
International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.5, Sep-Oct. 2012 pp-3743-3746 ISSN: 2249-6645

www.ijmer.com 3743 | Page

K.M.DhanaSailaja
1
, E.V.Prasad

2

(M.Tech, University College of Engineering JNTUK, Andhra Pradesh, India)

 (Professor & Registrar, University College of Engineering JNTUK, Andhra Pradesh, India)

ABSTRACT: Recently the demand of real-time data

services has increased in various applications such as
manufacturing, Web-servers, and e-commerce and they are

becoming sophisticated in their real-time data needs. Real

time data services has to provide better QoS parameters

because end users may ignore the service when the

database service delay is high and temporally inconsistent

data is available. Due to dynamic workloads providing

better QoS in data services is a challenging issue. In this

paper to overcome this problem we are using map-reduce

framework to estimate the real time service delays.

MapReduce framework process large amount of data in a

parallel way. It is gaining lot of interest in data mining,

because the programmer is abstracted to the data storage,
distribution, replication, load balancing and it uses

functional programming. It has two functions map and

reduce. Several experiments have been conducted on

various data sets to calculate the performance of the

proposed technique.

Keywords : Web-servers, Map Reduce, e-commerce, Data

mining, Quality of service

I. INTRODUCTION:
 Recently the demand of real-time data services has

increased in various applications such as manufacturing,

Web-servers, and e-commerce and they are becoming

sophisticated in their real-time data needs [1], [2]. In the

past decade demand is increasing provisioning for quality

of service (QoS) guarantees to various network applications

and clients. The data normally span from low-level control

data, typically acquired from sensors, to high-level
management and business data. In these applications, it is

desirable to process user requests within the timeline using

fresh data. In dynamic systems, such as Web servers and

sensor networks with non-uniform access patterns, the

workload of real-time databases (RTDB) cannot be

predicted accurately. Hence, the RTDBs can be overloaded,

uncontrolled deadline misses and data freshness may not be

possible during the transient overloads. To provide service

quality we propose a quality of service (QoS) sensitive

method that provides a set of requirements to improve the

performance of the database even in the unpredictable
workloads conditions. In some applications like Web

service it is desirable that the QoS does not vary

significantly from one transaction to another. It is

emphasized that individual QoS needs requested by

transactions are enforced and any deviations from the QoS

needs should be uniformly distributed among the clients to

ensure QoS fairness. Imprecise computation techniques [3]

have been proposed by various authors to allow flexibility

and for achieving graceful degradation during transient

overloads. These techniques make it possible to trade off

resource needs for the quality of a requested service and

they have been successfully applied in timeliness is

emphasized applications where a certain degree of

imprecision can be tolerated [4], [5], [6]. Real time data
services has to provide better QoS parameters because end

users may ignore the service when the database service

delay is high and temporally inconsistent data is available.

Due to dynamic workloads providing better QoS in data

services is a challenging issue. In this paper to overcome

this problem we are using map-reduce framework to

estimate the real time service delays. Our MapReduce

framework process large amount of data in a parallel way

and it is gaining lot of interest in data mining, because the

programmer is abstracted to the data storage, distribution,

replication, load balancing and it uses functional
programming. It has two functions map and reduce. In the

map stage passes the data over the input file and outputs

(key, value) pairs, the shuffling stage transfers the mappers

output to the reducers based on the key and finally the

reducer processes the received pairs and outputs the final

result. Map Reduce is a useful tool for large amount of data

analysis because of its scalability, simplicity and low cost to

build large clouds of computers.

 The rest of the paper is organized as section 2:

discuss about the related work, section 3: presents the

Proposed Solution, section 4: discuss about Map Reduce,

section 5: discuss about Experimental setup, section 6:
concludes the paper.

II. RELATED WORK:
 In e-commerce, the real time data service quality is

mainly determined by both networks and data transfer rate

between disks. The quality of service is mainly depending

on the whole data that contain embedded objects. All the

existing techniques, measure service quality with respect to

a single packet in networks [11], [13], [15] or an individual
request [7], [9], [12], [17], [21] or connection [20], [22],

[24] in Web servers. C. Dovrolis [15], proposed a technique

to provide different QoS levels between multiple

aggregated traffic classes within a network. T.F.

