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Abstract: The study of boundary layer flow and heat transfer of an electrically conducting visco-elastic second grade fluid 

in a porous medium past a stretching sheet is conducting with power law surface temperature or power law surface heat 

flux. The flow in boundary layer is considered to be generated solely by the linear stretching of the boundary sheet adjacent 

to porous medium in a magnetic field with boundary wall slip condition. The governing partial differential equations are 
converted into non linear ordinary differential equations by  similarity transformations. The solutions of dimensionless 

surface temperature as well as non-similar flow and heat transfer characteristics with the governing dimensionless 

parameters of the problem which include a non-linear stretching sheet , viscous dissipation , internal heat generation 

/absorption and temperature gradient  dependent heat sink, power-law index of wall temperature parameters are obtained in 

terms of Confluent Hypergeometric Functions (CHF) and tabulated. 

The skin friction at the wall is also derived. It is observed that the suction (S), Slip parameter (L), the permeability 

of the medium (k2) and the magnetic parameter (M), visco-elastic parameter (k1) depress  the longitudinal velocity 

magnitudes but influences positively the transverse velocity while the suction, wall temperature parameter, temperature 

gradient dependent heat sink (Q), lowers temperature and heat transfer distribution aiding in controlling momentum and 

heat transfer  during material processing. 

Key Words: MHD flow, stretching sheet, slip parameter, non-similer solutions, visco-elastic parameter 

I. Introduction 
Study of heat transfer and visco-elastic flow induced by heated stretching surfaces  is often encountered in many 

engineering applications, such as materials manufactured by extrusion process, polymer processing, wire and fiber coating , 

cooling of metallic sheets or electronic chips, crystal growing.  

It is well known that the flow in a boundary layer separates in the  regions of adverse pressure gradient and the 

concurrence of separation has several undesirable effects in so far as it leads to increase in the drag on the body immersed in 

the flow and adversely affects the heat transfer from the surface of the body. 

In context to the well-known Blasius[1] flow problem (Cortell 2005) which involves the boundary layer flow 

passing through a stationary flat plate. (Sakiadis, 1961) considered the boundary layer flow on a moving flat plate in 

quiescent ambient fluid. The afore mentioned problems are two special cases of more general studies(I-Shak et al 2007, 

Cortell 2007) in which flow an heat transfer of a moving sheet in the presence of a co-flowing fluid were analysed. 
Very recently (Sadeghy et al 2005 ) studied the boundary layer of an upper convicted Maxwell fluid , and the role 

played by the fluids elasticity on flow characteristics were analysed. Above  mentioned works were with respect to the linear  

stretching sheet and it may be noted the stretching of the sheet may not necessarily be linear on view of this, the flow 

influenced by a non-linearly stretching sheet was investigated by Vajravelu (2001)and power-law or exponentially stretching 

sheet was studied by Ali(1995) and Elbashesly (2001) respectively. Further momentum , heat and mass transfer over an 

exponentially stretching surface were considered by Sanjayanand and Khan(2006). They also enclosed the effects of viscous 

dissipation and work done by deformation in the energy equation. 

Now days the stretching sheet fluid flow is also one of the important flow fields in real world. Therefore the 

problem of uniqueness of a visco-elastic fluid flow over a stretching sheet has been discussed by Troy et al[1987] and 

Chang[1989]. Some of these visco-elastic fluids are termed as second grade fluids.. The visco-elastic property of these fluids 

has found in some dilute polymer solutions or in polymer fluids as mentioned by Markovitz and Colealan (1964). 

For an incompressible homogeneous second grade fluid, the constitutive equation based on the postulate of fading 
memory suggested by Rivlin-Erickson (1955) is expressed as 

2

12211 AAApIT                 ………(1) 

Where T is the stress tensor, p is the indeterminate considered by the incompressibility pressure, µ is the dynamic visco-sity , 

α1 and α2 are first and second normal stress co-efficient that are related to the materials modulus. The second grade fluid is 
compatible with thermo dynamics if the Helmoltz free energy of the fluid is a minimum when it is locally at rest, and further 

if the second grade fluid is to satisfy the classius-Dehum in equality then the co-efficient µ, α1, α2 must satisfy the following 

requirements: 

