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Abstract: Missing data is a problem encountered in almost every data collection activity but particularly in sample survey. 
The missing data naturally occurs in sample surveys when some, not all sampling units refuse or unable to participate in the 
survey or when data for specific items on a questionnaire completed for an otherwise cooperating unit are missing. 
Imputation is a methodology, which uses available data as a tool for the replacement of missing observations. Imputation 
methods used to fill the non responses and lead, under definite conditions, to suitable inference. This article suggests some 
imputation methods and discusses the properties of their mean estimators. Numerical study is performed over two 
populations using the expressions of bias and m.s.e and efficiency compared with existing estimators. 
 

I.  Introduction  
In literature, several imputation techniques are described, some of them are better over others. Rubin (1976) 

addressed three concepts: OAR (observed at random), MAR (missing at random), and PD (parametric distribution). He 
defined that if the probability of the observed missingness pattern, given the observed and unobserved data, does not depend 
on the value of the unobserved data, then data are MAR. The observed data are observed at random (OAR) if for each 
possible value of the missing data and the parameter φ the conditional probability of the observed pattern of missing data 
given the missing data and the observed data, is the same for all possible values of the observed data.  Heitzen and Basu 
(1996) have distinguished the meaning of MAR and MCAR in a very nice way. In what follows MCAR (missing completely 
at random) is used. 
 Little and Rubin (1987) define three different classes of missingness. They defined the key terms used in discussing 
missingness in the literature. Data missing on Y are observed at random (OAR) if missingness on Y is not a function of X. 
Phrased another way, if X determines missingness on Y, the data are not OAR. Data missing on Y are missing at random 
(MAR) if missingness on Y is not a function of Y. Phrased another way, if Y determines missingness on Y, the data are not 
MAR. Data are Missing Completely at Random (MCAR) if missingness on Y is unrelated to X or Y. In other words 
MCAR=OAR + MAR. If the data are MCAR or at least MAR, then the missing data mechanism is considered “ignorable.” 
Otherwise, the missing data mechanism is considered “non-ignorable.” 

There are different ways and means to control non-response. One way of dealing with the problem of non-response 
is to make more efforts to collect information by taking a sub-sample of units not responding at the first attempt. Another 
way of dealing with the problem of non-response is to estimate the probability of responding informants of their being at 
home at a specified point of time and weighting results with the inverse of this probability. A technique to deal with the 
problem of non-response was developed by Hansen and Hurwitz (1946).  They assumed that the population is divided into 
two classes, a response class who respond in the first attempt and a non-response class who did not. 

A questionnaire contains many questions that we call items. When item non-response occurs, substantial 
information about the non-respondent is usually available from other items on the questionnaire. Many imputation methods 
in literature use selection of these items as auxiliary variable in assigning values to the i th non-respondent for item y.  Rao 
and Sitter (1995), Singh and Horn (2000), Ahmed et al. (2006) and Shukla and Thakur (2008) have given applications of 
various imputation procedures. 

Let the variable Y is of main interest and X  be an auxiliary variable correlated with Y and the population mean X of 

auxiliary variable is unknown. A large preliminary simple random sample (without replacement) 'S  of 'n  units is drawn 

from the population ( )N,...,2 ,1=Ω  to estimate X  and a secondary sample S of size n ( n <  'n  ) drawn as a sub-sample 

of the sample 'S  to estimate the population mean of main variable. Let the sample S contains 1n  responding units and 

( )
12 nnn −=  non-responding units. Using the concept of post-stratification, sample may be divided into two groups: 

responding (
1

R ) and non-responding (
2

R ). 

The sample may be considered as stratified into two classes namely a response class and non-response class, then 
the procedure is known as post-stratification. Sukhatme (1984) advocates that post-stratification procedure is as precise as 
the stratified sampling under proportional allocation if the sample size is large enough. Estimation problem in sample 
surveys, in the setup of post-stratification, under non-response situation is studied due to Shukla and Dubey (2004 and 2008). 

Shukla et al. (2009) have also given the concept of utilization of 2X (population mean of non-response group of X) in 

imputation for missing observations of auxiliary information due to non-response. 
 Now it may be consider the population has two types of individuals like N1 as number of respondents (1R ) and N2 

non-respondents (
2R ), Thus the total N units of the population will comprise N1 and N2, respectively, such that N = N1+N2. 

The population proportions of units in the 
1

R and 
2

R  groups are expressed as W1 = N1/N and W2 = N2 /N such that W1+W2=1.  