 Abdelzaher [7], bound the server-side delay of

individual client request. This algorithm mainly focuses on

providing differentiated services to different client classes

using priority-based scheduling [14], [16]. The aim of the

algorithm is to provide better services to the premium class

than to the basic class by adjusting the priority of the

allocated processes between the classes on either user level
or kernel level. Existing techniques are not providing any

guarantee to QoS. To overcome this problem authors

proposed queuing-theoretic approaches. It is well known

that the delay upper bound in a G/G/1 is determined by the

Reducing Real Time Service Delays Using Map reduce Frame Work

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.5, Sep-Oct. 2012 pp-3743-3746 ISSN: 2249-6645

www.ijmer.com 3744 | Page

system load and the variance of user’s requests inter arrival

and service time distributions. B. Urgaonkar [24] proposed

an approach in which the resource allocation is controlled

to adjust the load of a class so that the delay equals the
upper bound and the performance of the approach is highly

depend on the variance estimation, which is very difficult to

measure accurately in the dynamic workload cases.

Traditional linear feedback control is used to control the

resource allocation in Web servers [7], [21]. Because the

behavior of a Web server changes continuously, the

performance of the linear feedback control is limited.

 To overcome the problem of lack of accurate

server model A. Kamra and M. Karlsson [17, 18] the

parameters of the controllers were adjusted based on the

workload. V. Sundaram [23] presented an approach where

the resource allocation was controlled based on the past
allocations of delivered service quality. All these

approaches provide better performance than nonadaptive

linear feedback control approaches under dynamic

workload situations. Later B. Li [19] presented a fuzzy

control model to address the nonlinear QoS requirements of

different multimedia applications under different resource

constraints. In [11], author proposed a set of rules to

dynamically adjust the target delay ratios between various

traffic flows to reduce the effect of bursty traffic in the

basic class on the delay of the premium class.

III. PROPOSED SOLUTION:

Fig 1: Proposed architecture

 Figure 1 shows the proposed architecture of the

database system. In this architecture we added the Map

Reduce to the Chronos architecture [29] to provide better

QoS in real time data services. It has database backlog

estimator, admission controller, traffic smoother, feedback

controller, MapReduce and a database server block. The

feedback controller is designed based on either linear
control theory or fuzzy logic control. The database server

processes service requests and updates stock prices

periodically received from the stock quote server to provide

the updated stock prices. We consider periodic temporal

updates that are commonly used in RTDBs for data

temporal consistency [30] and a fixed time interval is

selected for updating each stock price in a range [0.2 s, 5 s].

 A periodic temporal updates are rarely considered

in RTDBs due to the difficulties for defining and

maintaining the notion of temporal consistency, backlog

estimation for periodic updates and estimating the database

backlog to service user data service requests. The dedicated

update threads are scheduled in a separate queue ahead of
user requests and they have to wait for next available

threads. High priority is assigned to temporal data updates

to provide data freshness. Map Reduce process large

amount of data in a parallel way and it has two functions

map and reduce. In the map stage passes the data over the

input file and outputs (key, value) pairs, the shuffling stage

transfers the mappers output to the reducers based on the

key and finally the reducer processes the received pairs and

outputs the final result.

Fig 2: Block diagram of MapReduce

IV. MAPREDUCE:
 Map Reduce framework process large amount of

data in a parallel way and it is gaining lot of interest in data

mining, because the programmer is abstracted to the data

storage, distribution, replication, load balancing and it uses

functional programming. It has two functions map and

reduce. In the map stage passes the data over the input file

and outputs (key, value) pairs, the shuffling stage transfers
the mappers output to the reducers based on the key and

finally the reducer processes the received pairs and outputs

the final result. Map Reduce is a useful tool for large

amount of data analysis because of its scalability, simplicity

and low cost to build large clouds of computers.

1.1. Programming Model

 The Map Reduce takes a set of input key/value

pairs and produces a set of output key/value pairs. It has

two functions Map and Reduce. Map function written by

the user takes an input pair and produces a set of

intermediate key/value pairs. The MapReduce library
groups all intermediate values with same intermediate key

and passes them to the Reduce function. Further Reduce

function written by the user accepts an intermediate key and

a set of values for that key. It merges together these values

to form a possibly smaller set of values and zero or one

output value is produced per Reduce invocation. Using an

iterator the intermediate values are supplied to the reduce

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.5, Sep-Oct. 2012 pp-3743-3746 ISSN: 2249-6645

www.ijmer.com 3745 | Page

function which allows to handle large values to fit into the

memory.

1.2. Example

Consider the problem of counting the number of
occurrences of each word in a large collection of

documents. The user would write code similar to the

following pseudo-code:

map(String key, String value):

// key: document name

// value: document contents

for each word k in value:

EmitIntermediate(k, "1");

reduce(String key, Iterator values):

// key: a word
// values: a list of counts

int res = 0;

for each j in values:

res += ParseInt(v);

Emit(AsString(res));

The map function ejects each word plus an associated count

of occurrences. The reduce function adds all counts ejected

for a particular word.