0,0,0 211                ………(2) 

Magneto hydro dynamic Non-Similar solutions of a Visco-elastic fluid 

with Slip flow and Heat Transfer over a   Non–linearly Stretching 

Porous Sheet 
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The kinemetics tensors A1  and  A2 are defined as  

 TVVA 1  

    11
1

2 AVVA
dt

dA
A

T
       ………….(3) 

where  V is the velocity and 
dt

d
 is material time derivative  

Recently, the interest in that transfer for non-Newtonian fluid flows  through MHD and porous medium has grown 

considerably due to their industrial applications such  as in  petroleum extrusion, enhanced oil recovery, filtration processes, 

in nuclear reactors packed bed reactions and many others. In this point of view Chauhan and Takhar(2002) investigated non-

Newtonian  coupled flow in a Chanel bounded by a highly porous layer.   

In all the above analyse, the common feature is the assumption that the flow field satisfies the conventional no-slip 
condition at the stretching sheet, this assumption of no-slip is not valid and must be replaced by partial slip boundary 

condition , following Navier(1827) and Gad-el-Hak(1999) 




 i

i

u
Lu                                 …….(4)  

Where ,
2


F

F
L


  ui   is the tangential velocity , η is the normal direction to the wall,  F  is the momentum 

accommodation co-efficient, λ is the mean free path and L is the slip length. Most of the researchers investigated about the 

studies with slip condition of Newtonian fluid flows and very few have worked on non-Newtonian flows with slip condition. 

On real aspects non-newtonian fluids such as polymer melts which often exhibit boundary wall slip and such fluids  are very 

important from technological point of view ; for example, polymer processing , artificial heart valves polishing. Labropulu et 

al(2004), Hayat  et al(2007) and Ajadi et al(2009) discussed about the non-Newtonian fluid flows with the effects of slip 

condition. Ariel et al(2006) examined non-Newtonian fluid flow past a stretching sheet with partial slip. Khan et al (2008) 

investigated effects of slip parameters on shearing non-Newtonian fluid MHD flow through porous medium and obtained 

numerical solution for these typical shearing flows i.e Couette flow and generalized Couette flow with non linear slip 

boundary conditions. 
In all the above studies the effect of temperature gradient dependent heat sink/source parameter and non-similar 

term parameters un heat transfer flow have not been which specially find applications in material processing industries. 

In the present century, a century of technological advancement, exploration of industries using latest technologies in 

extrusions in manufacturing processes and melt spinning processes is taking place. In these industries the extradite is 

stretched into a filament when it is drawn from  the dye and solidifies in the desired shape through a controlled cooling 

system coupled flow in a channel bounded by a stretching sheet and a highly porous medium. Garg and Rajgopal (1991), 

Singh et al (2006) examined the non-newtonian fluid past a wedge. 

Therefore many authors including Veena et al (2010) , Rafia et al (2007) have analysed problems on boundary layer 

flow caused by a stretching sheet with temperature gradient heat sink effects for different flow models. Similarly Veena et al 

(2006), Shahjahan et al(2007),  Pravin et al (2006) have investigated the non similar solutions on boundary layer flow past a 

stretching sheet with different heat transfer parameters. Rajgopal and Gupta (1984) and Garg and Rajgopal (1991) discussed 

that an additional boundary condition is required since the order of momentum equation of a second grade fluid is one order 

higher than that for a Navier-Stokes fluid and 



yas

y

u
0 may be taken as the augmented condition for the flow in 

an unbounded domain. 

Thus in the present paper we are concerned not only with the natural convection over a stretching sheet but also the 

non-similar solutions of heat transfer flow of second grade fluid in the presence magnetic field  and permeability parameter 

with temperature gradient dependent heat sink effects with power-law surface temperature (PST) or power-law surface heat 

flux (PHF). Slip flow boundary condition has been applied at the stretching sheet. In the heat equation viscous dissipation, 
internal heat generation or absorption, are also  considered. Effects of slip parameter, permeability parameter (k2), magnetic 

parameter (Mn), visco-elastic parameter (k1), suction parameter (S), wall temperature parameter (T) temperature gradient 

