
International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.5, Sep-Oct. 2012 pp-3437-3441 ISSN: 2249-6645

www.ijmer.com 3437 | Page

 D. Suresh, K. Ramadevi, K. Raguram
 D.suresh (E.C.E), Associate professor, Associate professor, Pragati engineering college

 Surampalem, East Godavari Dist ,A.P.

ABSTRACT : In recent days filters with large lengths are

started to use. So parallel processing is essential at any

cost.In this paper proposes new parallel FIR filter

structures, which are beneficial to symmetric coefficients in

terms of the hardware cost, under the condition that the

number of taps is a multiple of 2 or 3. The proposed

parallel FIR structures use symmetric property to reducing

half the number of multipliers in sub filter section at the

expense of additional adders in preprocessing and post

processing blocks. Exchanging multipliers with adders is
advantageous because adders weigh less than multipliers in

terms of silicon area; in addition, the overhead from the

additional adders in preprocessing and post processing

blocks stay fixed and do not increase along with the length

of the FIR filter, whereas the number of reduced multipliers

increases along with the length of the FIR filter. Parallel

FIR filter is essential, especially when the length of the

filter is large.

Key words: Parallel FIR, preprocessing

I. INTRODUCTION
Finite impulse response (FIR) filters are the most

popular type of filters implemented in software. This

introduction will help you understand them both on a

theoretical and a practical level. Filters are signal

conditioners. Each functions by accepting an input signal,

blocking pre-specified frequency components, and passing
the original signal minus those components to the output. In

a typical digital filtering application, software running on a

digital signal processor (DSP) reads input samples from an

A/D converter, performs the mathematical manipulations

dictated by theory for the required filter type, and outputs

the result via a D/A converter.

 Some applications need the FIR filter to operate at

high frequencies such as video processing, whereas some

other applications request high throughput with a low-power

circuit such as multiple-input multiple-output (MIMO)

systems used in cellular wireless communication.

Furthermore, when narrow transition- band characteristics
are required, the much higher order in the FIR filter is

unavoidable. For example, a 576-tap digital filter is used in

a video ghost canceller for broadcast television, which

reduces the effect of multipath signal echoes.

II. Finite Impulse Response
 Filters can be classified in several different groups,

depending on what criteria are used for classification. The

two major types of digital filters are finite impulse
response digital filters (FIR filters) and infinite impulse

response digital filters (IIR).

Figure.1 Digital filtering

 Both types have some advantages and

disadvantages that should be carefully considered when

designing a filter. Besides, it is necessary to take into

account all fundamental characteristics of a signal to be

filtered as these are very important when deciding which

filter to use. In most cases, it is only one characteristic that
really matters and it is whether it is necessary that filter has

linear phase characteristic or not.

Speech signal, for example, can be processed in the

systems with non-linear phase characteristic. The phase

characteristic of a speech signal is not of the essence and as

such can be neglected, which results in the possibility to use

much wider range of systems for its processing.

.

Figure 2. Digital filtering

 The process of selecting the filter's length and
coefficients is called filter design. The goal is to set those

parameters such that certain desired stop band and pass band

parameters will result from running the filter. Most

engineers utilize a program such as MATLAB to do their

filter design. But whatever tool is used, the results of the

design effort should be the same:

 A frequency response plot, like the one shown in

Figure 1, which verifies that the filter meets the desired

specifications, including ripple and transition bandwidth.

The longer the filter (more taps), the more finely the

response can be tuned With the length, N, and

coefficients, float h[N] = { ... }, decided upon, the
implementation of the FIR filter is fairly straightforward.

Listing 1 shows how it could be done in C. Running this

code on a processor with a multiply-and-accumulate

instruction (and a compiler that knows how to use it) is

essential to achieving a large number of taps.

A. Ideal low-pass filter

 FIR filters are digital filters with finite impulse
response. They are also known as non-recursive digital

filters as they do not have the feedback (a recursive part of a

filter), even though recursive algorithms can be used for FIR

filter realization

FPGA Implementation of a New Parallel FIR Filter Structures

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.5, Sep-Oct. 2012 pp-3437-3441 ISSN: 2249-6645

www.ijmer.com 3438 | Page

B. Window Method for FIR Filter Design

The window method for digital filter design is fast,

convenient, and robust, but generally suboptimal. It is easily

understood in terms of the convolution theorem for Fourier
transforms, making it instructive to study after the Fourier

theorems and windows for spectrum analysis.

