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Abstract: Cryptarithmetic puzzles are quite old and their 

inventor is not known. An example in The American 

Agriculturist of 1864 disproves the popular notion that it was 

invented by Sam Loyd. The name cryptarithmetic was coined 

by puzzlist Minos (pseudonym of Maurice Vatriquant) in the 

May 1931 issue of Sphinx, a Belgian magazine of recreational 

mathematics. In the 1955, J. A. H. Hunter introduced the word 
"alphabetic" to designate cryptarithms, such as Dudeney's, 

whose letters from meaningful words or phrases. Solving a 

cryptarithm by hand usually involves a mix of deductions and 

exhaustive tests of possibilities. Cryptarithmetic is a puzzle 

consisting of an arithmetic problem in which the digits have 

been replaced by letters of the alphabet. The goal is to 

decipher the letters (i.e. Map them back onto the digits) using 

the constraints provided by arithmetic and the additional 

constraint that no two letters can have the same numerical 

value. 

 

Keywords: Genetic algorithms, Parallel Processing, 

Scheduling, Cryptarithmetic, Parallel Genetic Algorithms. 

I. INTRODUCTION 
Cryptarithm is a genre of mathematical puzzle in which the 

digits are replaced by letters of the alphabet or other symbols. 

Cryptarithmetic is the science and art of creating and solving 

cryptarithms. The world‟s best known Cryptarithmetic puzzle 
is undoubtedly the puzzle shown in Figure 1. This was first 

introduced by H.E. Dudeney and was first published in the 

July 1924 issue of Strand Magazine associated with the story 

of a Kidnapper‟s ransom demand [10].  

Modernization, by introducing computers and the Internet, is 

making quite an impact on Cryptarithmetic and it has already 

become a standard AI problem because it characterizes a 

number of important problems in computer science arena. A 

rule based searching technique can provide the solution in 

minimum time. 

 
 

 

 

 

 

 

 

 

 

Cryptarithmetic is a class of constraint satisfaction problems 

which includes making mathematical relations between 

meaningful words using simple arithmetic operators like „plus‟ 
in a way that the result is conceptually true, and assigning 

digits to the letters of these  words and generating numbers in 

order to make correct arithmetic operations as well[14].  

 

GENETIC ALGORITHM: 

 Genetic algorithms were formally introduced in the 

United States in the 1970s by John Holland at University of 

Michigan. The continuing price/performance improvement of 

computational systems has made them attractive for some 

types of optimization. In particular, genetic algorithms work 

very well on mixed, combinatorial problems. They are less 
susceptible to getting 'stuck' at local optima than gradient 

search methods. But they tend to be computationally 

expensive. To use a genetic algorithm, you must represent a 

solution to your problem as a Chromosome. The genetic 

algorithm then creates a population of solutions and applies 

genetic operators such as mutation and crossover to evolve the 

solutions in order to find the best one(s)[4]. 

 

MOTIVATION 

 Cryptarithmetic is a class of constraint satisfaction 

problems which includes making mathematical relations 

between meaningful words using simple arithmetic operators 
like „plus‟ in a way that the result is conceptually true, and 

assigning digits to the letters of these  words and generating 

numbers in order to make correct arithmetic operations as well. 

A simple way to solve such problems is by depth first search 

(DFS) algorithm which has a big search space even for quite 

small problems. I am proposing  a solution to this problem 

with genetic algorithm and then optimized it by using 

parallelism. I also showed that the algorithm reaches a solution 

faster and in a smaller number of iterations than similar 

algorithms. 

 

OBJECTIVES 

 In the beginning, there are randomly generated 

individuals. All those individuals create a population. The 

population in certain time is called a generation. According to 

their qualities they are chosen by operators for creation of a 

new generation. The quality of the population grows or 

decreases and give limits to some constant. Every individual is 

represented by its chromosome. Mostly chromosomes 

represented as a binary string. Sometimes there are more 

strings which are not necessarily of a binary type. The 

chromosome representation could be evaluated by a fitness 
function. The fitness equals to the quality of an individual and 

is an important pick factor for a selection process. The average 

fitness of a population changes gradually during the run. 

