
International Journal of Modern Engineering Research (IJMER)

 www.ijmer.com Vol. 2, Issue. 5, Sep.-Oct. 2012 pp-3275-3280 ISSN: 2249-6645

www.ijmer.com 3275 | Page

Mr. Shedge Kishor Namdeo, Mr. Sravan Kumar G., Miss. Pooja Kuyate

1
(M-Tech Scolar, CSE, RGPV/ LNCT/Indore, Indore, MP.)

2(Department of Computer, RGPV/ LNCT/ Indore, Indore MP.)
3(Department of Computer, University of Pune/ SVIT/ PREC, Loni., Nashik, Maharashtra.)

Abstract: Cryptarithmetic puzzles are quite old and their

inventor is not known. An example in The American

Agriculturist of 1864 disproves the popular notion that it was

invented by Sam Loyd. The name cryptarithmetic was coined

by puzzlist Minos (pseudonym of Maurice Vatriquant) in the

May 1931 issue of Sphinx, a Belgian magazine of recreational

mathematics. In the 1955, J. A. H. Hunter introduced the word
"alphabetic" to designate cryptarithms, such as Dudeney's,

whose letters from meaningful words or phrases. Solving a

cryptarithm by hand usually involves a mix of deductions and

exhaustive tests of possibilities. Cryptarithmetic is a puzzle

consisting of an arithmetic problem in which the digits have

been replaced by letters of the alphabet. The goal is to

decipher the letters (i.e. Map them back onto the digits) using

the constraints provided by arithmetic and the additional

constraint that no two letters can have the same numerical

value.

Keywords: Genetic algorithms, Parallel Processing,

Scheduling, Cryptarithmetic, Parallel Genetic Algorithms.

I. INTRODUCTION
Cryptarithm is a genre of mathematical puzzle in which the

digits are replaced by letters of the alphabet or other symbols.

Cryptarithmetic is the science and art of creating and solving

cryptarithms. The world‟s best known Cryptarithmetic puzzle
is undoubtedly the puzzle shown in Figure 1. This was first

introduced by H.E. Dudeney and was first published in the

July 1924 issue of Strand Magazine associated with the story

of a Kidnapper‟s ransom demand [10].

Modernization, by introducing computers and the Internet, is

making quite an impact on Cryptarithmetic and it has already

become a standard AI problem because it characterizes a

number of important problems in computer science arena. A

rule based searching technique can provide the solution in

minimum time.

Cryptarithmetic is a class of constraint satisfaction problems

which includes making mathematical relations between

meaningful words using simple arithmetic operators like „plus‟
in a way that the result is conceptually true, and assigning

digits to the letters of these words and generating numbers in

order to make correct arithmetic operations as well[14].

GENETIC ALGORITHM:

 Genetic algorithms were formally introduced in the

United States in the 1970s by John Holland at University of

Michigan. The continuing price/performance improvement of

computational systems has made them attractive for some

types of optimization. In particular, genetic algorithms work

very well on mixed, combinatorial problems. They are less
susceptible to getting 'stuck' at local optima than gradient

search methods. But they tend to be computationally

expensive. To use a genetic algorithm, you must represent a

solution to your problem as a Chromosome. The genetic

algorithm then creates a population of solutions and applies

genetic operators such as mutation and crossover to evolve the

solutions in order to find the best one(s)[4].

MOTIVATION

 Cryptarithmetic is a class of constraint satisfaction

problems which includes making mathematical relations

between meaningful words using simple arithmetic operators
like „plus‟ in a way that the result is conceptually true, and

assigning digits to the letters of these words and generating

numbers in order to make correct arithmetic operations as well.

A simple way to solve such problems is by depth first search

(DFS) algorithm which has a big search space even for quite

small problems. I am proposing a solution to this problem

with genetic algorithm and then optimized it by using

parallelism. I also showed that the algorithm reaches a solution

faster and in a smaller number of iterations than similar

algorithms.