dependent heat sink parameter (Q). Longitudinal and transverse velocity distribution for both PST and PHF cases are 

investigated and the results obtained are depicted graphically. 
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II. FORMULATION OF THE PROBLEM 
In Cartesian co-ordinate system (x, y) consider two – dimensional non-similar solutions of free convection steady 

laminar boundary layer flow of an incompressible visco-elastic fluid caused by moving porous sheet embedded in a porous 

medium in presence of a temperature gradient dependent heat sink. The porous sheet is subjected to a constant suction 

velocity normal to the wall and uniform magnetic field. The x-axis is taken along the wall in the direction of motion of the 

flow and y-axis perpendicular to it. Let the components of velocity be u and v along x and y directions respectively. It is  

envisaged that the sheet issues from a thin slit at the origin (0, 0) and the speed at a point on the plate is proportional to its 

distance from the plate but the boundary layer approximations holds true.  

Under the above mentioned assumptions and following Vafai and Tien`s [28] model, the steady state boundary 

layer equations of mass momentum and energy are given by  

        0
y

v

x

u










                                                                                         … (5) 
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uC p         ....(7) 

The supplementary terms in the momentum equations namely the Darcian body force term  

u
K 




 and magnetic conductivity term 


 uB
2

0  are linear in terms of the x-direction velocity u i.e they are parallel to 

the direction of the stretching motion. T-the temperature, ρ- the density , 



  - the kinematics’ viscosity, k2 the 

permeability parameter, Mn be the magnetic parameter , α1, the non-Newtonian parameter, Cp , the specific heat , Q - the 

uniform specific heat source or sink, k- the thermal conductivity and T∞- the temperature at infinity. 

 The supplementary term in the energy equation namely the temperature gradient dependent heat sink 
y

T
Q




  and 

)( CQGQ   which is the volumetric rate  is a linear function of the temperature field. 

 It is assumed that the contribution due to the normal stress is of the same order of magnitude as that due to the shear 

stress since the flow is driven solely by stretching the sheet and the pressure gradient is assumed to be absent.  

 The appropriate boundary conditions for the momentum problem are  

u(x, y) – bx =
y

u
L



 ,    v = -V0     at     y = 0  





 yas

y

u
u 0,0              …..(8) 

where  b>0 is a constant. 

III. SOLUTION OF MOMENTUM PROBLEM 
 To solve equation (6), we  postulate a solution by introducing the following similarity transformations: 

    GbvGbxu  ,'
    and         y

b


        …(9) 

Obviously with this choice of velocity variables u and v ,  equation (1) of continuity is identically satisfied.  

 Substituting (9) in equation (6) we obtain  
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    02)( '

2

2'''
2

 GMnKGGGGGGGGG IV   ….(10) 

where  k2 = 
bK 


  permeability parameter,  

b

B
Mn



 2

0     - Magnetic parameter, 

 k1 = parametrelasticvisco
b




1
 

By use of (9), the boundary conditions (8) corresponding to equation (6) reduce to: 









asGG

atGGSG

0)(,0)(

0)(1)(,)(

 …(11) 

where 
2

1














b
L is the slip parameter  

and     
b

V
S



0   is the suction parameter. 

The solution of equation (10)subjected to the boundary conditions (11) is 
  eBAG 11)(                                                                                    …(12) 

And hence     eBG 1  

where A1  and  B1 are constants to be determined such that it satisfied (10) under the boundary conditions (11).  Thus 

 
 


 


 eG 1

1

1
)(   …(13) 

and here  


 1  

It satisfies all the boundary conditions (11) and it is an exact solution provided one root α is real of the following cubic 

equation 

       011 22

2

1

3  MnkMnkk         …..(14) 

SKIN FRICTION 

The co-efficient of skin friction at the stretching sheet (η=0) is obtained as  

 
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                                 …..(15) 

where  


2bx
eR x   

IV. SOLUTION OF  HEAT TRANSFER PROBLEM 
The boundary conditions for temperature field depend on the type of heating process under consideration.  

