
International Journal of Modern Engineering Research (IJMER) 

www.ijmer.com              Vol.2, Issue.5, Sep-Oct. 2012 pp-3402-3405             ISSN: 2249-6645 

www.ijmer.com                                                                      3402 | Page 

 
 

P. Rajesh
1
, P. Rajarajeswari

2
, Dr. D. Vasumathi

3
 

* (M.Tech, Computer Science and Engineering, Madanapalle Institute of Technology & Sciences, Madanapalle, A.P,India) 

** ( M.Tech[Ph.d], Assistant Professor, Department of CSE, Madanapalle Institute of Technology & Sciences, 

Madanapalle, A.P, India) 

*** (M.Tech, Ph.d, Associate Professor, Department of CSE, JNTU Hyderabad, Hyderabad, A.P,India) 

 

Abstract: Software Designs must be evaluated in Software 
Development Process so as to avoid bugs and 

unsatisfactory performances. Concerning performance and 

real-time properties modeling, OMG specified the UML 

Profile for Schedulability, Performance and Time 

Specification (SPT). UML is the standard OO modeling 

Language our system, but UML is too static to model the 

performance.It is not able to capture dynamic nature of 

system. So here we are using PetriNets to capture Dynamic 

nature of the System for UML use Case Diagrams and 

collaboration diagrams. First we draw the UML Use Case 
diagrams and collaboration diagrams with SPT (i.e. 

performance information) and then convert them into 

Executable Petri Net models. Finally we consider a case 

study for our proposed algorithm. 

  

Keywords: Software Performance Engineering, UML, 

Petri Nets, Performance Evaluation. 

 

I.  INTRODUCTION 
 Performance is an important but often overlooked 

aspect of the software design. Indeed, the consideration on 

performance issues is in many cases left until late in the 

software development process (SDP), when problems have 

already manifested themselves at system test or within the 

deployed system. The identification of possible bugs or 

unsatisfactory performance in the design phase allows to 

contain the costs, also permitting to compare different 

alternatives. This kind of approach implements  so called 
software performance engineering (SPE)[2],which is a 

systematic, quantitative technique to construct software 

systems that meet performance objectives. 

Using the UML for modeling and the OMG UML 

Profile for Schedulability, Performance and Time 

Specification (SPT)[9]  to specify performance requirements 

into a UML model therefore mapped into a performance 

model(Petri Nets). In this perspective, the main contribution 

of this paper is the implementation of a software 

development process which takes into account performance 

specifications and requirements: the software performance 
engineering development process (SPEDP). SPEDP includes 

and synthesizes both the aim of modeling and developing 

generic software architecture, and the aim of investigating 

the performance of the overall (hardware/software) 

elaboration system. It can be applied both in early phases, as 

a software performance engineering technique, and in test 

phases, as a common software performance evaluation 

technique. SPEDP fixes steps, rules and guidelines to follow 

in order to achieve the desired results in the software 

development satisfying the performance requirements. 

UML is too static to model dynamic behavior of the 

systems. So to overcome this we use Petri Nets as to develop 
Executable models.  

Bernardi et al. have proposed the automatic 

translation of state charts and Sequence Diagrams into 
Generalized Stochastic Petri Nets, as well as a composition 

of the resulting net models suitable for reaching a given 

analysis goal [3]. Elkoutbi et al. have transformed a simple 

use case structure to colored Petri nets [4] and Kamandi et 

al. have transformed use case to Object Stochastic Activity 

Network (OSAN) [5]. Different approaches are used for the 

transformation of sequence diagrams to Petri nets. In the 

approach proposed by Bernardi et al., all structures of the 

sequence diagram have been transformed to Generalized 

Stochastic Petri Nets [3]. Ourdani et al. transformed the 

simplest structures in the sequence diagram to colored Petri 
nets [6]. The difference between the two transformations is 

that in Bernardi et al.'s approach [3] the transformation is 

based on mapping messages as well as conveying them, 

while in Ourdani et al.'s approach [6] the transformation is 

based on message sender and receiver component. 