OBJECTIVES

 In the beginning, there are randomly generated

individuals. All those individuals create a population. The

population in certain time is called a generation. According to

their qualities they are chosen by operators for creation of a

new generation. The quality of the population grows or

decreases and give limits to some constant. Every individual is

represented by its chromosome. Mostly chromosomes

represented as a binary string. Sometimes there are more

strings which are not necessarily of a binary type. The

chromosome representation could be evaluated by a fitness
function. The fitness equals to the quality of an individual and

is an important pick factor for a selection process. The average

fitness of a population changes gradually during the run.

Operating on the population, several operators are defined.

After choosing randomly a pair of individuals, crossover

executes an exchange of the substring within the pair with

some probability. There are many types of crossovers defined,

but a description is beyond the scope of this report. Mutation is

an operator for a slight change of one individual/several

individual in the population. It is random, so it is against

staying in the local minimum. Low mutation parameter means

low probability of mutation. Selection identifies the fittest
individuals. The higher the fitness, the bigger the probability to

 S E N D

+ M O R E

M O N E Y

 Figure 1: Cryptarithmetic Puzzle

Crypto-Arithmetic Problem using Parallel Genetic Algorithm (PGA)

http://en.wikipedia.org/wiki/Sam_Loyd
http://en.wikipedia.org/w/index.php?title=Maurice_Vatriquant&action=edit&redlink=1
http://en.wikipedia.org/wiki/Word

International Journal of Modern Engineering Research (IJMER)

 www.ijmer.com Vol. 2, Issue. 5, Sep.-Oct. 2012 pp-3275-3280 ISSN: 2249-6645

www.ijmer.com 3276 | Page

become a parent in the next generation. The computation time

for serial GA execution be-comes high for time consuming

fitness functions such as those including finite element

analysis (FEA) at each objective function call. A better
alternative is to take advantage of the intrinsically parallel

nature of GAs and to perform the generation of new

populations in parallel, on different processors.

II. LITERATURE REVIEW/ SURVEY
Cryptarithmetic is a puzzle consisting of an arithmetic

problem in which the digits have been replaced by letters of

the alphabet. The goal is to decipher the letters (i.e. Map them

back onto the digits) using the constraints provided by

arithmetic and the additional constraint that no two letters can
have the same numerical value.

 Cryptarithmetic is a class of constraint satisfaction

problems which includes making mathematical relations

between meaningful words using simple arithmetic operators

like „plus‟ in a way that the result is conceptually true, and

assigning digits to the letters of these words and generating

numbers in order to make correct arithmetic operations as

well[1].

CONSTRAINT SATISFACTION PROBLEM

 Cryptarithmetic is a suitable example of Constraint

Satisfaction Problem. Instead of providing description, a
Cryptarithmetic problem can be better described by some

constraints [12].

Constraints of the Cryptarithmetic problem are as follows:

 The arithmetic operations are in decimal; therefore, there

must be maximum ten different letters in overall strings

which are being used.

 All of the same letters should be bound to a unique digit

and no two different letters could be bounded to the same

digit.

 As the words will represent numbers, the first letter of

them could not be assigned to zero.

 The resulting numbers should satisfy the problem, meaning

that the result of the two first numbers (operands) under the

specified arithmetic operation (plus operator) should be the

third number.

 Consider that, the base of the numbers is 10. Then

there must be at most 10 unique symbols or letters in the

problem. Otherwise, it would not be possible to assign a

unique digit to each unique letter or symbol in the problem. To

be semantically meaningful, a number must not begin with a

zero. So, the letters at the beginning of each number should

not correspond to zero.

WHY GENETIC ALGORITHMS?

 It is better than conventional AI in that it is more

robust. Unlike older AI systems, they do not break easily even

if the inputs changed slightly, or in the presence of reasonable

noise. Also, in searching a large state-space, multi-modal

state-space, or n-dimensional surface, a genetic algorithm may

offer significant benefits over more typical search of

optimization techniques (linear programming, heuristic, depth-

first, breath-first.)[15]. A genetic algorithm (GA) is a search

technique used in computing to find exact or approximate

solutions to optimization and search problems. Genetic
algorithms are a type of iterative mathematical modeling

technique used to find the optimal combinatorial state given a

set of parameters of interest.

 Genetic algorithms (GAs) are powerful search

techniques that are used successfully to solve problems in
many different disciplines. Parallel GAs are particularly easy

to implement and promise substantial gains in performance

and as such there has been extensive research in this field.