Operating on the population, several operators are defined. 

After choosing randomly a pair of individuals, crossover 

executes an exchange of the substring within the pair with 

some probability. There are many types of crossovers defined, 

but a description is beyond the scope of this report. Mutation is 

an operator for a slight change of one individual/several 

individual in the population. It is random, so it is against 

staying in the local minimum. Low mutation parameter means 

low probability of mutation. Selection identifies the fittest 
individuals. The higher the fitness, the bigger the probability to 

   S E N D 

+ M O R E 
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M O N E Y 

 Figure 1: Cryptarithmetic Puzzle 

Crypto-Arithmetic Problem using Parallel Genetic Algorithm (PGA) 

http://en.wikipedia.org/wiki/Sam_Loyd
http://en.wikipedia.org/w/index.php?title=Maurice_Vatriquant&action=edit&redlink=1
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become a parent in the next generation. The computation time 

for serial GA execution be-comes high for time consuming 

fitness functions such as those including finite element 

analysis (FEA) at each objective function call. A better 
alternative is to take advantage of the intrinsically parallel 

nature of GAs and to perform the generation of new 

populations in parallel, on different processors.  

II. LITERATURE REVIEW/ SURVEY 
Cryptarithmetic is a puzzle consisting of an arithmetic 

problem in which the digits have been replaced by letters of 

the alphabet. The goal is to decipher the letters (i.e. Map them 

back onto the digits) using the constraints provided by 

arithmetic and the additional constraint that no two letters can 
have the same numerical value. 

  Cryptarithmetic is a class of constraint satisfaction 

problems which includes making mathematical relations 

between meaningful words using simple arithmetic operators 

like „plus‟ in a way that the result is conceptually true, and 

assigning digits to the letters of these words and generating 

numbers in order to make correct arithmetic operations as 

well[1]. 

 

CONSTRAINT SATISFACTION PROBLEM  

 Cryptarithmetic is a suitable example of Constraint 

Satisfaction Problem. Instead of providing description, a 
Cryptarithmetic problem can be better described by some 

constraints [12]. 

Constraints of the Cryptarithmetic problem are as follows: 

 The arithmetic operations are in decimal; therefore, there 

must be maximum ten different letters in overall strings 

which are being used. 

 All of the same letters should be bound to a unique digit 

and no two different letters could be bounded to the same 

digit. 

 As the words will represent numbers, the first letter of 

them could not be assigned to zero. 

 The resulting numbers should satisfy the problem, meaning 

that the result of the two first numbers (operands) under the 

specified arithmetic operation (plus operator) should be the 

third number. 

  Consider that, the base of the numbers is 10. Then 

there must be at most 10 unique symbols or letters in the 

problem. Otherwise, it would not be possible to assign a 

unique digit to each unique letter or symbol in the problem. To 

be semantically meaningful, a number must not begin with a 

zero. So, the letters at the beginning of each number should 

not correspond to zero. 
 

WHY GENETIC ALGORITHMS? 

 It is better than conventional AI in that it is more 

robust. Unlike older AI systems, they do not break easily even 

if the inputs changed slightly, or in the presence of reasonable 

noise. Also, in searching a large state-space, multi-modal 

state-space, or n-dimensional surface, a genetic algorithm may 

offer significant benefits over more typical search of 

optimization techniques (linear programming, heuristic, depth-

first, breath-first.)[15]. A genetic algorithm (GA) is a search 

technique used in computing to find exact or approximate 

solutions to optimization and search problems. Genetic 
algorithms are a type of iterative mathematical modeling 

technique used to find the optimal combinatorial state given a 

set of parameters of interest.  

 Genetic algorithms (GAs) are powerful search 

techniques that are used successfully to solve problems in 
many different disciplines. Parallel GAs are particularly easy 

to implement and promise substantial gains in performance 

and as such there has been extensive research in this field. 