Although so many researchers have used this Petri 

Nets as performance Domain, none of the Researchers 

utilized the collaboration diagrams and Use Case diagrams 

for performance evaluation [3, 5] of software design 

description based on Petri Nets either in this paper we 

propose an algorithm for transforming annotated 

collaboration diagrams to Petri Nets by referring [1]. 
While Use Case diagrams model the functions of 

system components Collaboration diagrams model the 

interaction between the system components (i.e. the 

messages exchanged between the components).These 

diagrams enriched by performance input parameters. Then 

we must transform these input parameters to tokens of places 

or guards for arcs and transitions in the Petri Net Model 

.After that target model must be evaluated. The designers 

will decide whether and how software architecture should be 

refined from analysis of the results of the analysis of the 

results of the evaluation steps.  
The rest of the paper is organized as follows. In 

section 2 an algorithm for transmission of the collaboration 

diagrams and Use Case enriched by performance parameters 

will be proposed. Section3 presents a case study which 

illustrates the proposed algorithm. Ultimately the section 4 

concludes the paper. 

 

II. THE TRANSFORMATION OF UML DIAGRAMS 

TO      PETRI NETS 
     In the following, the collaboration diagrams and role of 

them concerning performance will be explained. Also we 

use UML Profile for Schedulability, Performance and Time 

(SPT) to annotate the additional information to these 

diagrams. Then the detail of the transformation algorithm 

will be explained. 

 

While use case 

Analysis of Design Level Defects Based On PetriNet Model 



International Journal of Modern Engineering Research (IJMER) 

www.ijmer.com              Vol.2, Issue.5, Sep-Oct. 2012 pp-3402-3405             ISSN: 2249-6645 

www.ijmer.com                                                                      3403 | Page 

A. Role of the collaboration Diagram concerning 

performance 

Collaboration diagrams are useful design tools 

because they provide a dynamic view of the system 
behavior, which can be difficult to extract from static 

diagrams or specifications. To each message in the diagram 

a condition can be attached, representing the possibility that 

the message could be dispatched. Even multiple messages 

can leave a single point each one labeled by a condition. 

From the performance point of view it can be considered 

that routing rates are attached to the messages. We use 

PAprob tag value to give such information. A set of 

messages can be dispatched multiple times if they are 

enclosed and marked as an iteration. This construction also 

has its implications from the performance point of view [7]. 

We use the PAprob tag value of the PAstep stereotype to 
annotate the probability of execution an alternative behavior 

when the sequence diagram presents either alt, break or 

option fragment operator. Also iteration will be represented 

by the tag value PArep [7]. The PAdemand tag value 

specifies the duration of the activities as random variables 

exponentially distributed, which are the ones supported by 

the extension of Petri nets formalism. 

  Also PAdelay tag value specifies the delay of the 

messages exchanged among components allocated in 

different physical nodes [7]. 

B. The Transformation of Collaboration  diagrams to Petri 
Nets 

         -Petri nets representation of asynchronous and 

delayed messages: We use PAdemand tag value to give 

such information. In this state, the client component is 

displayed in the form of place-transition-place. But the 

server component is shown as place-transition-place-

transition- place. The second transition is a timed transition 

with an assigned firing rate. Figure 2.a shows this type of 

messages. 

Petri nets representation of synchronous and 

delayed messages: We use PAdemand tag value to give 

such information. In this state the client component is 
shown in the form of place-transition-place-transition-place 

and their connection can happens through two shared 

places. But the server component is displayed as place-

transition-place-transition-place-transition-place where 

central transition is of the timed transition. Figure 2.b shows 

this type of message. 

Figure 2.c depicts the message exchanged between 

two annotated components c1 and c2 with PAdelay tag 

value and the resulting Petri net, where t1 represents the 

sending action performed by component c1, t2 models the 

message transmission delay and t3 represents the reception 
of the message by component c2. The value associated to 

the tag PAdelay defines the firing rate of the timed 

transition, t2. 