Genetic algorithms are based on natural selection discovered

by Charles Darwin. They employ natural selection of fittest

individuals as optimization problem solver. Optimization is

performed through natural exchange of genetic material

between parents. Offspring‟s are formed from parent genes.

Fitness of offspring‟s is evaluated. The fittest individuals are

allowed to breed only. Offspring‟s are created during

crossover and mutation. The crossover is an operation when

new Chromosomes offspring‟s are produced by fusing parts of
other chromosomes parents. The mutation is random

replacement of chromosome bits. Thus, offspring‟s form a new

generation which replaces the old one.

 The success of optimization strongly depends on the

chosen chromosome encoding scheme, crossover and mutation

strategies as well as fitness function. For each problem, careful

analysis must be done and correct approach chosen. As it was

shown, one Chromosome can contain a whole image or only a

small part of it, a whole parameter range or only the most

descriptive ones. Crossover can be performed in various

manners, for example by exchanging information at one brake
point or at several one.

III. PARALLEL GENETIC ALGORITHMS
If we mimic natural evolution we would not operate on a

single population in which a given individual has the potential

to mate with any other partner in the entire population Instead,

species would tend to reproduce within subgroups or within

neighborhoods. A large population distributed among a

number of semi-isolated breeding groups is known as
polytypic. A PGA introduces the concept of interconnected

demes. The local selection and reproduction rules allow the

species to evolve locally, and diversity is enhanced by

migrations of strings among demes [13].

 In a genetic algorithm, a population of strings (called

chromosomes or the genotype of the genome), which encode

candidate solutions (called individuals, creatures, or

phenotypes) to an optimization problem, evolves toward better

solutions. Traditionally, solutions are represented in binary as

strings of 0s and 1s, but other encodings are also possible. The

evolution usually starts from a population of randomly

generated individuals and happens in generations. In each
generation, the fitness of every individual in the population is

evaluated, multiple individuals are stochastically selected from

the current population (based on their fitness), and modified

(recombined and possibly randomly mutated) to form a new

population. The new population is then used in the next

iteration of the algorithm. Commonly, the algorithm terminates

when either a maximum number of generations has been

produced, or a satisfactory fitness level has been reached for

the population. If the algorithm has terminated due to a

maximum number of generations, a satisfactory solution may

or may not have been reached. Genetic algorithms find
application in bioinformatics, computational science,

engineering, economics, chemistry, manufacturing,

mathematics, physics and other fields[4].

http://en.wikipedia.org/wiki/Population
http://en.wikipedia.org/wiki/Chromosome_(genetic_algorithm)
http://en.wikipedia.org/wiki/Genotype
http://en.wikipedia.org/wiki/Genome
http://en.wikipedia.org/wiki/Candidate_solution
http://en.wikipedia.org/wiki/Phenotype
http://en.wikipedia.org/wiki/Stochastics
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Bioinformatics
http://en.wikipedia.org/wiki/Computational_science
http://en.wikipedia.org/wiki/Engineering
http://en.wikipedia.org/wiki/Economics
http://en.wikipedia.org/wiki/Chemistry
http://en.wikipedia.org/wiki/Manufacturing
http://en.wikipedia.org/wiki/Mathematics
http://en.wikipedia.org/wiki/Physics

International Journal of Modern Engineering Research (IJMER)

 www.ijmer.com Vol. 2, Issue. 5, Sep.-Oct. 2012 pp-3275-3280 ISSN: 2249-6645

www.ijmer.com 3277 | Page

A TYPICAL GENETIC ALGORITHM REQUIRES:

A genetic representation of the solution domain,

A fitness function to evaluate the solution domain.

 A standard representation of the solution is as an
array of bits. Arrays of other types and structures can be used

in essentially the same way. The main property that makes

these genetic representations convenient is that their parts are

easily aligned due to their fixed size, which facilitates simple

crossover operations. Variable length representations may also

be used, but crossover implementation is more complex in this

case. Tree like representations are explored in genetic

programming and graph form representations are explored in

evolutionary programming. Evolutionary programming (EP)

involves populations of solutions with primarily mutation and

selection and arbitrary representations. They use self

adaptation to adjust parameters, and can include other
variation operations such as combining information from

multiple parents.