 We would expect to be able to truncate it to the

interval, for some sufficiently large , and obtain a pretty

good FIR filter which approximates the ideal filter. This

would be an example of using the window method with

the rectangular window. We saw in §4.3 that such a choice
is optimal in the least-squares sense, but it designs relatively

poor audio filters. Choosing other windows corresponds to

tapering the ideal impulse response to zero instead of

truncating it. Tapering better preserves the shape of the

desired frequency response, as we will see. By choosing the

window carefully, we can manage various trade-offs so as to

maximize the filter-design quality in a given application.

Window functions are always time limited. The window

method always designs a finite-impulse-response (FIR)

digital filter (as opposed to an infinite-impulse-

response (IIR) digital filter). By the dual of the convolution
theorem, point wise multiplication in the time domain

corresponds to convolution in the frequency domain.

C. FIR And IIR Digital Filter Design

Based on combining ever increasing computer

 processing speed with higher sample rate

processors, Digital Signal Processors (DSP’s) continue to

receive a great deal of attention in technical literature and

new product design. The following section on digital filter

design reflects the importance of understanding and utilizing

this technology to provide precision stand alone digital or

integrated analog/digital product solutions. By utilizing
DSP’s capable of sequencing and reproducing hundreds to

thousands of discrete elements, design models can simulate

large hardware structures at relatively low cost. DSP

techniques can perform functions such as Fast-Fourier

Transforms (FFT), delay equalization, programmable gain,

modulation, encoding/decoding, and filtering.

• Filter weighting functions (coefficients) can be calculated

on the fly, reducing memory requirements

• Algorithms can be dynamically modified as a function of

signal input.

DSP represents a subset of signal-processing
activities that utilize A/D converters to turn analog signals

into streams of digital data. A stand-alone digital filter

requires an A/D converter (with associated anti-alias filter),

a DSP chip and a PROM or software driver. An extensive

sequence of multiplication’s and additions can then be

performed on the digital data. In some applications, the

designer may also want to place a D/A converter,

accompanied by a reconstruction filter, on the output of the

DSP to create an analog equivalent signal. A digital filter

solution offering a 90 dB attenuation floor and a 20 kHz

bandwidth can consist of up to 10 circuits occupying several
square inches of circuit-board space and costing hundreds of

dollars.

Digital filters process digitized or sampled signals.

A digital filter computes a quantized time-domain

representation of the convolution of the sampled input time

function and a representation of the weighting function of
the filter. They are realized by an extended sequence of

multiplications and additions carried out at a uniformly

spaced sample interval. Simply said, the digitized input

signal is mathematically influenced by the DSP program.

These signals are passed through structures that shift the

clocked data into summers (adders), delay blocks and

multipliers. These structures change the mathematical

values in a predetermined way; the resulting data represents

the filtered or transformed signal. It is important to note that

distortion and noise can be introduced into digital filters

simply by the conversion of analog signals into digital data,

also by the digital filtering process itself and lastly by
conversion of processed data back into analog.

 When fixed-point processing is used, additional

noise and distortion may be added during the filtering

process because the filter consists of large numbers of

multiplications and additions, which produce errors,

creating truncation noise. Increasing the bit resolution

beyond 16-bits will reduce this filter noise.

Instead of using a commercial DSP with software

algorithms, a digital hardware filter can also be constructed

from logic elements such as registers and gates, or an

integrated hardware block such as an FPGA (Field
Programmable Gate Array). Digital hardware filters are

desirable for high bandwidth applications; the trade-offs are

limited design flexibility and higher cost.