Genetic algorithms are based on natural selection discovered 

by Charles Darwin. They employ natural selection of fittest 

individuals as optimization problem solver. Optimization is 

performed through natural exchange of genetic material 

between parents. Offspring‟s are formed from parent genes. 

Fitness of offspring‟s is evaluated. The fittest individuals are 

allowed to breed only. Offspring‟s are created during 

crossover and mutation. The crossover is an operation when 

new Chromosomes offspring‟s are produced by fusing parts of 
other chromosomes  parents. The mutation is random 

replacement of chromosome bits. Thus, offspring‟s form a new 

generation which replaces the old one. 

 The success of optimization strongly depends on the 

chosen chromosome encoding scheme, crossover and mutation 

strategies as well as fitness function. For each problem, careful 

analysis must be done and correct approach chosen. As it was 

shown, one Chromosome can contain a whole image or only a 

small part of it, a whole parameter range or only the most 

descriptive ones. Crossover can be performed in various 

manners, for example by exchanging information at one brake 
point or at several one. 

 

III. PARALLEL GENETIC ALGORITHMS 
If we mimic natural evolution we would not operate on a 

single population in which a given individual has the potential 

to mate with any other partner in the entire population Instead, 

species would tend to reproduce within subgroups or within 

neighborhoods. A large population distributed among a 

number of semi-isolated breeding groups is known as 
polytypic. A PGA introduces the concept of interconnected 

demes. The local selection and reproduction rules allow the 

species to evolve locally, and diversity is enhanced by 

migrations of strings among demes [13]. 

 In a genetic algorithm, a population of strings (called 

chromosomes or the genotype of the genome), which encode 

candidate solutions (called individuals, creatures, or 

phenotypes) to an optimization problem, evolves toward better 

solutions. Traditionally, solutions are represented in binary as 

strings of 0s and 1s, but other encodings are also possible. The 

evolution usually starts from a population of randomly 

generated individuals and happens in generations. In each 
generation, the fitness of every individual in the population is 

evaluated, multiple individuals are stochastically selected from 

the current population (based on their fitness), and modified 

(recombined and possibly randomly mutated) to form a new 

population. The new population is then used in the next 

iteration of the algorithm. Commonly, the algorithm terminates 

when either a maximum number of generations has been 

produced, or a satisfactory fitness level has been reached for 

the population. If the algorithm has terminated due to a 

maximum number of generations, a satisfactory solution may 

or may not have been reached. Genetic algorithms find 
application in bioinformatics, computational science, 

engineering, economics, chemistry, manufacturing, 

mathematics, physics and other fields[4]. 

http://en.wikipedia.org/wiki/Population
http://en.wikipedia.org/wiki/Chromosome_(genetic_algorithm)
http://en.wikipedia.org/wiki/Genotype
http://en.wikipedia.org/wiki/Genome
http://en.wikipedia.org/wiki/Candidate_solution
http://en.wikipedia.org/wiki/Phenotype
http://en.wikipedia.org/wiki/Stochastics
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Bioinformatics
http://en.wikipedia.org/wiki/Computational_science
http://en.wikipedia.org/wiki/Engineering
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http://en.wikipedia.org/wiki/Physics


International Journal of Modern Engineering Research (IJMER) 

   www.ijmer.com            Vol. 2, Issue. 5, Sep.-Oct. 2012 pp-3275-3280                ISSN: 2249-6645 

www.ijmer.com                                                                      3277 | Page 

A TYPICAL GENETIC ALGORITHM REQUIRES: 

A genetic representation of the solution domain,  

A fitness function to evaluate the solution domain.  

 A standard representation of the solution is as an 
array of bits. Arrays of other types and structures can be used 

in essentially the same way. The main property that makes 

these genetic representations convenient is that their parts are 

easily aligned due to their fixed size, which facilitates simple 

crossover operations. Variable length representations may also 

be used, but crossover implementation is more complex in this 

case. Tree like representations are explored in genetic 

programming and graph form representations are explored in 

evolutionary programming. Evolutionary programming (EP) 

involves populations of solutions with primarily mutation and 

selection and arbitrary representations. They use self 

adaptation to adjust parameters, and can include other 
variation operations such as combining information from 

multiple parents. 

