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Abstract: This paper proposes an unsupervised vehicle’s 

tracking and recognition methods for urban Traffic 

surveillance in a distributed cooperative manner. Vehicle’s 

matching in a multi-camera surveillance system is a 

fundamental issue for increasing the accuracy of 
recognition. In intelligent transportation systems (ITS), 

especially in field of urban traffic management, 

intersections monitoring is one of the critical and 

challenging tasks. In multi-camera traffic surveillance 

system, videos have different characteristics such as pose, 

scale and illumination. Therefore it is necessary to use a 

hybrid scheme of scale invariant feature transform (SIFT) to 

detection and recognition vehicle’s behavior in multi view 

more accurately and conveniently. The main focus of this 

paper is to analyze activities at intersection by a distributed 

cooperative system for tracking and recognition vehicles to 

extract traffic flows which assists in regulating traffic lights 
for using in smart cameras. Extracting the trajectories help 

to detect abnormal behavior which may be occluded in 

single- camera surveillance. Distributed cooperative’s 

fundamental purpose is to efficiently reduce the 

transmission rate and also analyze an intersection scene 

and report statics and information of interest. 

 
Keywords:  Distributed system, Intersection monitoring, 

Multi-camera surveillance, Vehicle’s behaviour learning, 
urban traffic management. 

I. INTRODUCTION 
Video surveillance is widely employed in commercial 

applications and public transportation for purposes of 

statistics gathering, processing and traffic flow monitoring. 

The number of cameras and complexity of surveillance 

systems have been continuously increasing to have better 

coverage and accuracy. Tracking and behavior recognition 

are two fundamental tasks in this regard. Multi-camera 
systems become increasingly attractive in machine vision.     

Applications include multi view object tracking, event 

detection, occlusion handling and etc. For many 

applications, there may be constraints of transmission 

bandwidth and complexity in analyzing a huge amount of 

data centrally. In intelligent transportation systems (ITS), 

the convenient conditions are aroused from autonomous 

agents making decisions in a decentralized manner. In this 

paper, we develop method for tracking and recognition by a 

traffic video surveillance system of two distributed cameras 

with a partially overlapping field of view. We show how to  
develop methods for tracking and recognition in a system 

where processing and decision is distributed across the 

cameras.  

This paper is organized as follows: an overview of 

the past works in section2. Our proposed architecture and 

algorithm is presented in section3. Results of subjective 

evaluations and objective performance measurements with 

respect to Ground-truth are presented in section4. Section5 

contains the conclusion.   

II. PAST WORKS ON MULTI-CAMERA 

SURVEILLANCE 
Features’ matching between multiple images of a scene is 

an important component of many computer vision tasks. In 

the last few years, a lot of works in detecting, describing 

and matching feature points has deployed. Although the 

correspondences can be hand selected, such a procedure is 

hardly conceivable as the number of cameras increases or 

when the camera configuration changes frequently, as in a 
network of pan-tilt-zoom cameras [1]. Other methods for 

finding correspondences across cameras [2] have been 

developed through a feature detection method such as the 

Harris corner detection method [3] or scale invariant feature 

transform (SIFT) [4]. In [5] shown that corners were 

efficient for tracking and estimating structure from motion.  

A corner detector is robust to  changes in rotation and 

intensity but is very sensitive to  changes in scale. The 

Harris detector finds points where the local image geometry 

has high curvature in the direction  of both maximal and 

minimal curvature, as provided  by the eigen-values of the 
Hessian matrix. They develop an  efficient method for 

determining the relative magnitude of  the eigen-values 

without explicitly computing them. Such color-based 

matching methods have also been used to track moving 

objects across cameras [6, 7]. Scale invariant features 

matching were first proposed in [8] and attracted the 

attention of the computer vision systems for invariant to 

scale, rotation, and view-point variations. Also uses a scale-

invariant detector in the difference of Gaussian (DOG) 

scale space. In [4] fits a quadratic to the local scale-space 

neighborhood to improve accuracy. He then creates a Scale 

Invariant Feature  Transform (SIFT) descriptor to match 
key-points using a Euclidean distance metric in an efficient 

best-bin first algorithm where a match is rejected if the ratio 

of the  best and second best matches is greater than a 

threshold. 