(1) Fixed-Point DSP and FIR (Finite Impulse

Response) Implementations: Fixed-Point DSP processors

account for a majority of the DSP applications because of

their smaller size and lower cost. The Fixed-Point math

requires programmers to pay significant attention to the

number of coefficients utilized in each algorithm when

multiplying and accumulating digital data to prevent

distortion caused by register overflow and a decrease of the

signal-to-noise ratio caused by truncation noise. The
structure of these algorithms uses a repetitive delay-and-add

format that can be represented as “DIRECT

FORM-I STRUCTURE”,

Figure 3 Transposed direct form FIR Filter

FIR (Finite Impulse Response) filters are

implemented using a finite number “n“ delay taps on a delay

line and “n“ computation coefficients to compute the

algorithm (filter) function. The above structure is non-

recursive, a repetitive delay-and-add format, and is most

often used to produce FIR filters. This structure depends

upon each sample of new and present value data. FIR filters
can create transfer function that have no equivalent in linear

circuit technology.

III. Window Technique:

https://ccrma.stanford.edu/~jos/sasp/FIR_Digital_Filter_Design.html
https://ccrma.stanford.edu/~jos/filters/
https://ccrma.stanford.edu/~jos/mdft/Convolution_Theorem.html
https://ccrma.stanford.edu/~jos/mdft/Fourier_Transform_FT_Inverse.html
https://ccrma.stanford.edu/~jos/mdft/Fourier_Transform_FT_Inverse.html
https://ccrma.stanford.edu/~jos/mdft/Fourier_Transform_FT_Inverse.html
https://ccrma.stanford.edu/~jos/mdft/Fourier_Theorems.html
https://ccrma.stanford.edu/~jos/mdft/Fourier_Theorems.html
https://ccrma.stanford.edu/~jos/mdft/Fourier_Theorems.html
https://ccrma.stanford.edu/~jos/mdft/Example_Applications_DFT.html
https://ccrma.stanford.edu/~jos/filters/FIR_Digital_Filters.html
https://ccrma.stanford.edu/~jos/sasp/Optimal_but_poor_if.html#sec:toptlsf
http://mathworld.wolfram.com/LeastSquaresFitting.html
https://ccrma.stanford.edu/~jos/filters/Frequency_Response_I.html
http://www.circuitsage.com/filter.html
https://ccrma.stanford.edu/~jos/mdft/Dual_Convolution_Theorem.html
https://ccrma.stanford.edu/~jos/mdft/Dual_Convolution_Theorem.html
https://ccrma.stanford.edu/~jos/mdft/Dual_Convolution_Theorem.html
https://ccrma.stanford.edu/~jos/mdft/Convolution.html
https://ccrma.stanford.edu/~jos/mdft/

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.5, Sep-Oct. 2012 pp-3437-3441 ISSN: 2249-6645

www.ijmer.com 3439 | Page

The simplest technique is known as “Windowed”

filters. This technique is based on designing a filter using

well-known frequency domain transition functions called

“windows”. The use of windows often involves a choice of
the lesser of two evils. Some windows, such as the

Rectangular, yield fast roll-off in the frequency domain, but

have limited attenuation in the stop-band along with poor

group delay characteristics. Other windows like the

Blackman, have better stop-band attenuation and group

delay, but have a wide transition-band (the band-width

between the corner frequency and the frequency attenuation

floor). Windowed filters are easy to use, are scalable (give

the same results no matter what the corner frequency is) and

can be computed on-the-fly by the DSP.

 IV. The Equiripple Technique

An Equiripple or Remez Exchange (Parks-

McClellan) design technique provides an alternative to

windowing by allowing the designer to achieve the desired

frequency response with the fewest number of coefficients.

This is achieved by an iterative process of comparing a

selected coefficient set to the actual frequency response

specified until the solution is obtained that requires the

fewest number of coefficients. Though the efficiency of this

technique is obviously very desirable, there are some
concerns.

• For equiripple algorithms some values may converge to a

false result or not converge at all. Therefore, all coefficient

sets must be pre-tested off-line for every corner frequency

value.

• Application specific solutions (programs) that require

signal tracking or dynamically changing performance

parameters are typically better suited for windowing since

convergence is not a concern with windowing.

