
International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.6, Nov-Dec. 2012 pp-4497-4501 ISSN: 2249-6645

www.ijmer.com 4497 | Page

Kishore Kumar Reddy
1
, M M M K Varma

2

1(M.Tech, Department of CSE, Sri Sivani College of Engineering, Andhra Pradesh, India
2 (Assistant Professor, Department of CSE, Sri Sivani College of Engineering, Andhra Pradesh, India

Abstract : Database systems are being increasingly used for

interactive and exploratory data retrieval. In such retrieval

queries often cause in too many answers, this phenomenon is

referred as “information overload”. In this paper, we

proposed a solution which can automatically categorize the

results of SQL queries to address this problem. The proposed
solution dynamically generate a labeled hierarchical

category structure where users can determine whether a

category is relevant or not by checking its label and can

explore the relevant categories and ignore other categories

to reduce information overload. In the proposed solution, an

analytical model is designed to estimate information

overload faced by a user for a given exploration. Based on

the model, we formulate the categorization problem as a cost

optimization problem and develop heuristic algorithms to

calculate the min-cost categorization.

Keywords: Data Mining, Information Overload,
Categorization, Ranking, Discretization

I. Introduction
 Database systems are being increasingly used for

interactive and exploratory data retrieval [1, 2, 8, 14]. In

such retrieval, queries often result in too many answers. Not
all the retrieved items are relevant to the user, only a few

result set is relevant to the user. Unfortunately, user needs to

check all the retrieved items to find relevant information

need to the user query. This phenomenon is commonly

referred to as “information overload”. Consider a scenario,

real-estate database that maintains information like the

location, price, number of bedrooms etc. of each house

available for sale. Suppose that a potential buyer is looking

for homes in the Seattle/Bellevue Area of Washington, USA

in the $200,000 to $300,000 price range. The above query,

henceforth referred to as the “Homes” query, returns 6,045

homes when executed on the MSN House&Home home
listing database. Information overload makes it difficult for

the user to differentiate the interesting and uninteresting

items, which leads to a huge wastage of user‟s time and

effort. Information overload can happen when the user is not

certain about the query. In such a situation, user can pose a

broad query in the beginning to avoid exclusion of

potentially interesting results. For example, a user shopping

for a home is often not sure of the exact neighbourhood she

wants or the exact price range or the exact square footage at

the beginning of the query. Such broad queries may also

occur when the user is naïve and refrains from using
advanced search features [8]. Finally, information overload

is inherent when users are interested in browsing through a

set of items instead of searching among them.

 In the context internet text search, there has been

two canonical ways to avoid information overload. First,

they group the search results into separate categories. Each

category is assigned a descriptive label examining which the

user can determine whether the category is relevant or not.

Then user can visit the relevant categories and ignore the

remaining ones. Second, they present the answers to the

queries in a ranked order. Thus, categorization and ranking

present two complementary techniques to manage

information overload. After browsing the categorization

hierarchy and/or examining the ranked results, users often

reformulate the query into a more focused narrower query.
 Therefore, categorization and ranking are indirectly

useful even for subsequent reformulation of the queries.

 In contrast to the internet text search, categorization

and ranking of query results have received much less

attention in the database field. Recently ranking of query

results has gained some attention. But all the existing

methods have not critically examined the use of

categorization of query results in a relational database.

Hence in this paper, categorization of database query results

presents some unique challenges that are not addressed in

various search engines/web directories. In all the existing
search engines, the category structures are created a priori

and the items are tagged in advance as well. At search time,

the search results are integrated with the pre-defined

category structure by simply placing each search result under

the category it was assigned during the tagging process.

Since such categorization is independent of the query, the

distribution of items in the categories is susceptible to skew:

some groups can have a very large number of items and

some very few.

 For example, a search on „databases‟ on

Amazon.com yields around 34,000 matches out of which
32,580 are under the “books” category. These 32,580 items

are not categorized any further (can be sorted based on price

or publication date or customer rating) and the user is forced

to go through the long list to find the relevant items. This

defeats the purpose of categorization as it retains the

problem of information overload. In this paper, we propose

techniques to automatically categorize the results of SQL

queries on a relational database in order to reduce

information overload. Unlike the “a priori” categorization

techniques described above, we generate a labelled

hierarchical category structure automatically based on the

contents of the tuples in the answer set. Since our category
structure is generated at query time and hence tailored to the

result set of the query at hand, it does not suffer from the

problems of a priori categorization discussed above.

 This paper discusses how such categorization

structures can be generated on the fly to best reduce the

information overload. We begin by identifying the space of

categorizations and develop an understanding of the

exploration models that the user may follow in navigating

the hierarchies. Such understanding helps us compare and

contrast the relative goodness of the alternatives for

A Heuristic Algorithm to Reduce Information Overhead Based On

Hierarchical Category Structure

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.6, Nov-Dec. 2012 pp-4497-4501 ISSN: 2249-6645

www.ijmer.com 4498 | Page

categorization. This leads to an analytical cost model that

captures the goodness of a categorization. Such a cost model

is driven by the aggregate knowledge of user behaviours that

can be gleaned from the workload experienced on the
system. Finally, we show that we can efficiently search the

space of categorizations to find a good categorization using

the analytical cost models. Our solution is general and

presents a domain-independent approach to addressing the

information overload problem. We perform extensive

experiments to evaluate our cost models as well as our

categorization algorithm.