 The fitness function is defined over the genetic

representation and measures the quality of the represented

solution. The fitness function is always problem dependent.

For instance, in the knapsack problem one wants to maximize

the total value of objects that can be put in a knapsack of some

fixed capacity. A representation of a solution might be an

array of bits, where each bit represents a different object, and

the value of the bit (0 or 1) represents whether or not the

object is in the knapsack. Not every such representation is
valid, as the size of objects may exceed the capacity of the

knapsack. The fitness of the solution is the sum of values of all

objects in the knapsack if the representation is valid or 0

otherwise. In some problems, it is hard or even impossible to

define the fitness expression; in these cases, interactive genetic

algorithms are used.

 Once the genetic representation and the fitness

functions are defined, GA proceeds to initialize a population

of solutions randomly, and then improve it through repetitive

application of mutation, crossover, inversion and selection

operators.

Initialization

 Initially many individual solutions are randomly

generated to form an initial population. The population size

depends on the nature of the problem, but typically contains

several hundreds or thousands of possible solutions.

Traditionally, the population is generated randomly, covering

the entire range of possible solutions (the search space).

Occasionally, the solutions may be "seeded" in areas where

optimal solutions are likely to be found.

Selection (genetic algorithm)

 During each successive generation, a proportion of
the existing population is selected to breed a new generation.

Individual solutions are selected through a fitness based

process, where fitter solutions (as measured by a fitness

function) are typically more likely to be selected. Certain

selection methods rate the fitness of each solution and

preferentially select the best solutions. Other methods rate

only a random sample of the population, as this process may

be very time consuming.

 Most functions are stochastic and designed so that a

small proportion of less fit solutions are selected. This helps

keep the diversity of the population large, preventing
premature convergence on poor solutions. Popular and well

studied selection methods include roulette wheel selection and

tournament selection.

Reproduction

Crossover (genetic algorithm) and Mutation (genetic
algorithm)

 The next step is to generate a second generation

population of solutions from those selected through genetic

operators: crossover (also called recombination), and/or

mutation. For each new solution to be produced, a pair of

"parent" solutions is selected for breeding from the pool

selected previously. By producing a "child" solution using the

above methods of crossover and mutation, a new solution is

created which typically shares many of the characteristics of

its "parents". New parents are selected for each new child, and

the process continues until a new population of solutions of

appropriate size is generated. Although reproduction methods
that are based on the use of two parents are more "biology

inspired", some research suggests more than two "parents" are

better to be used to reproduce a good quality chromosome.

 These processes ultimately result in the next

generation population of chromosomes that is different from

the initial generation. Generally the average fitness will have

increased by this procedure for the population, since only the

best organisms from the first generation are selected for

breeding, along with a small proportion of less fit solutions, for

reasons already mentioned above. Although, Crossover and

Mutation are known as the main genetic operators, it is
possible to use other operators such as regrouping or migration

in genetic algorithms.

 Simple generational genetic algorithm pseudo code:

 Choose the initial population of individuals.

 Evaluate the fitness of each individual in that population.

 Repeat on this generation until termination: (time limit,

sufficient fitness achieved, etc.)

 Select the best-fit individuals for reproduction .

 Breed new individuals through crossover and mutation

operations to give birth to offspring.

 Evaluate the individual fitness of new individuals.

 Replace least-fit population with new individuals.

Genetic algorithms with adaptive parameters

(adaptive genetic algorithms, AGAs) is another significant and

promising variant of genetic algorithms. The probabilities of

crossover (pc) and mutation (pm) greatly determine the degree

of solution accuracy and the convergence speed that genetic

algorithms can obtain. Instead of using fixed values of pc and

pm, AGAs utilize the population information in each

generation and adaptively adjust the pc and pm in order to

maintain the population diversity as well as to sustain the

convergence capacity. In AGA (adaptive genetic algorithm),
the adjustment of pc and pm depends on the fitness values of