Figure 3 shows the two types of sequence diagram 

constructors (alternative and loop) and their mapping onto 

Petri nets. The translation of these constructors requires the 

use of additional Petri net sub-nets. Figure 3.a2 shows the 

Petri net sub-net modeling, the alternative choice between 

ev1 and ev2. The additional sub-nets are enclosed in the 

dotted rectangle. Figure 3.b2 shows the Petri net modeling 

as an optional choice. Consider that the choices in these two 
figures are probabilistic. The weights of the conflicting 

transitions t1 and t2 are derived from the tag value PAprob 

attached to the constraint condition. Finally, Figure 3.c2 and 

3.c3 demonstrate the Petri net sub-net modeling, a while-do 

loop and repeat-until, respectively. The sub-nets repeat and 
while models the iteration of message ev1. 

   

C. Role of the Use case Diagram Concerning 

Performance 

Use Case Diagram describes the software system 

at a Very high level of abstraction by identifying its 

functionalities. Thus this type of diagram gives information 

on the type of traffics incoming in the system. The use case 

diagram should represent a Performance Context, since it 

specifies one or more scenarios that are used to explore 

various dynamic situations involving a specific set of 

resources. Then, it is stereotyped as PAcontext. Each use 
case used with performance evaluation purposes could 

represent a step. Then, they are stereotyped as PAstep. The 

performance annotations for the use case diagram are the 

assignment of a probability to every edge that links a type 

of actor to a use case, i.e. the probability of the actor to 

execute the use case [7, 8]. We use PAprob tag value for 

this annotation. Also each use case of interest should be 

detailed by means of a Collaboration diagram. 

 

D. The transformation of Use case Diagrams to Petri Nets 

    In this paper, in order to transform a use case diagram to 
a Petri net, the idea presented by Elkoutbi et al. [4] is 

applied with some adjustment. The annotated use case 

diagram can be transformed to the Petri net through the 

following steps: 

    

The transformation of each use case to a Petri net: 

In this transformation, each use case is transformed into a 

Petri Net model. We use one place for each actor and one 

dark place for each use case. The input for Place is a 

transition with a guard. In the next stage, the dark places are 

replaced with the obtained Petri net from the Collaboration 

diagram. Figure 1 displays an actor and two use cases that 
are annotated with SPT profiles. Then these diagrams are 

transformed to equivalent Petri net. The selection condition 

of each use case is assigned to t1and t2 transitions. 

 
Figure1: A Use Case Diagram and a Petri Net for it. 

 

 
Figure2.1: Component diagram for asynchronous message 



International Journal of Modern Engineering Research (IJMER) 

www.ijmer.com              Vol.2, Issue.5, Sep-Oct. 2012 pp-3402-3405             ISSN: 2249-6645 

www.ijmer.com                                                                      3404 | Page 

 

 
Figure2.1a: Respective Petri Net for 2.1 annoted 

PADemand 

 

 
Figure 2.2 : Component diagram of Synchronous Message 

 

Figure2.2a:Respective Petri Net for 2.2 annoted PADemand 

 

 
Figure 2.3 : Component Diagram annoted  PADelay 

 

 
Figure2.3a: Respective Petri Net for 2.1 annoted PADelay 

 

III. CASE STUDY 
       To represent the usage of our proposed algorithm, in 

this section we consider a single Automated Teller Machine 

(ATM) as an example. The use case diagram of an ATM 

system is shown in Figure 4.a. One of the sequence 

diagrams of ATM system corresponding to the use case 

"Identify" is shown in Figure 4.b. This diagram is used 

when the PIN entered by a customer is valid; the 

identification will be successfully done. 

 

 
a1                                      a2 

 
                      b1                                           b2 

 

 
    c1                            c2                             c3 
 

 
                                      d1 

Figure 3:   a1, a2, b1, b2, c1, c2, c3, d1 Petri Net 

Model for Component diagram structures. 

