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ABSTRACT: In this paper a Model based Fault Localization Technique is used, which is called Probabilistic Program 

Dependence Graph, a contemporary model that scans the internal behavior of the project over a set of test inputs. The 
PPDG model captures the conditional statistical dependence and independence relationships among program elements in 

such a way that it facilitates by making probabilistic inferences about program behaviors. PPDG construction is enhanced 

by Program Dependence Graph (PDG) that represents the structural dependences of a program with estimations of 

statistical dependences between node states, which are computed from the test set. The acquirement of probabilistic 

graphical models, which are widely used in applications such as medical diagnosis are the basis for the PPDG.This paper 

discusses the algorithms needed for constructing PPDGs and the applications of the PPDG to fault diagnosis. This paper 

also outlines that Probabilistic Program Dependence Graphs can simplify fault localization and fault comprehension. 
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I. INTRODUCTION 
 In software engineering applications to abstract 

relevant relationships between program elements or states, a 

variety of graphical models have been used   and thereby 

those models facilitate program analysis and understanding.    
These models include control-flow graphs, call graphs, 

finite-state automata, and program dependence graphs. If 

the models are generated by static analysis, they indicate 

that certain occurrences are possible at run time where as 

models produced by dynamic analysis indicate what 

actually does occur during one or more executions.   The 

commonly used graphical models do not support making 

conclusions about the program behavior and also limits the 

utility of the models for reasoning about the causes and 

effects of inherently uncertain program behaviors, such as 

runtime failures. 

 In this paper, we show how the program 
dependence graph can be used to know the program 

behavior. The model captures the conditional statistical 

dependence and independence relationships among 

program elements in a way that facilitates making 

probabilistic inferences about program behaviors. We call 

this model a Probabilistic Program Dependence Graph 

(PPDG). Our technique produces the PPDG for a program 

by augmenting its program dependence graph 

automatically. The technique associates a set of abstract 

states with each node in the PPDG. Each abstract state 

represents a (possibly large) set of concrete nodes states in a 
way that is chosen to be relevant to one or more 

applications of PPDGs. Each node has a conditional 

probability distribution that relates the states of the node to 

the states of its parent nodes. The technique estimates the 

parameters of the probability distribution by analyzing 

executions of the program, which are induced by a set of 

test cases or captured program inputs. 

 

II. BACKGROUND & PREVIOUS WORK 
In this section, we briefly review two models that 

form the basis for the Probabilistic Program Dependence 

Graph. The first is the program dependence graph, which 

represents structural dependences between program 

statements. The second is a dependency network, which is a 

type of probabilistic graphical model that represents 

conditional dependence and independence relationships 

between random variables.  

 

A) Program Dependence Graph 

Before describing a program dependence graph, we define 

and illustrate the control flow graph, which is used to 
construct the program dependence graph. 

 

Definition 1: A control flow graph for a program P is a 

pair(N,E), where N is a set of nodes that represents 

statements in P and E is a set of directed edges in which 

each edge (ni, nj) represents the flow of control from node 

ni to node nj. Edges representing conditional branches are 

labeled to represent the conditions under which those edges 

are taken. 

 To illustrate, consider example program findmax, 

shown in Fig. 1, which outputs the maximum of a set of 
integers. Fig. 2 shows the control flow graph for findmax. 

In the graph, each node is labeled with the number of the 

program statement that it represents, and each edge shows 

the flow of control between the corresponding statements. 

For example, node 1 represents the first statement in the 

program and node 10 represents the last statement in the 

program. For another example, node 4 has two outgoing 

edges: Edge (4, 5) is taken if the condition at 4 is true (i.e., 

the while loop is entered) and edge (4, 10) is taken if the 

condition at 4 is false.    

 
Fig.1:An Example Program of FindMax 
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Definition 2: In a control flow graph G, node n1 is control 

dependent on node n2 if n2 has outgoing edges e1 and e2 

such that 1) every path in G starting with e1 and ending 

with an exit node contains n1 and 2) there is a path starting 
with e2 and ending with an exit node that does not contain 

n1.    