the solutions. In CAGA (clustering based adaptive genetic

algorithm), through the use of clustering analysis to judge the

optimization states of the population, the adjustment of pc and

pm depends on these optimization states. It can be quite

effective to combine GA with other optimization methods. GA

tends to be quite good at finding generally good global

solutions, but quite inefficient at finding the last few mutations

to find the absolute optimum. Other techniques (such as simple

hill climbing) are quite efficient at finding absolute optimum

in a limited region. Alternating GA and hill climbing can

http://en.wikipedia.org/wiki/Genetic_representation
http://en.wikipedia.org/wiki/List_of_academic_disciplines
http://en.wikipedia.org/wiki/Fitness_function
http://en.wikipedia.org/wiki/Bit_array
http://en.wikipedia.org/wiki/Genetic_programming
http://en.wikipedia.org/wiki/Genetic_programming
http://en.wikipedia.org/wiki/Genetic_programming
http://en.wikipedia.org/wiki/Evolutionary_programming
http://en.wikipedia.org/wiki/Evolutionary_programming
http://en.wikipedia.org/wiki/Knapsack_problem
http://en.wikipedia.org/wiki/Interactive_evolutionary_computation
http://en.wikipedia.org/wiki/Interactive_evolutionary_computation
http://en.wikipedia.org/wiki/Interactive_evolutionary_computation
http://en.wikipedia.org/wiki/Selection_(genetic_algorithm)
http://en.wikipedia.org/wiki/Selection_(genetic_algorithm)
http://en.wikipedia.org/wiki/Fitness_(biology)
http://en.wikipedia.org/wiki/Fitness_function
http://en.wikipedia.org/wiki/Fitness_function
http://en.wikipedia.org/wiki/Fitness_function
http://en.wikipedia.org/wiki/Stochastic
http://en.wikipedia.org/wiki/Fitness_proportionate_selection
http://en.wikipedia.org/wiki/Tournament_selection
http://en.wikipedia.org/wiki/Crossover_(genetic_algorithm)
http://en.wikipedia.org/wiki/Mutation_(genetic_algorithm)
http://en.wikipedia.org/wiki/Mutation_(genetic_algorithm)
http://en.wikipedia.org/wiki/Mutation_(genetic_algorithm)
http://en.wikipedia.org/wiki/Genetic_operator
http://en.wikipedia.org/wiki/Genetic_operator
http://en.wikipedia.org/wiki/Genetic_operator
http://en.wikipedia.org/wiki/Crossover_(genetic_algorithm)
http://en.wikipedia.org/wiki/Mutation_(genetic_algorithm)
http://en.wikipedia.org/wiki/Population
http://en.wikipedia.org/wiki/Individual
http://en.wikipedia.org/wiki/Fitness_(biology)
http://en.wikipedia.org/wiki/Generation
http://en.wikipedia.org/wiki/Reproduce
http://en.wikipedia.org/wiki/Breed
http://en.wikipedia.org/wiki/Crossover_(genetic_algorithm)
http://en.wikipedia.org/wiki/Mutation_(genetic_algorithm)
http://en.wikipedia.org/wiki/Offspring

International Journal of Modern Engineering Research (IJMER)

 www.ijmer.com Vol. 2, Issue. 5, Sep.-Oct. 2012 pp-3275-3280 ISSN: 2249-6645

www.ijmer.com 3278 | Page

improve the efficiency of GA while overcoming the lack of

robustness of hill climbing [6].

Genetic operators as independent parts of GA

 The parallel steady-state genetic algorithm with
tournament bad individual selection was implemented. In this

implementation [6] the genetic algorithm consists of two

threads: one performs tournament selection and crossover and

the other mutation. The major problem of that simple parallel

implementation is that it has no control over mutation

probability. The consequence is a very bad algorithm

behavior. The results are slightly better than random search,

but also useless. If the threads are left to parallel execution

without any control, one of two threads can waste some time

on waiting for processor time.

 An Evolutionary Algorithm will search for solutions

in shortest time but the performance will also reflect the
toughness of the problem. A parallel genetic algorithm has

been developed to dynamically schedule heterogeneous tasks

to heterogeneous processors in a distributed environment. The

proposed algorithm uses multiple processors with centralized

control for scheduling. Tasks are taken as batches and are

scheduled to minimize the execution time and balance the

loads of the processors.