Further, let Yand X  be the population means of Y and X respectively. For every unit 
1

Ri ∈ , the value iy  is observed 

Mean Estimation with Imputation in Two- Phase Sampling 



International Journal of Modern Engineering Research (IJMER) 
www.ijmer.com              Vol.2, Issue.5, Sep-Oct. 2012 pp-3561-3571             ISSN: 2249-6645 

www.ijmer.com                                                                         3562 | Page 

available. However, for the units
2Ri ∈ , the i

y ’s are missing and imputed values are to be derived. The i th value ix of 

auxiliary variate is used as a source of imputation for missing data when 
2

Ri ∈ . This is to assume that for sample S, the data 

{ }Sixx
is

∈= :  are known. The following notations are used in this paper: 

nx
−

, ny
−

:  the sample mean of X  and Y  respectively in S;  1x , 1

−

y :  the sample mean of  X and Y  respectively in 1R ;   

2
XS , 2

YS :  the population mean squares of  X  and Y  respectively; X
C , Y

C : the coefficient of variation of X  and Y  

respectively; ρ : Correlation Coefficient in population between X  and Y  respectively. 

Further, consider few more symbolic representations: 
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Under this setup as describe above in case of simple random sampling without replacement and assuming X is known, some 
well known imputation methods are given below: 
1.1. Mean Method of Imputation: 

For i
y  define i

y•  as  
              

               

2

1







∈

∈
=•

Riify

Riify
y

r

i

i                    …(1.1) 

Using above, the imputation-based estimator of population mean Y  is: ∑
∈

==
Ri

rim yy
r

y
1

              …(1.2) 

Lemma 1.1: The bias and mean squared error is given by:  (i) ( ) 0=myB
 

      …(1.3) 

     (ii)  ( ) 211
ym

S
Nr

yV 






 −≈                                  …(1.4) 

1.2. Ratio Method of Imputation:  

For i
y  and i

x , define i
y•  as:     

              ˆ
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Riifxb
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i
 where  ∑∑

∈∈

=
Ri
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i xyb̂      …(1.5) 

Under this, the imputation-based estimator is:  
RAT

Si r

n

riS y
x

x
yy

n
y =









== ∑
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1
        …(1.6) 

where  ∑
∈

=
Ri

ir y
r

y
1

,    ∑
∈

=
Ri

ir x
r

x
1

  and    ∑
∈

=
Si

in x
n

x
1

 
Lemma 1.2: The bias and mean squared error of RAT

y  is given by: (i)  ( ) ( )
xyxRAT

CCC
nr

YyB ρ−






 −= 211

  
…(1.7) 

 (ii) ( ) [ ]
xyxyyRAT
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S
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1
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 −≈         where 
X

Y
R =1        …(1.8) 

1.3. Compromised Method of Imputation: 

Singh and Horn (2000) proposed Compromised imputation procedure as given below: 
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where α is a suitably chosen constant, such that the resultant variance of the estimator is optimum. The imputation-based 

estimator, for this case, Estimator of population mean is  ( ) 







−+=

r

n

rrCOMP

x

x
yyy αα 1                                       …(1.10) 

Lemma 1.3: The bias, mean squared error and minimum mean squared error at  
X

Y

C

Cρα −= 1
 
of  

COMPy  is given by 

 (i)
 
 ( ) ( ) ( )

XYXCOMP CCC
nr

YyB ρα −






 −−= 211
1

                                     
…(1.11) 
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 (iii)
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1.4. Ahmed’s  Methods: 
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( ) ( ) ( )    
             

                             

22
1

1

7









∈−+−
−

+

∈
=

RiifxxkxX
rn

nk
y

Riify

y
rir

i

i

                             

…(1.14) 

Under this method, the point estimator of Y  is: ( ) ( )rr xxkxXkyt −+−+= 217                                                          …(1.15) 

Lemma 1.4: The bias, variance and minimum variance at  
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of  

7t  is given by: (i)    [ ] 07 =tB              …(1.16) 
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under this setup, the point estimator of Y  is : ( )xx

xy
t

r

r

11

8
1 θθ −+

=                                                  …(1.20) 

Lemma 1.5: The bias, mean squared error and minimum mean squared error at  
X

Y

C

Cρθ =1

 
of  

8t  is given by 
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Under this method, the point estimator of Y  is : ( )Xx

Xy
t r

22

9
1 θθ −+

=                                                     …(1.25) 

Lemma 1.6: The bias, mean squared error and minimum mean squared error at  
X

Y

C

Cρθ =2

 
of  

8t  is given by 

 (i) ( ) ( )
XYX
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under this, the point estimator of population mean Y is:  ( )Xx

Xy
t

r

r

33

10
1 θθ −+

=                                                   …(1.30) 

Lemma 1.7: The bias, mean squared error and minimum mean squared error at
X

Y

C
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of  

10t  is given by 
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II.  Large Sample Approximations: 

Let ( )
11 1 eYy += ; ( )

21 1 eXx += ; ( )
31 eXx

n
+=  and ( )'

3

' 1 eXx += , which implies the results 11
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Y

y
e ; 

1 1
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X

x
e ; 1  3 −=

X

x
e n  and 1  

'

'

3 −=
X

x
e . Now by using the concept of two-phase sampling and the mechanism of 

MCAR, for given 1n , n and 'n  [see Rao and Sitter (1995)] we have: 
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III.   Proposed Different Imputation Methods 
Let  vji

y  denotes the i th available observation for the j th imputation. We suggest the following imputation methods: 
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where h and k  are suitably chosen constants, such that the variance the resultant estimator is minimum. Under this 
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17 xxkxxhyT nnV
−+−+=                              …(3.2) 
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where θ  is suitably chosen constant, such that the variance the resultant estimator is minimum. Under this 
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where ϕ  is suitably chosen constant, such that the variance the resultant estimator is minimum.  