• Equiripple designs are based on optimization theory and

require an enormous amount of computation effort. With
the availability of today’s desktop computers, the

computational intensity requirement is not a problem, but

combined with the possibility of convergence failure;

equiripple filters typically cannot be designed on-the-fly

within the DSP.

 Analog filters beyond 10 poles are very difficult

to realize and tend to be noisy

V. Digital to Analog Conversion (D/A)

 As with input signals to A/D converters, waveforms

created by D/A converters also exhibit errors. For each

input digital data point, the D/A holds the corresponding

value until the next sample period. Therefore, the output

waveform exists as a sequence of steps. This output, a kind

of “sample-and-hold” – is known as a “first-order hold.” In

non-reconfigurable filters, these coefficients are constant

and shift operation is done by hardwiring. The long tree of

adders in multiplier implementation increases switching

activity and physical capacitance and then power

consumption.

Fig.4 Implementation of coefficient

Fig.5 Parallel FIR filter architecture

VI. Proposed Reconfigurable Fir Filter

Architecture
 To utilize the symmetry of coefficients, the main

idea behind the proposed structures is actually pretty

intuitive, to manipulate the polyphase decomposition to earn

as many subfilter blocks as possible which contain

symmetric coefficients so that half the number of

multiplications in the single subfilter block can be reused for

the multiplications of whole taps, which is similar to the fact

that a set of symmetric coefficients would only require half

the filter length of multiplications in a single FIR filter.

Therefore, for an N-tap 4-parallel FIR filter the total amount

of saved multipliers would be the number of subfilter blocks
that contain symmetric coefficients times half the number of

multiplications in a single subfilter block decomposition to

earn as many subfilter blocks as possible which contain

symmetric coefficients so that half the number of

multiplications in the single subfilter block can be reused for

the multiplications of whole taps, which is similar to the fact

that a set of symmetric coefficients would only require half

the filter length of multiplications in a single FIR filter.

Therefore, for an N-tap 3-parallel FIR filter the total amount

of saved multipliers would be the number of subfilter blocks

that contain symmetric coefficients times half the number of
multiplications in a single subfilter block . As can be seen

from the example above, two of three subfilter blocks from

the proposed two-parallel FIR filter structure,H0+H1 and

H0-H1, are with symmetric coefficients now, as (8), which

means the subfilter block can be realized by Fig. 4, with

only half the amount of multipliers required. Each output of

multipliers responds to two taps. Note that the transposed

direct-form FIR filter is employed. Compared to

the existing FFA two-parallel FIR filter structure, the

proposed FFA structure leads to one more subfilter block

which contains symmetric coefficients. However, it comes

with the price of the increase of amount of adders in
preprocessing and postprocessing blocks. In this case, two

additional adders are required for L==2.Add/Sub control

block. This block uses the sign bit of each sub-coefficient,

and control the add/sub block. To implement the

multiplication by zero for each subcoefficient, the

multiplexer blocks are followed by AND gates, which is

controlled by Mux control block. Three full add/sub bocks

are used to combine the partial products of subcoefficients.

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.5, Sep-Oct. 2012 pp-3437-3441 ISSN: 2249-6645

www.ijmer.com 3440 | Page

Figure. 6 Proposed parallel FIR filter architecture using

four input.

 VII. IMPLEMENTATION OF ALGORITHM
 A primary objective of this project was to develop

a synthesizable model for the AES128 encryption algorithm.

Synthesis is the process of converting the register transfer

level (RTL) representation of a design into an optimized

gate-level netlist. This is a major step in ASIC design flow

that takes an RTL model closer to a low-level hardware

implementation.

Figure7 .Simulated output.

A. Synthesis Timing Result

 The synthesis tool optimizes the combinational

paths in a design. In General, four types of combinational

paths can exist in any design: [3]

1- Input port of the design under test to input of one

internal flip-flip

2- Output of an internal flip-flip to input of another flip-

flip

3- Output of an internal flip-flip to output port of the
design under test

4- A combinational path connecting the input and output

ports of the design under test

The last DC command in the script developed in previous

section, instructs the tool to report the path with the worst

timing. In this case, the path with the worst timing is a

combinational path of type two. The delay associated with

this path is the summation of delays of all combinational

gates in the path plus the Clock-To-Q delay of the

originating flip-flop, which was calculated as 24.09ns.