The prescribed surface temperature (PST) case:  

In this case the boundary conditions are 

0

2
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   yasTT                      …..(16) 
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where A is a constant and  

2









 

l

x
ATTw

is the wall temperature function defining non-isothermal behavior interms 

of quadratic power law. At the leading edge of the boundary layer x = 0 the wall temperature reduces to an isothermal law 

i.e.  TTw . 

        To solve heat equation (7), we introduce the following non-dimensional variable  : 










TT

TT

w

                                       ....(17) 

Further  introducing (16) and (17),  equation (7) reduces to 

   

  2

1Pr
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GGGGGGk

cEGGQ
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  
                        ....(18) 

where   
k

Cp
Pr   - the Prandtl number  ; 

Cpb

Q


    - viscous dissipation 

 


b
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   -  Eckert number ;    


b
QQ 

  - Internal heat generation  

and the boundary conditions (16) transform to 
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To obtain the solution of equation (18), we introduce a change of variable   defined as 
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e
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Hence with the help of (20) equation (18) transforms to 
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Equation (21) is in standard confluent hypergeometric equation form that is kummer`s equation [ see Sanyal and 

DasGupta[2003] and Abramowitz and Stegun (1965) and the solution of equation (21) with respect to boundary conditions 

(22) is obtained as 
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Solution (23) interms of the similarity variable  is expressed as  
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where    = 1 – B1 ,    
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The dimensionless temperature gradient )0(  derived from equation (24) is as follows 
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The dimensionless rate of heat transfer at the stretching sheet (η = 0), characterized by the Nusselt number is given by 
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The prescribed power law surface heat flux (PHF) 

In this case we take the following boundary conditions. 
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we define )(
2
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on substituting (28) and (17) in to equation (7), we obtain  
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      2

1Pr2Pr1Pr GGGGGGkEcgGgGQg                 …..(29) 

where   

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,   - and all other parameters are the same as before 

Using the transformation 

 
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
e

Q
2

1Pr 
                                        …..(30) 

Equation (29) takes the form which reduces to the following confluent hypergeometric equation  
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Qc

v
k

Ec
gSgag       ...(31) 

If we take  

    pc ggg )(                                                                      ……(32) 

The corresponding boundary conditions (27) reduce to  

g’(0) = -1   and   g(0) = 0                                       …….(33) 

Solving equation (31) under the boundary conditions (33) and  using (32), we obtain the solution 0f (31) interms of η as 

      ekbSKMeBeBg K

3012

2

1 ,1,                           …….(34) 

where  
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The dimensionless wall temperature is derived as 

)0(
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
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V. Results and Discussion 
The study of boundary layer flow behavior and heat transfers of a visco-elastic fluid (Walter liquid B’) is considered in the 

presence magnetic field and porous medium adjacent to the stretching sheet with two different types of heating processes 

namely power-law surface temperature (PST) or power-law temperature gradient and power-law surface wall heat flux(PHF) 

or power-law wall temperature are considered. In addition the account of viscous dissipation, internal heat generation or 

absorption effect  and temperature dependent gradient heat sink/source term are also considered. Several closed form 

solutions for the velocity and temperature fields are obtained. 

 Figures (1) and (2) show the variation of G(η) and G’ (η) with the similarity variable η for different values of 

various parameters such as non-dimensional permeability parameter k2 magnetic parameter Mn visco-elastic (k1) and slip 

parameter (γ).  It is clear from these figures that the flow velocity increases as expected. That is G and G’ increase with 

decrease in permeability parameter 















0

2
k

ck


 implying increasing permeability k0 of the porous medium causes faster 
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flow. Flow also increases with the increase of magnetic parameter Mn and non-Newtonian parameter k1 however Slip 

parameter causes decrease in the values of both G and G’ for all values of η I the boundary layer. 

Fig(3) depicts |f ’’(0)| against the slip parameter γ for various values of all the other parameters k2 , Mn and k1. It is 

observed from the figure that the magnitude of Skin friction i.e. the magnitude of dimensionless surface velocity gradient |f 
’’(0)| decreases with slip parameter (γ) or non-Newtonian parameter k1 which further implies that the effect of γ  or k1 is to 

decrease the power needed to stretch the sheet. Further the power needed to stretch the sheet is also reduced by increasing 

the permeability k2 and effect of magnetic field Mn of the flow medium. The magnitude of slip, that is  (1- G’(0)) increases 

with the increase in the values of γ, because the frictional resistance  between the stretching of the sheet imposes less motion 

of the fluid as slip parameter γ increases. 