1.3. Types

 The map and reduce functions called by the user have
associated types:

 map (k1,v1) = list(k2,v2)

 reduce (k2,list(v2)) = list(v2)

 The input keys and values are drawn from a

different domain than the output keys and value and the

intermediate keys and values are from the same domain as

the output keys and values.

 The main problem in MapReduce for clustering

very large datasets is how to minimize the I/O cost and how

to minimize the network cost among processing nodes. To
overcome these problems we used the ParC (Parallel

Clustering) and SnI (Sample-and-Ignore) method. The ParC

[27] algorithm partition the input data and assign each

partition to an individual system then each system group the

data partition in to a cluster, named as β- clusters, and

finally merge the β-clusters to get the final clusters. This

algorithm reads the dataset once to minimize disk access

which is the common way used by serial algorithms to

decrease the computational costs. But it does not discuss

how to minimize the network traffic [28]. To address this

problem we used SnI method, it samples the input data and
creates an initial set of clusters and later the input data is

filtered to include unclassified elements. Finally the clusters

found by the reducers are merged with the clusters from the

sampling phase using the same merging strategies used in

ParC.

V. EXPERIMENTAL SETUP:
 To evaluate the performance of the proposed

algorithm, we use three machines each of them is same

configuration such as the dual core 1.6GHz CPU and 1GB
memory with Linux operating system. A Chronos server,

clients and a stock quote server run on each of them,

respectively.

 For 80% of time, a client issues a query about

stock prices. In the remaining time client requests a
portfolio browsing, purchase or sale transaction at a time.

Most data service requests in e-commerce are queries. At

the beginning of the experiment, the inter-request time

(IRT) is randomly distributed in [3s, 4s]. At 200s, the range

of the IRT is suddenly reduced to model heavy workload

changes, and stays in the new range until the end of the

experiment at 500s.

 For performance comparisons, we consider three

approaches shown in Table 1. Open is the basic Berkeley

DB [26] without any control facility. AC model control the

incoming transactions in proportion to the service delay

error under overload. FC-Q finds the relation between the
queue size and response time, similar to [25].

Table 1: Tested Approaches

OPEN Pure Berkeley

AC Ad-hoc admission control

FC-Q Feedback control (FC)

MapReduce MapReduce control

Fig 3: Average Service Delay

Fig 4: Number of Data processed

Fig 5: Number of Data processed

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.5, Sep-Oct. 2012 pp-3743-3746 ISSN: 2249-6645

www.ijmer.com 3746 | Page

VI. CONCLUSION:
 Real time data services has to provide better QoS

parameters because end users may ignore the service when

the database service delay is high and temporally

inconsistent data is available. Due to dynamic workloads

providing better QoS in data services is a challenging issue.

In this paper to overcome this problem we are using map-

reduce framework to estimate the real time service delays.

MapReduce framework process large amount of data in a

parallel way. It is gaining lot of interest in data mining,

because the programmer is abstracted to the data storage,

distribution, replication, load balancing and it uses
functional programming. It has two functions map and

reduce. Experimental results relived that our proposed

approach support the desired average/transient data service

delay and it provided better QoS parameters. It improved

the service delay and throughput compared to other

appraoches.

REFERENCES:
[1] D. Wu, Y.T. Hou, W.Z.Y.-Q. Zhang, and J.M. Peha,

“Streaming Video over the Internet: Approaches and
Directions,” IEEE Trans. Circuits and Systems for Video
Technology, vol. 11, no. 3, pp. 282-300,

 Mar. 2001.
[2] S.-Y. Choi and A.B. Whinston, “The Future of e-

Commerce: Integrate and Customize,” Computer, vol. 32,
no. 1, pp. 133-134, Jan. 1999.

[3] J.W.S. Liu, W.-K. Shih, K.-J. Lin, R. Bettati, and J.-Y.
Chung, “Imprecise Computations,” Proc. IEEE, vol. 82, Jan.
1994.

[4] S. Zilberstein and S.J. Russell, “Optimal Composition of
Real-Time Systems,” Artificial Intelligence, vol. 82, nos. 1-
2, pp. 181-213, 1996.

[5] X. Chen and A.M. K. Cheng, “An Imprecise Algorithm for
Real-Time Compressed Image and Video Transmission,”

Proc. Int’l Conf. Computer Comm. and Networks (ICCCN),
1997.

[6] M. Yannakakis, “Perspectives on Database Theory,” Proc.
Ann. Symp. Foundations of Computer Science, 1995.

[7] T.F. Abdelzaher, K.G. Shin, and N. Bhatti, “Performance
Guarantees for Web Server End-Systems: A Control-
Theoretical Approach,” IEEE Trans. Parallel and
Distributed Systems, vol. 13, no. 1, pp. 80-96, Jan. 2002.