 The fitness function is defined over the genetic 

representation and measures the quality of the represented 

solution. The fitness function is always problem dependent. 

For instance, in the knapsack problem one wants to maximize 

the total value of objects that can be put in a knapsack of some 

fixed capacity. A representation of a solution might be an 

array of bits, where each bit represents a different object, and 

the value of the bit (0 or 1) represents whether or not the 

object is in the knapsack. Not every such representation is 
valid, as the size of objects may exceed the capacity of the 

knapsack. The fitness of the solution is the sum of values of all 

objects in the knapsack if the representation is valid or 0 

otherwise. In some problems, it is hard or even impossible to 

define the fitness expression; in these cases, interactive genetic 

algorithms are used.  

 Once the genetic representation and the fitness 

functions are defined, GA proceeds to initialize a population 

of solutions randomly, and then improve it through repetitive 

application of mutation, crossover, inversion and selection 

operators. 

 

Initialization 

 Initially many individual solutions are randomly 

generated to form an initial population. The population size 

depends on the nature of the problem, but typically contains 

several hundreds or thousands of possible solutions. 

Traditionally, the population is generated randomly, covering 

the entire range of possible solutions (the search space). 

Occasionally, the solutions may be "seeded" in areas where 

optimal solutions are likely to be found. 

Selection (genetic algorithm) 

 During each successive generation, a proportion of 
the existing population is selected to breed a new generation. 

Individual solutions are selected through a fitness based 

process, where fitter solutions (as measured by a fitness 

function) are typically more likely to be selected. Certain 

selection methods rate the fitness of each solution and 

preferentially select the best solutions. Other methods rate 

only a random sample of the population, as this process may 

be very time consuming. 

 Most functions are stochastic and designed so that a 

small proportion of less fit solutions are selected. This helps 

keep the diversity of the population large, preventing 
premature convergence on poor solutions. Popular and well 

studied selection methods include roulette wheel selection and 

tournament selection. 

Reproduction 

Crossover (genetic algorithm) and Mutation (genetic 
algorithm) 

 The next step is to generate a second generation 

population of solutions from those selected through genetic 

operators: crossover (also called recombination), and/or 

mutation. For each new solution to be produced, a pair of 

"parent" solutions is selected for breeding from the pool 

selected previously. By producing a "child" solution using the 

above methods of crossover and mutation, a new solution is 

created which typically shares many of the characteristics of 

its "parents". New parents are selected for each new child, and 

the process continues until a new population of solutions of 

appropriate size is generated. Although reproduction methods 
that are based on the use of two parents are more "biology 

inspired", some research suggests more than two "parents" are 

better to be used to reproduce a good quality chromosome. 

 These processes ultimately result in the next 

generation population of chromosomes that is different from 

the initial generation. Generally the average fitness will have 

increased by this procedure for the population, since only the 

best organisms from the first generation are selected for 

breeding, along with a small proportion of less fit solutions, for 

reasons already mentioned above. Although, Crossover and 

Mutation are known as the main genetic operators, it is 
possible to use other operators such as regrouping or migration 

in genetic algorithms. 

 Simple generational genetic algorithm pseudo code: 

 Choose the initial population of individuals.  

 Evaluate the fitness of each individual in that population.  

 Repeat on this generation until termination: (time limit, 

sufficient fitness achieved, etc.)  

 Select the best-fit individuals for reproduction . 

 Breed new individuals through crossover and mutation 

operations to give birth to offspring.  

 Evaluate the individual fitness of new individuals. 

 Replace least-fit population with new individuals.  
  