Figures (4a) and (4b) shows the variation of temperature profiles both in PST case and PHF case respectively with  

η for various values of the parameters. From these figures it is clear that for a given position η, the temperature decreases 

with an increase in the values of Prandtl number Pr with fixed values of Ec , k1 and β in the both the cases of PST and PHF. 

On the other hand, the slip parameter γ has opposite effects on the temperature profiles. It may be described physically that 

the thermal characteristics are more influenced by the slip factor than by those other flow parameters. We see that as the 

value of slip parameter γ increases, the temperature distribution in boundary layer gets increased. Further both    and 

g(η) decrease at all values of η with an increase in the values of Prandtl number  Pr and thus the thermal boundary layer 

thickness decreases. 

Fig (5a) and (5b) depict the variations in the temperature field with η for different values of Pr effects of different 

combinations of suction parameter S , Prandtl number Pr, temperature gradient dependent heat sink parameter Q’ and with 

fixed values of Eckert number Ec, visco-elastic parameter k1. Maximum temperature corresponds to the curve- I for which S 

= 0.5, Pr = 0.5 and Q = 0.5. This physically implies that the union of weak suction with low wall temperature and weak heat 

sink. As expected the temperature is lowered for rise in S, Pr , Q and γ – slip parameter. However for the second curve II the 

S values are higher than for curve –III and curve IV. This shows that S impinges relatively less effects on decaying the 

temperature in comparison with the values of Pr. And Q. Such a scenario explains that a stronger heat sink plays more 

dominant role for lowering the temperature. These present results in general are well in agreement with the earlier studies of 

Sanyal and Das Gupta [2003], and Elbashbeshy and Bazid [2004] in both the cases of PST and PHF. 
Fig (6a) and (6b) shows the variations in temperature profiles for different values k1 for various combinations of the 

parameters S, Pr, Q, γ , k2 . From both the figures it may be concluded that the thermal characteristics are more impressed by 

the slip parameter. We see that for increasing values of non-Newtonian parameter k1 and slip parameter γ, the temperature in 

the thermal boundary layer gets increased, resulting in a increase in the thermal boundary layer thickness. Further the heat 

generation due to viscous dissipation and heat source is characterized by  it is also observed that  there is a temperature 

overshoot near the stretching surface with an increase in the Eckert number, in fact it means that there is significant heat 

generation due to fluid friction near the sheet. 

Fig (7) represents the results of the rate of heat transfer- θ’(0) and g(0) Vs γ at the sheet for various values of Eckert 

number Ec. The effect of Eckert number Ec is to reduce the rate of heat transfer in both the case of PST in absolute sense it 

may be explained that for small values of Ec the arte of heat transferred is occurred from the stretching sheet to the fluid. 

Further it is reduced with the increase in the value of slip parameter γ. However again if the Eckert number values are 

allowed to be large , the rate of heat transfer decreases to its minimum value and then changes sign and finally its magnitude 
increases. In this scenario heat transfer takes place from the fluid region to the sheet because Ec is large enough to generate 

heat in the fluid is large. It is also seen that for higher values of Ec this change of sign occurs at greater value of the slip 

factor γ.  

Figure (8) is drawn to explain the observation for the dimensionless temperature distribution g(0) for fixed values of 

γ, β and Ec. g(η) increases at all the values of η in the boundary layer however it reduces by the visco-elastic parameter k1, 

Prandtl number Pr or the porosity and magnetic field of he medium. Physically it is apparent that the surface temperature 

g(0) in PHF  case increase with the values of Eckert number Ec and internal heat generation β but g(0) decreases  with 

increasing values of Pr, k1 or permeability k2 and Mn. Further slip factor γ also causes an increase in the value of g(0) as seen 

from the figure (8). 