IV. SUMMARY & DISCUSSION
In this project we try to analyze an efficient Parallel genetic
algorithm to solve Cryptarithmetic Problems. Additionally, it

illustrates how to plug in techniques of Evolutionary

Approach into Constraint Satisfaction Problem. This sort of

design can provide efficient solution to a wide range of

Constraint Satisfaction Problem or other generic searching

problems that could be characterized as a Constraint

Satisfaction Problem as well. This parallel model has been

tested in order to determine the best method for comparing,

science it uses two platform-independent parameters; the

number iteration and java programming language. So, further

research should go on to optimize the main proposed parallel
ideas in the near future. This project concentrated on solving

Cryptarithmetic problems in an efficient way. The use of

parallel genetic algorithm showed that we can even find the

result of large instances of this problem within an acceptable

time.

 Discussion is related a simple Cryptarithmetic

problem solution in stepwise mode - Cryptarithmetic is a CSP

problem in which letters are substituted by digits such that

each letter represents a unique digit, and the actual problem is

to find a proper sequence of digits assigned to different letters

satisfying the conditions of the arithmetic operation. What is a

Cryptarithmetic problem? It is a mathematical puzzle in which
each letter represents a digit (for example, if X=3, then

XX=33). The object is to find the value of each letter. No two

letters represent the same digit (If X=3, Y cannot be 3). And

the first letter cannot be 0 (Given the value ZW, Z cannot be

0). They can be quite challenging, often involving many steps.

Here's an example, illustrating how to solve them:

M must be 1. This is an addition problem; the sum of two four

digit numbers can't be more than 10,000, and M can't be 0

according to the rules since it's the first letter. So now we have:

Now in the column S1O, S+1≥10. S must be 8 (if there is a 1

carried over from the column E0N) or 9. O must be 0 (if S=8

and there is a 1 carried or S=9 and there is no 1 carried) or 1 (if

S=9 and there is a 1 carried). But 1 is already taken, so O must

be 0.

There can't be a carry from the column E0N, because any digit

plus 0 < 10, unless there is a carry from the column NRE and

E=9; but this cannot be the case, because then N would be 0,

and 0 is already taken. So E<9 and there is no carry from this
column. Therefore, S=9, because 9+1=10.

 In the column E0N, E cannot be equal to N, so there

must be a carry from the column NRE; E+1=N. We now look

at the column NRE; we know that E+1=N. Since we know that

there is a carry from this column, N+R=1E (if there is no carry

from the column DEY) or N+R+1=1E (if there is a carry from

the column DEY). Let's try out both cases. No carry:

N+R=10+(N-1)=N+9,

R=9; 9 is already taken, so this won't work.

Carry: N+R+1=N+9; R=8. This must be the solution for R.

The digits we have left are 7, 6, 5, 4, 3, and 2. We know there

must be a carry from the column DEY, so D+E>10. N=E+1, so

E can't be 7 because then N would be 8 which is already taken.

D is at most 7, so E cannot be 2 because then D+E<10, and E

cannot be 3 because then D+E=10 and Y=0, but 0 is taken

already. Likewise, E cannot be 4 because if D>6, D+E<10, and
if D=6 or D=7, then Y=0 or Y=1, which are both taken. So E is

5 or 6. If E=6, then D=7 and Y=3, so this part works. But look

at the column N8E. Remember, there is a carry from the

column D5Y. N+8+1=16 (because we know there is a carry for

this column). But then N=7, and 7 is taken by D. Therefore,

E=5.

SEND

 + MORE

MONEY

SEND

 + 1ORE

 1ONEY

SEND

+ 10RE

10NEY

9END

 + 108E

 10NEY

95ND

 + 1085

 10N5Y

International Journal of Modern Engineering Research (IJMER)

 www.ijmer.com Vol. 2, Issue. 5, Sep.-Oct. 2012 pp-3275-3280 ISSN: 2249-6645

www.ijmer.com 3279 | Page

Now that we've gotten this important digit, it gets much

simpler from here. N+8+1=15, N=6.

