
International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.5, Sep-Oct. 2012 pp-3429-3433 ISSN: 2249-6645

www.ijmer.com 3429 | Page

Sambangi Swathi (M. Tech.), Mudiganti Vijaya Bhaskar (Associate Professor)
Department of Computer Science Gokul Institute of Technology and Sciences, Bobbili, India.

ABSTRACT: In this paper a Model based Fault Localization Technique is used, which is called Probabilistic Program

Dependence Graph, a contemporary model that scans the internal behavior of the project over a set of test inputs. The
PPDG model captures the conditional statistical dependence and independence relationships among program elements in

such a way that it facilitates by making probabilistic inferences about program behaviors. PPDG construction is enhanced

by Program Dependence Graph (PDG) that represents the structural dependences of a program with estimations of

statistical dependences between node states, which are computed from the test set. The acquirement of probabilistic

graphical models, which are widely used in applications such as medical diagnosis are the basis for the PPDG.This paper

discusses the algorithms needed for constructing PPDGs and the applications of the PPDG to fault diagnosis. This paper

also outlines that Probabilistic Program Dependence Graphs can simplify fault localization and fault comprehension.

Keywords: PPDG, Fault Localization technique, dependencies, Graphs.

I. INTRODUCTION
 In software engineering applications to abstract

relevant relationships between program elements or states, a

variety of graphical models have been used and thereby

those models facilitate program analysis and understanding.
These models include control-flow graphs, call graphs,

finite-state automata, and program dependence graphs. If

the models are generated by static analysis, they indicate

that certain occurrences are possible at run time where as

models produced by dynamic analysis indicate what

actually does occur during one or more executions. The

commonly used graphical models do not support making

conclusions about the program behavior and also limits the

utility of the models for reasoning about the causes and

effects of inherently uncertain program behaviors, such as

runtime failures.

 In this paper, we show how the program
dependence graph can be used to know the program

behavior. The model captures the conditional statistical

dependence and independence relationships among

program elements in a way that facilitates making

probabilistic inferences about program behaviors. We call

this model a Probabilistic Program Dependence Graph

(PPDG). Our technique produces the PPDG for a program

by augmenting its program dependence graph

automatically. The technique associates a set of abstract

states with each node in the PPDG. Each abstract state

represents a (possibly large) set of concrete nodes states in a
way that is chosen to be relevant to one or more

applications of PPDGs. Each node has a conditional

probability distribution that relates the states of the node to

the states of its parent nodes. The technique estimates the

parameters of the probability distribution by analyzing

executions of the program, which are induced by a set of

test cases or captured program inputs.

II. BACKGROUND & PREVIOUS WORK
In this section, we briefly review two models that

form the basis for the Probabilistic Program Dependence

Graph. The first is the program dependence graph, which

represents structural dependences between program

statements. The second is a dependency network, which is a

type of probabilistic graphical model that represents

conditional dependence and independence relationships

between random variables.

A) Program Dependence Graph

Before describing a program dependence graph, we define

and illustrate the control flow graph, which is used to
construct the program dependence graph.

Definition 1: A control flow graph for a program P is a

pair(N,E), where N is a set of nodes that represents

statements in P and E is a set of directed edges in which

each edge (ni, nj) represents the flow of control from node

ni to node nj. Edges representing conditional branches are

labeled to represent the conditions under which those edges

are taken.

 To illustrate, consider example program findmax,

shown in Fig. 1, which outputs the maximum of a set of
integers. Fig. 2 shows the control flow graph for findmax.

In the graph, each node is labeled with the number of the

program statement that it represents, and each edge shows

the flow of control between the corresponding statements.

For example, node 1 represents the first statement in the

program and node 10 represents the last statement in the

program. For another example, node 4 has two outgoing

edges: Edge (4, 5) is taken if the condition at 4 is true (i.e.,

the while loop is entered) and edge (4, 10) is taken if the

condition at 4 is false.