Genetic algorithms with adaptive parameters 

(adaptive genetic algorithms, AGAs) is another significant and 

promising variant of genetic algorithms. The probabilities of 

crossover (pc) and mutation (pm) greatly determine the degree 

of solution accuracy and the convergence speed that genetic 

algorithms can obtain. Instead of using fixed values of pc and 

pm, AGAs utilize the population information in each 

generation and adaptively adjust the pc and pm in order to 

maintain the population diversity as well as to sustain the 

convergence capacity. In AGA (adaptive genetic algorithm), 
the adjustment of pc and pm depends on the fitness values of 

the solutions. In CAGA (clustering based adaptive genetic 

algorithm), through the use of clustering analysis to judge the 

optimization states of the population, the adjustment of pc and 

pm depends on these optimization states. It can be quite 

effective to combine GA with other optimization methods. GA 

tends to be quite good at finding generally good global 

solutions, but quite inefficient at finding the last few mutations 

to find the absolute optimum. Other techniques (such as simple 

hill climbing) are quite efficient at finding absolute optimum 

in a limited region. Alternating GA and hill climbing can 
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improve the efficiency of GA while overcoming the lack of 

robustness of hill climbing [6]. 

Genetic operators as independent parts of GA 

 The parallel steady-state genetic algorithm with 
tournament bad individual selection was implemented. In this 

implementation [6] the genetic algorithm consists of two 

threads: one performs tournament selection and crossover and 

the other mutation. The major problem of that simple parallel 

implementation is that it has no control over mutation 

probability. The consequence is a very bad algorithm 

behavior. The results are slightly better than random search, 

but also useless. If the threads are left to parallel execution 

without any control, one of two threads can waste some time 

on waiting for processor time. 

 An Evolutionary Algorithm will search for solutions 

in shortest time but the performance will also reflect the 
toughness of the problem.  A parallel genetic algorithm has 

been developed to dynamically schedule heterogeneous tasks 

to heterogeneous processors in a distributed environment. The 

proposed algorithm uses multiple processors with centralized 

control for scheduling. Tasks are taken as batches and are 

scheduled to minimize the execution time and balance the 

loads of the processors. 

IV. SUMMARY & DISCUSSION 
In this project we try to analyze an efficient Parallel genetic 
algorithm to solve Cryptarithmetic Problems. Additionally, it 

illustrates how to plug in techniques of Evolutionary 

Approach into Constraint Satisfaction Problem. This sort of 

design can provide efficient solution to a wide range of 

Constraint Satisfaction Problem or other generic searching 

problems that could be characterized as a Constraint 

Satisfaction Problem as well. This parallel model has been 

tested in order to determine the best method for comparing, 

science it uses two platform-independent parameters; the 

number iteration and java programming language. So, further 

research should go on to optimize the main proposed parallel 
ideas in the near future. This project concentrated on solving 

Cryptarithmetic problems in an efficient way. The use of 

parallel genetic algorithm showed that we can even find the 

result of large instances of this problem within an acceptable 

time. 

 Discussion is related a simple Cryptarithmetic 

problem solution in stepwise mode - Cryptarithmetic is a CSP 

problem in which letters are substituted by digits such that 

each letter represents a unique digit, and the actual problem is 

to find a proper sequence of digits assigned to different letters 

satisfying the conditions of the arithmetic operation. What is a 

Cryptarithmetic problem? It is a mathematical puzzle in which 
each letter represents a digit (for example, if X=3, then 

XX=33). The object is to find the value of each letter. No two 

letters represent the same digit (If X=3, Y cannot be 3). And 

the first letter cannot be 0 (Given the value ZW, Z cannot be 

0). They can be quite challenging, often involving many steps. 

Here's an example, illustrating how to solve them: 

 

 

 

 

 
 

 

 

M must be 1. This is an addition problem; the sum of two four 

digit numbers can't be more than 10,000, and M can't be 0 

according to the rules since it's the first letter. So now we have: 
 

 

 

 

 

 

 

Now in the column S1O, S+1≥10. S must be 8 (if there is a 1 

carried over from the column E0N) or 9. O must be 0 (if S=8 

and there is a 1 carried or S=9 and there is no 1 carried) or 1 (if 

S=9 and there is a 1 carried). But 1 is already taken, so O must 

be 0. 
 

