of evolution as a computational process of an ever changing environment can help 

us find design principles of biological systems. Modular systems consist of subsystems that work autonomously and exert 

specific functions. Biology can be described in terms of modules; furthermore modularity could be considered as a scientific 

issue, because modular and hierarchical structures demonstrate evolutionary benefits [52]. 
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Appendix 
(* Repressilator *) 

directive sample 50000.0 

directive plot !a as "a"; !b as "b"; !c as "c" 

directive graph 

 

val bind = 10.0      (* protein binding - r *) 

val transcribe = 0.1 (* constitutive expression - epsilon *) 

val unblock = 0.001  (* repression delay - eta *) 

val degrade = 0.001  (* protein decay - delta *) 

 

(* transcription factor *) 

let tr(p:chan()) =  

  do !p; tr(p)  

  or delay@degrade 

 

(* neg gate *) 

let neg(a:chan(), b:chan()) = 

  do ?a; delay@unblock; neg(a,b) 

  or delay@transcribe; (tr(b) | neg(a,b)) 

 

(* circuit *) 

new a@bind:chan() 

new b@bind:chan() 

new c@bind:chan() 

 

run (neg(a,b) | neg(b,c) | neg(c,a)) 

 

 

 
Figure 1. Soluble (red) and insoluble (blue) forms of GFA protein in nervous cells, where are x – GFA protein content, u1 – 

malignancy, u2 – putative immune response [20]. 

 

 

 
Figure 2. Diffusion limited aggregation (DLA), with a – 3D simulation, b – 2D simulation. 
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Figure 3. The chessboard pattern formation by adhesion rules in presence of DLA, where are a – initial state, b-d – final 

states with different values of diffusion. 

 

 

 
Figure 4. Cobalt-5 cluster within fullerene C70 in along and across orientations. 

 

 

 
Figure 5. Protein alignment of the DNA reads from microorganisms living in the gutless worm O.algarvensis to the AprA 

polypeptide from bacterium V.okutanii, where are AprA – protein from V.okutanii, numbers – reads from the Gutless Worm 

database, yellow – sufficient insertions, deletions and exchanges. 
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Figure 6. Schematics of Argo-machine, with a – block diagram, b – state diagram, c – combinatorial analysis, d – functional 

diagram. 
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Figure 7. Basic genetic gates. 
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Figure 8. Repressilator, where r = 10.0, δ = 0.001, εn = 0.1, ηn = 0.001 [36]. 

 

 

 
Figure 9. Sperm-mediated gene transfer of the plasmid pcDNA3-lacZ into M.fossilis. 

 

 

 
Figure 10. Behavior depending on mutation parameter R, where the abscissa is a time of simulation, the ordinate is an 

average genome. 
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