Fig.1:An Example Program of FindMax

Analyzing Fault Diagnosis Using PPDG & Its

Application’s

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.5, Sep-Oct. 2012 pp-3429-3433 ISSN: 2249-6645

www.ijmer.com 3430 | Page

Definition 2: In a control flow graph G, node n1 is control

dependent on node n2 if n2 has outgoing edges e1 and e2

such that 1) every path in G starting with e1 and ending

with an exit node contains n1 and 2) there is a path starting
with e2 and ending with an exit node that does not contain

n1.

For example, in Fig. 2, nodes 1-4 and 10 are

control dependent on the program entry point—by

convention, a dummy edge is added from the program entry

point to each program exit point so that top-level nodes are

control dependent on the entry. Nodes 5, 6, and 8 are

control dependent on node 4, and node 7 is control

dependent on node 6.

Fig.2: FindMax with its CFG

Definition 3: In a control flow graphG, node n1 is data

dependent on node n2 if 1) n2 defines a variable v, 2) there

is a path in G from n2 to n1 that does not redefine v, and 3)

n1 uses v.

For example, in Fig. 2, nodes 4 and 8 are data

dependent on node 1 for variable i and node 4 is data

dependent on node 2 for variable n. Now, using control

dependence and data dependence, we can define a program

dependence graph [8].

Definition 4: A program dependence graph (PDG) is a

directed graph whose nodes represent program statements

and whose edges represent data and control dependences.

Labels on the control dependence edges represent the truth

values of the branch conditions for those edges, and labels

on data dependence edges represent the variables whose

values flow along those edges.

Fig.3:FindMax with its PDG

Fig. 3 shows the PDG for program findmax in Fig. 1. The

nodes in the PDG are labeled with the line numbers of the

corresponding statements in the program. Solid edges

represent control dependences between nodes and dotted

edges represent data dependences between nodes. Labels on

the control dependence edges are either ―T‖ for true or ―F‖

for false. Labels on the data dependence edges represent the

variables involved in the data flows between the nodes. For

example, in Fig. 1c, node 6 is control dependent on node 4

and it is data dependent on nodes 3, 5, and 7. The control

dependence edge between node 4 and node 6 has the label
―T,‖ which indicates that node 6 is executed when the

branch condition at node 4 is true. The data dependence

edge between node 3 and node 5 has the label ―max,‖ which

indicates that the value of variable ―max‖ at node 3 flows to

node 6. The precision of a PDG depends on the precision of

the underlying analyses. For example, the precision of the

pointer analysis affects the precision of the data

dependences.

B) Dependency Network

A dependency network is a type of probabilistic graphical

model.

Definition 5: A probabilistic graphical model is an

annotated graph that captures the probabilistic relationships

among a set of random variables. The nodes in the graph

represent random variables and the edges represent

conditional dependences between the random variables.

Fig.4: An Example for Dependency Network

III. SYSTEM ANALYSIS & DESIGN

A) System Analysis

A probabilistic program dependence graph

(PPDG) is created by transforming the PDG of a program

into a dependency network. We use a dependency network

because it permits directed cycles, which are present in the

PDGs of typical programs because of loops. Henceforth, we

use the terms ―loop‖ and ―cycle‖ interchangeably. The

process of producing a PPDG consists of five main steps, as
illustrated in Fig. 5. First, the PDG-generation step

generates the PDG of the input program P. Second, the

PDG-transformation step takes the PDG, and transforms it

by structurally changing the PDG and specifying states at

nodes in the PDG, which results in a transformed PDG.

Third, the Instrumentation step inserts probes into P to

gather the execution data needed to estimate the parameters

of the PPDG, and produces the instrumented program P0.

Fourth, the Execution step executes P0 with its test suite TP

to generate the execution data. Finally, the Learning step

generates a PPDG based on the execution data and the

transformed PDG by estimating the parameters of the
PPDG. The resulting PPDG is formally defined as follows:

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.5, Sep-Oct. 2012 pp-3429-3433 ISSN: 2249-6645

www.ijmer.com 3431 | Page

Fig.5: Construction of PPDG

B) Module Analysis

There are four modules in our paper

 New user Registration:

 User can be providing the personal

information at the registration phase. These sensitive user

results of information can be placed inside the database.
Automatically user can be get the information or credentials

(username and password).