For example, in Fig. 2, nodes 1-4 and 10 are 

control dependent on the program entry point—by 

convention, a dummy edge is added from the program entry 

point to each program exit point so that top-level nodes are 

control dependent on the entry. Nodes 5, 6, and 8 are 

control dependent on node 4, and node 7 is control 

dependent on node 6. 

 
Fig.2: FindMax with its CFG 

Definition 3: In a control flow graphG, node n1 is data 

dependent on node n2 if 1) n2 defines a variable v, 2) there 

is a path in G from n2 to n1 that does not redefine v, and 3) 

n1 uses v. 

For example, in Fig. 2, nodes 4 and 8 are data 

dependent on node 1 for variable i and node 4 is data 

dependent on node 2 for variable n. Now, using control 

dependence and data dependence, we can define a program 

dependence graph [8]. 
 

Definition 4: A program dependence graph (PDG) is a 

directed graph whose nodes represent program statements 

and whose edges represent data and control dependences. 

Labels on the control dependence edges represent the truth 

values of the branch conditions for those edges, and labels 

on data dependence edges represent the variables whose 

values flow along those edges.    

 
Fig.3:FindMax with its PDG 

Fig. 3 shows the PDG for program findmax in Fig. 1. The 

nodes in the PDG are labeled with the line numbers of the 

corresponding statements in the program. Solid edges 

represent control dependences between nodes and dotted 

edges represent data dependences between nodes. Labels on 

the control dependence edges are either ―T‖ for true or ―F‖ 

for false. Labels on the data dependence edges represent the 

variables involved in the data flows between the nodes. For 

example, in Fig. 1c, node 6 is control dependent on node 4 

and it is data dependent on nodes 3, 5, and 7. The control 

dependence edge between node 4 and node 6 has the label 
―T,‖ which indicates that node 6 is executed when the 

branch condition at node 4 is true. The data dependence 

edge between node 3 and node 5 has the label ―max,‖ which 

indicates that the value of variable ―max‖ at node 3 flows to 

node 6. The precision of a PDG depends on the precision of 

the underlying analyses. For example, the precision of the 

pointer analysis affects the precision of the data 

dependences. 

B)  Dependency Network 

A dependency network is a type of probabilistic graphical 

model. 

Definition 5: A probabilistic graphical model is an 

annotated graph that captures the probabilistic relationships 

among a set of random variables. The nodes in the graph 

represent random variables and the edges represent 

conditional dependences between the random variables.   

 
Fig.4: An Example for Dependency Network 

III. SYSTEM ANALYSIS & DESIGN 
 

A) System Analysis 

A probabilistic program dependence graph 

(PPDG) is created by transforming the PDG of a program 

into a dependency network. We use a dependency network 

because it permits directed cycles, which are present in the 

PDGs of typical programs because of loops. Henceforth, we 

use the terms ―loop‖ and ―cycle‖ interchangeably. The 

process of producing a PPDG consists of five main steps, as 
illustrated in Fig. 5. First, the PDG-generation step 

generates the PDG of the input program P. Second, the 

PDG-transformation step takes the PDG, and transforms it 

by structurally changing the PDG and specifying states at 

nodes in the PDG, which results in a transformed PDG.  

Third, the Instrumentation step inserts probes into P to 

gather the execution data needed to estimate the parameters 

of the PPDG, and produces the instrumented program P0. 

Fourth, the Execution step executes P0 with its test suite TP 

to generate the execution data. Finally, the Learning step 

generates a PPDG based on the execution data and the 

transformed PDG by estimating the parameters of the 
PPDG. The resulting PPDG is formally defined as follows:   
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Fig.5: Construction of PPDG 

B) Module Analysis 

There are four modules in our paper  

 New user Registration: 

                      User can be providing the personal 

information at the registration phase. These sensitive user 

results of information can be placed inside the database. 
Automatically user can be get the information or credentials 

(username and password). 

 

 Testing, Debugging and Maintenance: 

                      Based on the user credentials enter inside the 

project deployment to enter inside the homepage. Browse 

or select the program and deploy the program. Program can 

be executed indentify the relationship of information from 

one state to another state. Identify the program behavior of 

information and faults comprehension information. 

Whenever to identify the faults automatically to define that 
information like quality representation process. 