The digits left are 7, 4, 3, and 2. We know there is a carry

from the column D5Y, so the only pair that fits is D=7 and

Y=2

The problem is solved! These are quite tricky and require

some thinking, but are lots of fun. Now we'll take turns

posting problems. When a problem is solved.

V. CONCLUSION
In Cryptarithmetic puzzle, the arithmetic operations are simple
and of base 10, but are ciphered into letters. The task is to

decipher them. Here we concentrated on solving

Cryptarithmetic problems in an efficient way. Parallel

implementations of Genetic Algorithms are very performable

to solve large scale problems. The use of parallel genetic

algorithm showed that we can even find the result of large

instances of this problem within an acceptable time. The

proposed algorithm uses multiple processors with centralized

control for scheduling. Tasks are taken as batches and are

scheduled to minimize the execution time and balance the load

among of the processors. A scheduling algorithm has been
developed to schedule heterogeneous tasks onto

heterogeneous processors on a distributed environment.

 Genetic Algorithms are powerful but usually suffer

from longer scheduling time which is reduced in our algorithm

due to the parallelization of the fitness evaluation. The

proposed algorithm uses a straightforward encoding scheme

and generates a randomized initial population. The fitness

function uses the maxspan, balance of load among the

processors and communication costs while evaluating the

schedules. By parallelization I got a better program structure

and a significant decrease in computational time on a

multiprocessor system. As per the implementation, testing,
result analysis I conclude that PGA and DFS implementation

is 80 to 90 % successful.

REFERENCES
[1]. Abu Sayef Md. Ishaque, Md. Bahlul Haider,

Muhammad Al Mahmud Wasid, Shah Mohammed

Alaul, Md. Kamrul Hassan, Tanveer Ahsan, Md.

Shamsul Alam: “An Evolutionary Algorithm to Solve

Cryptarithmetic Problem”, International Conference on
Computational Intelligence 2004: 494-496.

[2]. AJ Page, TJ Naughton “Dynamic Task Scheduling

using Genetic Algorithms for Heterogeneous

Distributed Computing”, - Proceedings of the 19th

IEEE International Parallel and Distributed Processing

Symposium (IPDPS‟05)

[3]. A. Y. Zomaya, M. Clements, and S. Olariu. “A

framework for Reinforcement-Based Scheduling in
Parallel Processor Systems”, IEEE Transactions on

Parallel and Distributed Systems, 9(3):249 260, March

1998.

[4]. Alippi, C., Filho, J.L.R., Treleaven, P.C. (1994),

"Genetic-Algorithm Programming Environments",

IEEE Trans. Computer, June 1994.

[5]. Bonnie Averbach and Orin Chein, Problem Solving

Through Recreational Mathematics, Courier Dover

Publications, 2000, pp. 156.

[6]. Budin, L., Golub, M., Jakobovic, D., Parallel Adaptive

Genetic Algorithm, International ICSC/IFAC

Symposium on Neural Computation NC‟98, Vienna,
1998, pp. 157-163.

[7]. Cantú-Paz, E., “Designing Efficient Master Slave

Parallel Genetic Algorithms, Genetic Programming”:

Proceedings of the Third Annual Conference. (pp. 455).

San Francisco, CA, 1998.

[8]. Cantú-Paz E., A Summary of Research on Parallel

Genetic Algorithms, 1995., available from:

www.dai.ed.ac.uk/groups/evalg/Local_Copies_of_Paper

s/Cantu-

Paz.A_Summary_of_Research_on_Parallel_Genetic_Al

gorithms.ps.gz
[9]. Cantú-Paz, E., A Survey of Parallel Genetic Algorithms,

Calculateurs Paralleles, Vol. 10, No. 2. Paris: Hermes,

1998., available via ftp from:

ftp://ftp-

illigal.ge.uiuc.edu/pub/papers/Publications/cantupaz/sur

vey.ps.Z.

[10]. Cantú-Paz, E., Designing Efficient Masterslave Parallel

Genetic Algorithms, Genetic Programming:

Proceedings of the Third Annual Conference. (pp. 455).

San Francisco, CA, 1998.