 Testing, Debugging and Maintenance:

 Based on the user credentials enter inside the

project deployment to enter inside the homepage. Browse

or select the program and deploy the program. Program can

be executed indentify the relationship of information from

one state to another state. Identify the program behavior of

information and faults comprehension information.

Whenever to identify the faults automatically to define that
information like quality representation process.

 Probabilistic Program Dependence Graph:

 PPDG produces the PPDG for a program by

augmenting its program dependence graph automatically.

The technique associates a set of abstract states with each

node in the PPDG. Each abstract state represents a (possibly

large) set of concrete nodes states in a way that is chosen to

be relevant to one or more applications of PPDGs. Each

node has a conditional probability distribution that relates

the states of the node to the states of its parent nodes. The

technique estimates the parameters of the probability
distribution by analyzing executions of the program, which

are induced by a set of test cases or captured program

inputs.

 Show the dependency network:

 There are different kinds of probabilistic

graphical models, including Bayesian networks, Markov

random fields, and dependency networks. Bayesian

networks are directed acyclic graphs, whereas Markov

random fields are undirected graphs. Dependency networks

are similar tom Bayesian networks except that they may
contain cycles.

C) System Design

Class diagrams model class structure and contents

using design elements such as classes, packages and

objects. The association relationship is the most common

relationship in a class diagram. The association shows the

relationship between instances of classes. For example, the

class Order is associated with the class Customer. The

multiplicity of the association denotes the number of

objects that can participate in then relationship.

New User Registration

+Username
+password

+Submit the details()

Login

+Username
+password

+submit the details()

identify the dependency variables

+Apply the PPDG
+Check the nodes
+check the edges

+Execute the program()

Generate the PPDG graph

+Place the dependency variables
+mapp the variables

+show the graph()

Fig.6: Inter-Operational Class Diagram for Framework

A use case illustrates a unit of functionality

provided by the system. The main purpose of the use-case

diagram is to help development teams visualize the

functional requirements of a system, including the

relationship of "actors" (human beings who will interact

with the system) to essential processes, as well as the

relationships among different use cases. Use-case diagrams

generally show groups of use cases -- either all use cases

for the complete system, or a breakout of a particular group

of use cases with related functionality

New user registration

user

Login

Browse any program

perform the probabilistic program dependence operations

identify the dependency variables

Generate the PPDG graph

Fig.7: Inter-operational Usecase Diagram for the

Framework

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.5, Sep-Oct. 2012 pp-3429-3433 ISSN: 2249-6645

www.ijmer.com 3432 | Page

IV. RESULTS

Fig.7: New User Registration

Fig.8: Giving Program to find the Dependency

Fig.9: Extracting the PPDG Graph

Fig.10: Identifyng the PPD Graph

V. CONCLUSION
In this paper, we presented our technique PPDG

that uses the program dependence graph to create a novel

probabilistic graphical model .PPDG depends on the PDG

that captures the statistical dependences among program

elements and enables the use of probabilistic reasoning to

analyze program behaviors. This paper has discussed the

two applications of the PPDG for Software engineering

tasks. For the first task fault localization it has shown that

how the PPDG can be used to overcome the limitations of
current fault-localization techniques by introducing a

simple ranking –based algorithm. Fault comprehension as a

second task of application, we presented an algorithm that

exploit the interpretive nature of the PPDG. RankCP is an

alogorithm which uses the PPDG to rank statements to

assist in fault localization and FaultComp, which uses the

PPDG to generate explanations to aid in fault

comprehension.RankCP and FaultComp were implemented

for the evolution of the PPDG.