[8] M. Arlitt and T. Jin, “A Workload Characterization Study of

the 1998 World Cup Web Site,” IEEE Network, vol. 14, no.
3, pp. 30-37,May-June 2000.

[9] N. Bhatti and R. Friedrich, “Web Server Support for Tiered
Services,” IEEE Network, vol. 13, no. 5, pp. 64-71, 1999.

[10] P. Bhoj, S. Ramanathan, and S. Singhal, “Web2K: Bringing
QoS to Web Servers,” Technical Report HPL-2000-61, HP
Laboratories,May 2000.

[11] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W.

Weiss,“An Architecture for Differentiated Services,” IETF,
RFC 2475, Dec. 1998.

[12] J.M. Blanquer, A. Batchelli, K. Schauser, and R. Wolski,
“Quorum: Flexible Quality of Service for Internet Services,”
Proc. Symp. Networked Systems Design and
Implementation, 2005.

[13] R. Braden, D. Clark, and S. Shenker, “Integrated Services in
the Internet Architecture: An Overview,” RFC 1633, June

1994.
[14] J. Almeida, M. Dabu, A. Manikutty, and P. Cao, “Providing

Differentiated Levels of Service in Web Content Hosting,”

Proc. ACM SIGMETRICS Workshop Internet Server
Performance, pp. 91- 102, 1998.

[15] C. Dovrolis, D. Stiliadis, and P. Ramanathan, “Proportional
Differentiated Services: Delay Differentiation and Packet
Scheduling,” IEEE/ACM Trans. Networking, vol. 10, no. 1,
pp. 12-26, 2002.

[16] L. Eggert and J. Heidemann, “Application-Level
Differentiated Services for Web Servers,” World Wide Web
J., vol. 2, no. 3, pp. 133-142, 1999.

[17] A. Kamra, V. Misra, and E. Nahum, “Yaksha: A Self
Tuning Controller for Managing the Performance of 3-
Tiered Websites,”Proc. Int’l Workshop Quality of Service,
pp. 47-56, 2004.

[18] M. Karlsson, C. Karamanolis, and X. Zhu, “Triage:

Performance Isolation and Differentiation for Storage
Systems,” Proc. Int’l Workshop Quality of Service, pp. 67-
76, 2004.

[19] B. Li and K. Nahrstedt, “A Control-Based Middleware
Framework for Quality of Service Adaptations,” IEEE J.
Selected Areas in Comm., vol. 17, no. 9, pp. 1632-1650,
Sept. 1999.

[20] Y. Lu, T.F. Abdelzaher, C. Lu, L. Sha, and X. Liu,
“Feedback Control with Queueing-Theoretic Prediction for

Relative Delay Guarantees in Web Servers,” Proc. IEEE
Real-Time and Embedded Technology and Applications
Symp., pp. 208-217, May 2003.

[21] P. Pradhan, R. Tewari, S. Sahu, A. Chandra, and P. Shenoy,
“An Observation-Based Approach towards Self-Managing
Web Servers,” Proc. Int’l Workshop Quality of Service,
2002.

[22] L. Sha, X. Liu, Y. Lu, T.F. Abdelzaher, “Queueing Model

Based Network Server Performance Control,” Proc. IEEE
Real-Time Systems Symp., pp. 81-90, 2002.

[23] V. Sundaram and P. Shenoy, “A Practical Learning-Based
Approach for Dynamic Storage Bandwidth Allocation,”
Proc. Int’l Workshop Quality of Service, 2003.

[24] B. Urgaonkar, P. Shenoy, “Cataclysm: Handling Extreme
Overloads in Internet Applications,” Proc. Int’l World Wide
Web Conf., May 2005.

[25] K.D. Kang, J. Oh, and S.H. Son, “Chronos: Feedback
Control of a Real Database System Performance,”IEEE
Real-TimeSystems Symp., 2007.

[26] “Oracle Berkeley DB Product Family,”
http://www.oracle.com/database/berkeleydb/index.html.
2010.

[27] Jianbin Wei, and Cheng-Zhong Xu, “eQoS: Provisioning of
Client-Perceived End-to-End QoS Guarantees in Web

Servers”, IEEE Transactions On Computers, Vol. 55, No.
12, December 2006.

[28] Mehdi Amirijoo, Jorgen Hansson, and Sang Hyuk Son,
“Specification and Management of QoS in

Real-Time Databases Supporting Imprecise Computations”, IEEE
Transactions on Computers, Vol. 55, No. 3, March 2006.

[29] Kyoung-Don Kang, Yan Zhou, and Jisu Oh, “Estimating
and Enhancing Real-Time Data Service Delays: Control-
Theoretic Approaches” IEEE Transactions On Knowledge

And Data Engineering, Vol. 23, No. 4, April 2011.