Figure 8.RTL Schematic report

 By considering the setup time of the

destination flip-flop in this path, which is 0.85ns, the

40MHz clock signal satisfies the worst combinational path

delay. The delays of combinational gates, setup time of flip-

flops and Clock-To-Q values are derived from the LSI_10k

library file that was used for the mapping step during
synthesis

B. Synthesis Area Result

 The synthesis area report shows the total number of

cells and nets in the netlist. It also uses the area parameter

associated with each cell in the LSI_10K library file, to

calculate the total combinational and sequential area of the

netlist. The total area of the gate level netlist is unknown

since it depends on total area of the interconnects, which

itself is a function of the wiring load model used in physical

design. The total cell area in the netlist is reported as 22978

units, which is the sum of combinational and sequential
areas.

Figure 9.Flow summary report

 To enforce the synthesis tool to create the most

compact netlist, the area of the gate level netlist was

constrained to zero during the synthesis process. As a

result, the only constraint violation, which is expected, is

related to the area as shown bellow:

C. Performance Report

Figure10 .Fmax. summary report for slow corner.

VIII. CONCLUSION

 The proposed new structure exploits the nature of

even symmetric coefficients and save a significant amount

of multipliers at the expense of additional adders. Since

multipliers outweigh adders in hardware cost, it is profitable

to exchange multipliers with adders. Moreover, the number
of increased adders stays still when the length of FIR filter

becomes large, whereas the number of reduced multipliers

increases along with the length of FIR filter. Consequently,

the larger the length of FIR filters is, the more the proposed

structures can save from the existing FFA structures, with

respect to the hardware cost. Overall this paper proved that

for larger filter length area consumption of proposed filter is

far better than any other existing method.

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.5, Sep-Oct. 2012 pp-3437-3441 ISSN: 2249-6645

www.ijmer.com 3441 | Page

REFERENCES

[1] D. A. Parker and K. K. Parhi, “Low-area/power
parallel FIR digital filter implementations,” J. VLSI

Signal Process. Syst., vol. 17, no. 1, pp. 75–92, 1997.

[2] J. G. Chung and K. K. Parhi, “Frequency-spectrum-

based low-area low-power parallel FIR filter design,”

EURASIP J. Appl. Signal Process., vol. 2002, no. 9,

pp. 444–453, 2002.

[3] K. K. Parhi, VLSI Digital Signal Processing Systems:

Design and Implementation. New York: Wiley, 1999.

[4] Z.-J. Mou and P. Duhamel, “Short-length FIR filters

and their use in fast nonrecursive filtering,” IEEE

Trans. Signal Process., vol. 39, no. 6, pp. 1322–1332,
Jun. 1991.

[5] J. I. Acha, “Computational structures for fast

implementation of L-path and L-block digital filters,”

IEEE Trans. Circuit Syst., vol. 36, no. 6, pp. 805–812,

Jun. 1989.

[6] C. Cheng and K. K. Parhi, “Hardware efficient fast

parallel FIR filter structures based on iterated short

convolution,” IEEE Trans. Circuits Syst. I, Reg.

Papers, vol. 51, no. 8, pp. 1492–1500, Aug. 2004.

[7] C. Cheng and K. K. Parhi, “Furthur complexity

reduction of parallel FIR filters,” in Proc. IEEE Int.

Symp. Circuits Syst. (ISCAS 2005), Kobe, Japan, May
2005.

[8] C. Cheng and K. K. Parhi, “Low-cost parallel FIR

structures with - stage parallelism,” IEEE Trans.

Circuits Syst. I, Reg. Papers, vol. 54, no. 2, pp. 280–

290, Feb. 2007.

[9] I.-S. Lin and S. K. Mitra, “Overlapped block digital

filtering,” IEEE Trans. Circuits Syst. II, Analog Digit.

Signal Process., vol. 43, no. 8, pp. 586–596,

Aug. 1996.

[10] “Design Compiler User Guide,” ver. B-2008.09,

Synopsys Inc., Sep. 2008.