 

 Probabilistic Program Dependence Graph: 

                     PPDG produces the PPDG for a program by 

augmenting its program dependence graph automatically. 

The technique associates a set of abstract states with each 

node in the PPDG. Each abstract state represents a (possibly 

large) set of concrete nodes states in a way that is chosen to 

be relevant to one or more applications of PPDGs. Each 

node has a conditional probability distribution that relates 

the states of the node to the states of its parent nodes. The 

technique estimates the parameters of the probability 
distribution by analyzing executions of the program, which 

are induced by a set of test cases or captured program 

inputs. 

 

 Show the dependency network: 

                    There are different kinds of probabilistic 

graphical models, including Bayesian networks, Markov 

random fields, and dependency networks. Bayesian 

networks are directed acyclic graphs, whereas Markov 

random fields are undirected graphs. Dependency networks 

are similar tom Bayesian networks except that they may 
contain cycles. 

 

C) System Design 

Class diagrams model class structure and contents 

using design elements such as classes, packages and 

objects. The association relationship is the most common 

relationship in a class diagram.  The association shows the 

relationship between instances of classes.  For example, the 

class Order is associated with the class Customer.  The 

multiplicity of the association denotes the number of 

objects that can participate in then relationship. 

New User Registration

+Username
+password

+Submit the details()

Login

+Username
+password

+submit the details()

identify the dependency variables

+Apply the PPDG
+Check the nodes
+check the edges

+Execute the program()

Generate the PPDG graph

+Place the dependency variables
+mapp the variables

+show the graph()

 
Fig.6: Inter-Operational Class Diagram for Framework 

 

A use case illustrates a unit of functionality 

provided by the system. The main purpose of the use-case 

diagram is to help development teams visualize the 

functional requirements of a system, including the 

relationship of "actors" (human beings who will interact 

with the system)  to essential processes, as well as the 

relationships among different use  cases. Use-case diagrams 

generally show groups of use cases -- either all use cases 

for the complete system, or a breakout of a particular group 

of use cases with related functionality 

New user registration

user

Login

Browse any program

perform the probabilistic program dependence operations

identify the dependency variables

Generate the PPDG graph

 
Fig.7: Inter-operational Usecase Diagram for the 

Framework 
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IV. RESULTS 

 
Fig.7: New User Registration 

 

 
Fig.8: Giving Program to find the Dependency 

 

 
Fig.9: Extracting the PPDG Graph 

 

 
Fig.10: Identifyng the PPD Graph 

 

V. CONCLUSION 
In this paper, we presented our technique PPDG 

that uses the program dependence graph to create a novel 

probabilistic graphical model .PPDG depends on the PDG 

that captures the statistical dependences among program 

elements and enables the use of probabilistic reasoning to 

analyze program behaviors. This paper has discussed the 

two applications of the PPDG for Software engineering 

tasks. For the first task fault localization it has shown that 

how the PPDG can be used to overcome the limitations of 
current fault-localization techniques by introducing a 

simple ranking –based algorithm. Fault comprehension as a 

second task of application, we presented an algorithm that 

exploit the interpretive nature of the PPDG. RankCP is an 

alogorithm  which  uses the PPDG to rank statements to 

assist in fault localization and FaultComp, which uses the 

PPDG to generate explanations to aid in fault 

comprehension.RankCP and FaultComp were implemented 

for the evolution of the PPDG. 

 The most critical part of our PPDG construction is 

the execution information, which is used to estimate the 
parameters of the PPDG. This execution information is 

dependent on the test suite that is executed by the 

instrumented program. Our experiment, although limited, 

suggests that our technique is more efficient than existing 

techniques that consider single failing executions. We used 

PPDG in this paper depending on PDG, and hence the 

statistical dependences across the functions were not 

captured by PPDG.In the future we will use the PPDG as 

the base on the interprocedural PDG and facilitate PPDG in 

such a way that it can capture the statistical dependencies of 

program elements. 

 We have shown the potential utility of 
applying the PPDG to the problem of fault diagnosis but we 

believe that it has other applications. We therefore plan to 

investigate the potential application of the PPDG to other 

software engineering tasks. 
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