A comparative study of many local image 

descriptors [9] shows the superiority of SIFT with respect 

to other feature descriptors for the case of several local 

transformations. In [10]  develop a scale-invariant Harris 

detector that keeps key points at each scale only if it’s a 

maximum in the Laplacian scale-space [11]. More recently, 

in [12] integrate edge-based features with  local feature-
based recognition using a structure similar to shape contexts 

[13] for general object-class recognition. In [14] propose a 

matching technique based on the Harris corner detector and 

a description based on the Fourier transform to achieve 

invariance to rotation. Harris corners are also used in [15], 

where rotation invariance is obtained by a hierarchal 
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sampling that starts from the direction of the gradient. In 

[16] introduce the concept of maximally stable external 

region to be used for robust matching. These regions are 
connected components of pixels which are brighter or 

darker than pixels on the region’s contour; they are 

invariant to affine and perspective transform, and to 

monotonic transformation of image intensities. Among the 

many recent works populating the literature on key-point 

detection, it is worth mentioning the scale and affine 

invariant interesting points recently proposed in [17], as 

they appear to be among the most promising key-point 

detectors to date. The detection algorithm can be sketched 

as follows: first Harris corners are detected at multiple 

scales, and then points at which a local measure of variation 
is maximal over scale are selected. This provides a set of 

distinctive points at the appropriate scale. Finally, an 

iterative algorithm modifies location, scale, and 

neighborhood of each point and converges to affine 

invariant points. In [18] describe a matching procedure 

wherein motion trajectories of objects tracked in different 

cameras are matched so that the overall ground plane can be 

aligned across cameras following a homograph 

transformation. A similar approach has been proposed in 

[19-21] which again motion tracks are matched together. 

However, although  use scene dynamics to find matches, 
unlike our method, these methods first need to solve the 

problems of single camera tracking and data association 

across cameras, which is difficult in highly cluttered scenes 

or when moving objects occlude each other. 

III. PROPOSED ARCHITECTURE AND ALGORITHM 
First, we review the function of a typical single-camera and 

multi-camera surveillance system as presented in our 

previous work. At that work, as mentioned below the 

system was centralized. Next, the architecture and 

algorithm of distributed cooperative system is presented. 

A. Single-camera and multi-camera surveillance 

functionality 

As presented in our previous work [22], the function of a 

typical single-camera surveillance system is illustrated in 

Fig.1. The first part of the processing flowchart is very 

general, which is marked “Detecting & Matching Features 

Extraction Pipeline”. This pipeline may produce all target 

information (pose, scale, illumination, color, shape, etc.), 

and potentially the description of the scene. The end of the 
processing pipeline, the vehicle tracking and classification 

is done.  

 

Only the matching features have to be stored, instead of 

high quality video suitable for automated processing. This 

method enables the multi-camera surveillance system. The 
video surveillance system, as described in the above, cannot 

provide an adequate solution for many applications, Such as 

urban traffic management with all its associated limitations 

[23-27]. A multi-camera surveillance system tracking 

targets from one camera to the next can overcome all these 

limitations. A typical multi-camera surveillance system is 

illustrated in Fig.2. Fusing at the matching features level 

requires merging all the features from the cameras on to a 

full representation of the environment. This approach 

distributes the most time consuming processing between the 

different cameras, and minimizes communication, since 
only the extracted features needs to be transmitted, no video 

or image. Given these advantages, system communicates 

only the matching features for fusion.  