              

           According to the proposed algorithm, the equivalent 
Petri net of these diagrams are shown in Figure 5.   ATM, 

bank, account and customer in Collaboration diagram which 

are the components in the Petri net model have been 

presented as separate columns. Each column presents a 

separate component. In this way, we distinguish the internal 

arcs which show transformation from one state of a 

component to another state, and the external arcs which 

show message exchange between two components. In use 

case diagram, customer place selects one of these use cases: 

balance, withdrawal or deposit. In each use case, the 

identification of the customer is mandatory. 
 



International Journal of Modern Engineering Research (IJMER) 

www.ijmer.com              Vol.2, Issue.5, Sep-Oct. 2012 pp-3402-3405             ISSN: 2249-6645 

www.ijmer.com                                                                      3405 | Page 

 
Figure 4(a) : Use Case Diagram for ATM 

 

 
Figure 4(b) :  Component Diagram of ATM 

 

 
Figure5a: Petri Net of  above Use case diagram(4.a) 

 

 
Figure 5(b): Petri Net for above component Diagram 

 

IV. CONCLUSION 
             In this paper, we transformed annotated use case 
and collaboration diagrams with performance parameter to 

Petri net notations. In our further researches, we will 

consider the transformation of other annotated software 

architecture description diagrams with performance 

parameter to an executable model. Moreover, we can 

consider the annotation of additional information of other 

non-functional requirements to the software architecture 

description diagrams, as well. So, the resulting executable 

model can be used for evaluating those non-functional 

requirements. 

 

                                  REFERENCES 
[1] Sima Emadi Engineering Department,Maybod 

Branch, Islamic Azad University,Yazd, Iran  and 

Fereidoon Shams,Computer Engineering Department 

,Shahid Beheshti University, Tehran- Iran Mapping 

annotated use case and sequence Diagrams to a Petri 

Net   Notation for Performance Evaluation.(reference). 

[2] C.U. Smith and L.G. Williams, Performance 

Solutions: A Practical Guide to Creating Responsive, 
Scalable Software. Addison Wesley Longman 

Publishing Co., Inc., 2002. 

[3] Bernardi S, Donatelli S, and Merseguer J. 2002, From 

UML Sequence Diagrams and Statecharts to 

Analysable Petri Net Model", In Proceedings of the 

3rd International Workshop on Software and 

Performance, ACM, 35-45. 

[4] Elkoutbi M, and Rodulf K. 1998, Modelling 

Interactive Systems With Hierarchical Coloured Petri 

Nets, In Proceeding of the Advanced Simulation 

Technologies Conference, Boston, MA, 432-437. 

[5] Kamandi A, Abdollahi Azgomi M, Movaghar A. 
2006, Transformation of UML Models into 

Analyzable OSAN Models, Electronic Notes in 

Theoretical Computer Science 159, (Elsevier, 2006), 

3–22. 

[6] Ourdani A, Esteban P, Paludetto M and Pascal J. C, A. 

2006, Meta Modeling Approach for Sequence 

Diagram to Petri Nets Transformation Within the 

Requirements Validation Process, In 20th annual 

European Simulation and Modelling Conference, 

LAAS, Toulouse, France, ESM'2006 conference. 

[7]  Bernardi S , Merseguer J. 2007, Performance 
Evaluation of UML Design with Stochastic Well-

Formed Nets, The Journal of Systems and Software 

80, science direct, 1843–1865. 

[8]   Merseguer J, and Campos J. 2003, Exploring Roles 

for the UML Diagrams in Software Performance 

Engineering, In proceedings of the 2003 International 

Conference on Software Engineering Research and 

Practice (SERP'03), Las Vegas, Nevada, USA: 

CSREA Press, 43-47. 

[9] Object Management Group, “UML Profile for 

Schedulability, Performance and Time Specification,” 

OMG, Jan. 2005. 
 