 

 

 

 

 

 

There can't be a carry from the column E0N, because any digit 

plus 0 < 10, unless there is a carry from the column NRE and 

E=9; but this cannot be the case, because then N would be 0, 

and 0 is already taken. So E<9 and there is no carry from this 
column. Therefore, S=9, because 9+1=10. 

 In the column E0N, E cannot be equal to N, so there 

must be a carry from the column NRE; E+1=N. We now look 

at the column NRE; we know that E+1=N. Since we know that 

there is a carry from this column, N+R=1E (if there is no carry 

from the column DEY) or N+R+1=1E (if there is a carry from 

the column DEY). Let's try out both cases. No carry: 

N+R=10+(N-1)=N+9, 

R=9; 9 is already taken, so this won't work. 

Carry: N+R+1=N+9; R=8. This must be the solution for R. 

 

 
 

 

 

 

 

The digits we have left are 7, 6, 5, 4, 3, and 2. We know there 

must be a carry from the column DEY, so D+E>10. N=E+1, so 

E can't be 7 because then N would be 8 which is already taken. 

D is at most 7, so E cannot be 2 because then D+E<10, and E 

cannot be 3 because then D+E=10 and Y=0, but 0 is taken 

already. Likewise, E cannot be 4 because if D>6, D+E<10, and 
if D=6 or D=7, then Y=0 or Y=1, which are both taken. So E is 

5 or 6. If E=6, then D=7 and Y=3, so this part works. But look 

at the column N8E. Remember, there is a carry from the 

column D5Y. N+8+1=16 (because we know there is a carry for 

this column). But then N=7, and 7 is taken by D. Therefore, 

E=5. 

 

 

 

 

 
 

SEND 

      + MORE 

------------- 

MONEY 
 

SEND 

       + 1ORE 

------------- 

 1ONEY 

SEND 

+ 10RE 

-------------- 

10NEY 
 

9END 

     + 108E 

------------ 

 10NEY 
 

95ND 

      + 1085 

------------- 

          10N5Y 
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Now that we've gotten this important digit, it gets much 

simpler from here. N+8+1=15, N=6.                                              

      

 
 

  

 

 

 

The digits left are 7, 4, 3, and 2. We know there is a carry 

from the column D5Y, so the only pair that fits is D=7 and 

Y=2 

 

                                             

 

  
  

 

 

The problem is solved! These are quite tricky and require 

some thinking, but are lots of fun. Now we'll take turns 

posting problems. When a problem is solved. 

 

V. CONCLUSION 
In Cryptarithmetic puzzle, the arithmetic operations are simple 
and of base 10, but are ciphered into letters. The task is to 

decipher them. Here we concentrated on solving 

Cryptarithmetic problems in an efficient way. Parallel 

implementations of Genetic Algorithms are very performable 

to solve large scale problems. The use of parallel genetic 

algorithm showed that we can even find the result of large 

instances of this problem within an acceptable time. The 

proposed algorithm uses multiple processors with centralized 

control for scheduling. Tasks are taken as batches and are 

scheduled to minimize the execution time and balance the load 

among of the processors. A scheduling algorithm has been 
developed to schedule heterogeneous tasks onto 

heterogeneous processors on a distributed environment. 

 Genetic Algorithms are powerful but usually suffer 

from longer scheduling time which is reduced in our algorithm 

due to the parallelization of the fitness evaluation. The 

proposed algorithm uses a straightforward encoding scheme 

and generates a randomized initial population. The fitness 

function uses the maxspan, balance of load among the 

processors and communication costs while evaluating the 

schedules. By parallelization I got a better program structure 

and a significant decrease in computational time on a 

multiprocessor system. As per the implementation, testing, 
result analysis I conclude that PGA and DFS implementation 

is 80 to 90 % successful. 
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