VI. Conclusions 
The main conclusions of the study are as follows. 

i. The slip parameter γ, suction parameter S, have substantial effect on the flow and heat transfer process. The 

longitudinal velocity is maximum at η = 0 for all values of γ and S and decreases rapidly with increase in η and far 

away from the surface of the sheet. 

ii. The longitudinal velocity u increases with the decrease  in the values of permeability and magnetic parameters  

iii. The transverse velocity normal to the stretching sheet tends to a constant negative value and this inflow towards the 
sheet from the ambient fluid decays with increasing the values of γ and S. 

iv. The transverse velocity is minimum at η = 0 for values of γ , S , k2 and Mn and slowly start increasing with increase in 

values of η. 

v. The magnitude of skin friction decreases with increasing slip parameter γ, non-Newtonian parameter k1 and increases 

by the permeability and magnetic parameters that is the flow in the boundary layer increases with increase in 

permeability of the porous medium and magnetic effect or viscid-elasticity but decreases by the slip parameter γ. 



International Journal of Modern Engineering Research (IJMER) 

   www.ijmer.com            Vol. 2, Issue. 5, Sep.-Oct. 2012 pp-3306-3319                ISSN: 2249-6645 

www.ijmer.com                                                               3314 | Page 

However an increase in suction parameter S or distance in the direction of the longitudinal velocity decreases the skin 

friction . 

vi. An increase in in slip parameter γ , suction parameter S, wall temperature parameter or heat skin parameter or 

temperature gradient dependent heat sink parameter Q* results in lowering  the temperature field steadily. 
vii. The effect of the slip parameter γ is to reduce the heat transfer rate. The visco-elasticity of the Walter’s liquid (B’) 

model enhances the rate of heat transfer in PST takes place from the fluid to the stretching sheet when Ec is large 

enough rather than from the sheet the fluid when Ec is small.  

 

 

Fig1 : Longitudinal velocity profiles G(η) Vs η for various combinations of values of             k1, k2 , Mn and γ 

 

 

  

 

 

 

 

 

 

 

 

 

  Fig(2): Transverse velocity profiles G’ (η) Vs. η for various combinations of the values of  k1, k2 , Mn, and γ 

 

      Curve k1 k2 Mn γ 

I 1 10 10 1 

II 1 5 5 1 

III 1 1 1 1 

IV 1 0 0 1 

V 1 1 1 0 

VI 1 1 1 0.3 

VII 1 1 1 0.5 

VIII 0 1 1 1 
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Curve k1 K2 Mn 

I 1 10 10 

II 0 1 1 

III 0.1 1 1 

IV 1 1 1 

V 1 0 0 

Fig (3) Skin friction co-efficient |f ‘’ (0)| Vs slip parameter γ 

 
Fig (4a) Temperature profiles θ (η) Vs. η for different values of Prandtl number Pr and for fixed values of k1 = 1, k2 = 10,  

Mn = 10, γ = 1 (PST case) and Ec = 0.1 
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Fig (4b) Dimensionless temperature profiles g (η) Vs. η for different values of Prandtl number Pr. 

(PHF-Case) 

              

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig (5a) Dimensionless temperature profiles θ(η) Vs. η for various combinations of S, Pr and Q and fixed values of k1 = 1, k2 

= 10, Mn = 10, and Ec= 0.1 (PST – case) 
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Fig(5b) Dimensionless temperature profiles g(η) Vs. η for different combinations of S, Pr and Q  and fixed values of k1 = 1, 

k2 = 10, Mn = 10, and Ec= 0.1 (PHF – case) 

 
Fig (6a): Temperature profiles θ(η) Vs. η for various values of visco-elastic parameter k1 with Ec=0.5, Pr=1.0, β=-0.03 in 

PST - case 

 

Fig(6b): Temperature profiles g(η) Vs. η for various values of k1 with all other parameters as in Fig(6a). PHF - case 
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Fig (7): Dimensionless Temperature gradient θ ‘(0) at the stretching sheet for various values of Ec and fixed values of k1=1,   

k2 = 10, Mn = 10, Pr=1, β= -0.1 

  

   

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig(8): Dimensionless wall temperature g(0) Vs. η in PHF case for γ=1,  k2 = 1, Mn=1, β= -0.1 and Ec = 0.1 for various 

values of combinations of k1 and Pr 
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