 The most critical part of our PPDG construction is

the execution information, which is used to estimate the
parameters of the PPDG. This execution information is

dependent on the test suite that is executed by the

instrumented program. Our experiment, although limited,

suggests that our technique is more efficient than existing

techniques that consider single failing executions. We used

PPDG in this paper depending on PDG, and hence the

statistical dependences across the functions were not

captured by PPDG.In the future we will use the PPDG as

the base on the interprocedural PDG and facilitate PPDG in

such a way that it can capture the statistical dependencies of

program elements.

 We have shown the potential utility of
applying the PPDG to the problem of fault diagnosis but we

believe that it has other applications. We therefore plan to

investigate the potential application of the PPDG to other

software engineering tasks.

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.5, Sep-Oct. 2012 pp-3429-3433 ISSN: 2249-6645

www.ijmer.com 3433 | Page

REFERENCES
[1] S. Bates and S. Horwitz, ―Incremental Program

Testing Using Program Dependence Graphs,‖ Proc.

Symp. Principles of Programming Languages, pp.

384-396, Jan. 1993.

[2] J.F. Bowring, J.M. Rehg, and M.J. Harrold, ―Active

Learning for Automatic Classification of Software

Behavior,‖ Proc. Int’l Symp. Software Testing and

Analysis, pp. 195-205, July 2004.

[3] S. Thrun, ―Robotic Mapping: A Survey,‖ Exploring

Artificial Intelligence in the New Millennium, pp. 1-

35, Morgan Kaufmann Publishers, Inc., 2002.

[4] W. Weimer and G. Necula, ―Mining Temporal
Specifications for Error Detection,‖ Proc. Int’l Conf.

Tools and Algorithms for the Construction and

Analysis of Systems, pp. 461-476, Apr. 2005.

[5] M. Weiser, ―Program Slicing,‖ Proc. Int’l Conf.

Software Eng., pp. 439-449, Mar. 1981.

[6] J. Ferrante, K.J. Ottenstein, and J.D. Warren, ―The

Program Dependence Graph and Its Use in

Optimization,‖ ACM Trans. Programming Languages

and Systems, vol. 9, no. 3, pp. 319-349, July 1987.

[7] S. Galan, F. Aguado, F.J. Diez, and J. Mira,

―NasoNet, Joining Bayesian Networks, and Time to

Model Nasopharyngeal Cancer Spread,‖ Artificial
Intelligence in Medicine, pp. 207-216, Springer, 2001.

[8] R. Alur, P. �Cern�y, P. Madhusudan, and W. Nam,

―Synthesis of Interface Specifications for Java

Classes,‖ Proc. Symp. Principles of Programming

Languages, pp. 98-109, Jan. 2005.

[9] X. Zhang, N. Gupta, and R. Gupta, ―Pruning Dynamic

Slices with Confidence,‖ Proc. Conf. Programming

Language Design and Implementation, pp. 169-180,

June 2006.

[10] B. Liblit, M. Naik, A.X. Zheng, A. Aiken, and M.I.

Jordan, ―Scalable Statistical Bug Isolation,‖ Proc.
Conf. Programming Language Design and

Implementation, pp. 15-26, June 2005.

[11] C. Liu, X. Yan, L. Fei, J. Han, and S.P. Midkiff,

―SOBER: Statistical Model-Based Bug

Localization,‖ Proc. European Software Eng.

Conf.and ACM SIGSOFT Symp. Foundations of

Software Eng., pp. 286-295, Sept. 2005.

AUTHORS LIST

 SWATHI SAMBANGI received her
Bachelor’s Degree in Information Technology in GMR

Institute of Technology Affiliated to JNTU Kakinada and

pursuing Masters of Technology in Software Engineering in

Gokul Institute of Technology and Sciences affiliated to

JNTU Kakinada. Her research areas of interest are Software

Engineering, Computer Networks and Data Mining.

MUDIGANTI VIJAYA BHASKAR, Completed his

B.Tech ,Computer Science in (A.U) 1997 and
M.tech,Computer Science (A.U) 2000 .Presently Pursuing

Ph.D in Soft computing in Andhra University . His area of

intrest are Image processing, Artificial

Intelligence,Robotics and Soft computing.