 
B. Proposed architecture and algorithm for distributed 

cooperative system 
The problem of multi  view activity recognition has been 

addressed  in many papers, but almost the information  of 

multiple views is fused centrally. Our proposed framework 

is  decentralized. The pose of cameras at intersection is 

shown in Fig.3. In Fig.4, the structure of distributing levels 

is illustrated. 

 

Figure3. Camera setup of cooperative system 

Each of the cameras has processing cores in four levels 

which is described in the flowchart in Fig.4. The input 

stream is fed to detection level. At the decision level, 

control commands are issued to classify the detected 
vehicles based on extracted description features. Processing 

cores in three upper levels exchange the requisite 

information to track and recognition more accurately.  

Overlapping 

field of view 
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Figure4. Cooperative Levels in proposed distributed system 

The principle features of our scheme are summarized in the 

following: 

Communication Efficiency: distributed cooperative 

system is particularly well-suited for low bandwidth; 

therefore the requirement processing is done locally. 

Unsupervised: The method does not require the pre-

calibration into the scene and, hence, can be used in traffic 

scenes where the system administrator may not have control 

over the activities taking place. 

The SIFT (Scale Invariant Feature Transform) [4] has been 

shown to perform better than other local descriptors [9]. 

Given a feature point, the SIFT descriptor computes the 

gradient vector for each pixel in the feature point’s 

neighborhood and builds a normalized histogram of 

gradient directions.  The SIFT descriptor creates a 16×16 

neighborhood that is partitioned into 16 sub-regions of 4×4 

pixels each. For each pixel within a sub-region, SIFT adds 
the pixel’s gradient vector to a histogram of gradient 

directions by quantizing each orientation to one of 8 

directions and weighting the contribution of each vector by 

its magnitude. Each gradient direction is further weighted 

by a Gaussian of scale σ = n/2 where n is the neighborhood 

size and the values are distributed to neighboring bins using 

interpolation to reduce boundary effects as samples move 

between positions and orientations. Fig.5 shows the 

matching results using SIFT created for a corresponding 

pair of points in two intersection scenes. 

 

(a) 

 

(b) 

Figure5. Three different intersection scenes,                           

(matching results using SIFT(  

IV. EXPERIMENTAL RESULTS 
Here it is shown that SIFT lead to excellent performances 

compared to other existing approaches. As explained, SIFT 

description is computed as follows: once a key-point is 

located and its scale has been estimated, one or more 

orientations are assigned to it based on local image gradient 
direction around the key-point. Then, image gradient 

magnitude and orientation are sampled around the key-

point, using the scale of the key-point to select the level of 

Gaussian blur. The gradient orientations obtained are 

rotated with respect to the key-point orientation previously 

computed. Finally, the area around the key-point is divided 

in sub-regions, each of which is associated an orientations 

histogram weighted with the magnitude. We have 

experimented with various feature detectors including the 

Harris corner detector (HCD), curvilinear structure detector 

(CSD), and difference of Gaussian (DoG) scale space. In 
Fig.6, the experimental result contain the comparison of 

these methods is shown.  

 

Figure6. Efficiency comparison in intersection traffic 

scenes 

 In table1 counting and classification results are presented. 

As shown, the overall accuracy is about 91% for using 

DOG detector in counting cars and about 90% for Bus and 

Trucks. This system can be as an input to calibration system 

in multi-camera surveillance system.  

Table1. Counting and classification results 
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V. CONCLUSION 
In this paper we considered the problem of features 

matching in a  distributed cooperative system with 

overlapping fields of view. We showed that suing SIFT 

point descriptors in a distributed cooperative surveillance 

system can improves the performance with respect to the 

other calibration systems. In particular it returned good 

results for scale changes, severe zoom and image plane 

rotations, and large view-point variations. These 

conclusions are supported by an extensive experimental 

evaluation, on different traffic scenes in urban traffic. 

Therefore, tracking and recognition using SIFT becomes 
feasible. This should result in highly robust trackers.  
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