[11]. Cantú-Paz, E., Goldberg, D.E., Parallel Genetic

Algorithms with Distributed Panmictic Populations,
1999. available from:

http://wwwilligal.ge.uiuc.edu/cgi-bin/orderform/orderform.cgi.

[12]. Cantú-Paz, E., Migration Policies, Selection Pressure,

and Parallel Evolutionary Algorithms,1999.,available

via ftp from:

 ftp://ftpilligal.ge.uiuc.edu/pub/papers/IlliGALs/99015.ps.Z.

[13]. David Goldberg, Genetic Algorithms in Search,

Optimization, and Machine Learning, Addison-Wesley,

Reading, MA, 1989.

[14]. E. Hou, N. Ansari, and H. Ren. “A Genetic Algorithm

for Multiprocessor Scheduling”. IEEE Transactions on
Parallel and Distributed Systems, 5(2):113–120,

February 1994.

[15]. E Cantu-Paz ,A survey of parallel genetic algorithms,

Calculateurs Paralleles, Reseaux et Systems Repartis,

1998

[16]. Goodman, E.D., Averill, R.C., Punch, W.F., Eby, D.J.,

Parallel Genetic Algorithms in the Optimization of

Composite Structures, Second World Conference on

SoftComputing (WSC2), June, 1997., available from:

http://garage.cps.msu.edu/papers/GARAGe97-05-02.ps

[17]. H. E. Dudeney, in Strand Magazine vol. 68 (July 1924),
pp. 97 and 214.

 956D

 + 1085

 1065Y

9567

 + 1085

 10652

International Journal of Modern Engineering Research (IJMER)

 www.ijmer.com Vol. 2, Issue. 5, Sep.-Oct. 2012 pp-3275-3280 ISSN: 2249-6645

www.ijmer.com 3280 | Page

[18]. M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, and

R. F. Freund. “Dynamic Mapping of a Class of

Independent Tasks onto Heterogeneous Computing

Systems.” Journal of Parallel and Distributed
Computing, 59(2):107– 131, November 1999.

[19]. Michalewicz, Z. (1992), Genetic Algorithms + Data

Structures = Evolutionary Programs, Springer-Verlag,

Berlin.

[20]. R. Gholamali , D. Gholamhossein :“An Efficient

Parallel Algorithm for Solving Cryptarithmetic

Problems: PGA”, Third UKSim European Symposium

on Computer Modeling and Simulation 2009.

[21]. R.Nedunchelian, K.Koushik, N.Meiyappan, V.Raghu,

“Dynamic Task Scheduling Using Parallel Genetic

Algorithms for Heterogeneous Distributed Computing”,

Proceedings of the 2006 International Conference on
Grid, Las Vegas, Nevada, USA, 2006.

[22]. R. Abbasian, M. Mazloom : “Solving Cryptarithmetic

Problems Using Parallel Genetic Algorithm” 2009

Second International Conference on Computer

Engineering 978-0-7695-3925-6/09 2009 IEEE

[23]. Stuart Russell, Artificial Intelligence A Modern

Approach, Pearson Education, Inc, ISBN 0-13-790395-

2, 2003.

[24]. SunSoft, (1994), Solaris 2.4: Multithreaded
Programming Guide, Sun Microsystems, Mountain

View, California

[25]. Manisha Neaghare, Solving Verbal Arithmetic Problem

by Efficient Evolutionary Algorithm” International

Conference on Sunrise Technology iCOST2011-

Computer Engg. Organised by SSVPS Engineering

College, Dhule.

[26]. Manisha Neaghare “Comparison of Parallel Genetic

Algorithm with Depth First Search Algorithm for

Solving Verbal Arithmetic Problems” International

Conference on Emerging Trends in Technology

ICWET2011 Organised by Thakur Engineering
College, Mumbai published on Association for

Computing Machinery ACM SIGART USA and

International Journal of Computer Application.

[27]. Shedge Kishor N., Ashwini Verma, Gade Shyam A.

“Solving Verbal Crypto-Arithmetic Problem by Parallel

Genetic Algorithm (PGA)” International Journal of

Computer Technology and Electronics Engineering

(IJCTEE) Volume 2, Issue 4, August 2012