Under this, the point estimator of population mean Y  is  
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where ψ  is suitably chosen constant, such that the variance the resultant estimator is minimum. Under this, the point 

estimator of population mean Y  is  
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IV.    Bias and M.S.E of Proposed Methods: 
 Let B(.) and M(.)  denote the bias and mean squared error (M.S.E.) of an estimator under a given sampling design. 
The properties of estimators are derived in the following theorems respectively.  
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Proof: By differentiating (4.3) with respect to h  and k  then equate to zero 
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After replacing value of h  and k in (4.3), we obtained       
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Theorem 4.2: 
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 (12) The minimum m.s.e. of  9VT  is 
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Proof:  By differentiating (4.11) with respect to ϕ then equate to zero 
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Theorem 4.4: 
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(16) The minimum m.s.e. of  10VT  is 
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V. Comparisons 
 In this section we derived the conditions under which the suggested estimators are superior to the Ahmed et al. 
(2006).  
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VI.    Numerical Illustrations  

 We consider two populations A and B, first one is the artificial population of size N = 200 [source Shukla et al. 
(2009a)] and another one is from Ahmed et al. (2006) with the following parameters: 

   Table 6.1 Parameters of Populations A and B 
Population N Y  X  

2
YS  2

X
S  ρ  

X
C  

Y
C  

A 200 42.485 18.515 199.0598 48.5375 0.8652 0.3763 0.3321 
B 8306 253.75 343.316 338006 862017 0.522231 2.70436 2.29116 

Let 'n = 60, n = 40, 1n = 35 for population A and 'n = 2000, n = 500, 1n = 450 for population B respectively. Then 

the bias and M.S.E of suggested estimators (using the expressions of bias and m.s.e. of Section 5) and other existing 
estimators with Ahmed et al. (2006) methods are given in table 6.2 and 6.3 for population A and B respectively. 

Table 6.2 Bias and MSE for Population A and B 

Estimators 
Population A Population B 

Bias MSE Bias MSE 

7V
T  0 2.338387 0 458.4694 

8V
T  -0.000001 1.841686 0.000003 561.7505 

9V
T  0.000001 2.882792 0.000001 478.9972 

10V
T  -0.025350 2.338387 -0.347570 458.4694 

Table 6.3 Bias and MSE for Population A and B for Ahmed et al. (2006) 

Estimators 
Population A Population B 

Bias MSE Bias MSE 

r
y  0 4.692124 0 710.4302 

RAT
y  0.005080 4.908211 0.22994 768.7752 

COMP
y  0.003879 4.188044 0.050411 689.9429 

7t  0 1.179736 0 516.6780 

8t  -0.000001 4.159944 0.000003 689.9452 

9t  -0.000006 1.711916 0.000002 537.1631 

10t  -0.000008 1.179736 0.000003 516.6780 

The sampling efficiency of suggested estimators over Ahmed et al. (2006) is defined as:   

                    
( )[ ]
( )[ ] 10,9,8,7; == i
tMOpt

TMOpt
E

i

Vi

i
                …(6.1) 

The efficiency for population A and population B are given in table 6.4 
Table 6.4 Efficiency for Population A and B over Ahmed et al. (2006) 

Efficiency Population A Population B 

7E  1.982128 0.887341 

8E  0.442719 0.814196 

9E  1.683957 0.891717 

10E  1.982128 0.887341 
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VII.  Discussion 
 The idea of two-phase sampling is used while considering, the auxiliary population mean is unknown and numbers 
of available observations are considered as random variable. Some strategies are suggested in Section 3 and the estimator of 
population mean derived. Properties of derived estimators like bias and m.s.e are discussed in the Section  4. The optimum 
value of parameters of suggested estimators is obtained as well in same section. Ahmed et al. (2006) estimators are 
considered for comparison purpose and two populations A and B considered for numerical study first one from Shukla et al. 
(2009) and another one is Ahmed et al. (2006). The sampling efficiency of suggested estimator over Ahmed et al. (2006) is 

obtained and suggested strategy is found very close with Ahmed et al. (2006) when X  is not known. 
 

VIII.  Conclusions 
 The proposed estimators are useful when some observations are missing in the sampling and population mean of 
auxiliary information is unknown. For population A proposed estimators 8V

T  are found to be more efficient than the 

existing estimators. For population B proposed estimators 
987 ,,

VVV
TTT and 10V

T  are found to be more efficient than the 

existing estimators. 
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