 The rest of the paper is organized as section 2:

discuss about the related work, section 3: discuss about

basics of categorization section 4: presents the Proposed

Solution, section 5: discuss about cost model, section 6:

categorization algorithm, section 7: discuss about
Experimental setup, section 8: concludes the paper.

II. Related Work
OLAP and Data Visualization: Our work on categorization

is related to OLAP as both involve presenting a hierarchical,

aggregated view of data to the user and allow to drilldown/

roll-up the categories [13]. However, in OLAP, the user

needs to manually specify the grouping attributes and

grouping functions [13] in our work, those are determined
automatically. Information visualization deals with visual

ways to present information [6]. It can be thought as a step

after categorization to the further reduce information

overload: given the category structure proposed in this paper,

we can use visualization techniques visually display the tree

[6].

Data Mining: The space in which the clusters are discovered

is usually provided there whereas, in categorization, we need

to find that space. Second, existing clustering algorithms

deal with either exclusively categorical [11] or exclusively
numeric spaces [17] in categorization, the space usually

involves both categorical and numeric attributes. Third, the

optimization criteria are different while it is minimizing

inter-cluster distance in clustering to decrease information

overload. Our work differs from classification where the

categories are already given their along with a training

database of labelled tuples and we need predict the label of

future, unlabeled tuples [12].

Discretization/Histograms: The discretization assumes that

there is a class assigned to each numeric value and uses the

entropy minimization heuristic [10]. On the other hand, the
histogram bucket selection is based on minimization of

errors in result size estimation [5, 15].

Ranking: Ranked retrieval has traditionally been used in

Information Retrieval in the context of keyword searches

over text/unstructured data [3] but has been proposed in the

context of relational databases recently [2,4,14]. Ranking is a

powerful technique for reducing information overload and

can be used effectively in complement with categorization.

Although categorization has been studied extensively in the

text domain [9, 16] to the best of our knowledge, this is the
first proposal for automatic categorization in the context of

relational databases.

III. Basics of Categorization
Space of Categorizations
 Let R be a set of tuples. R can either be a base

relation or a materialized view or it can be the result of a

query Q. We assume that R does not contain any aggregated

or derived attributes, i.e., Q does not contain any GROUP

BYs or attribute derivations (Q is a SPJ query). A

hierarchical categorization of R is a recursive partitioning of

the tuples in R based on the data attributes and their values.

We define a valid hierarchical categorization T of R

inductively as follows.

Base Case: Given the root or “ALL” node (level 0) which
contains all the tuples in R, we partition the tuples in R into

an ordered list of mutually disjoint categories (level 1

nodes2) using a single attribute.

Inductive Step: Given a node C at level (l-1), we partition

the set of tuples tset(C) contained in C into an ordered list of

mutually disjoint subcategories (level l nodes) using a single

attribute which is same for all nodes at level (l-1). We

partition a node C only if C contains more than a certain

number of tuples. The attribute used is referred to as the

categorizing attribute of the level l nodes and the

subcategorizing attribute of the level (l-1) nodes.
Furthermore, once an attribute is used as a categorizing

attribute at any level, it is not repeated at a later level, i.e.,

there is a 1:1 association between each level of T and the

corresponding categorizing attribute. We impose the above

constraints to ensure that the categorization is simple,

intuitive and easily understandable to the user.

Associated with each node C is a category label and a tuple-

set as defined below:

Category Label: The predicate label(C) describing node C.

For example, the first child of root (rendered at the top) has
label „Neighbourhood ∈ {Redmond, Bellevue}‟ while the

first child of the above category has label „Price: 200K–

225K‟.

Tuple-Set: The set of tuples tset(C) (called the tuple-set of

C) contained in C either appearing directly under C (if C is a

leaf node) or under its subcategories (if C is a non-leaf

node). Formally, tset(C) is the set of tuples, among the ones

contained in the parent of C, which satisfy the predicate

label(C). In other words, tset(C) is the subset of tuples in R

that satisfies the conjunction of category labels of all nodes

on the path from the root to C
 The label of a category unambiguously describes to

the user which tuples, among those in the tuple set of the

parent of C, appear under C. Hence, user can determine

whether C contains any item that is relevant or not by

looking just at the label and hence decide whether to explore

or ignore C.

IV. Proposed Model
 We present two models capturing two cases in data
exploration. One scenario is that the user explores the result

set R using the category tree T until finds relevant tuple t

∈R. For example, the user may want to find every home

relevant to her in the “Homes” query. In order to ensure that

user finds every relevant tuple and needs to examine every

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.6, Nov-Dec. 2012 pp-4497-4501 ISSN: 2249-6645

www.ijmer.com 4499 | Page

tuple and every category label except the ones that appear

under categories she deliberately decides to ignore. Another

scenario is that the user is interested in just one (or two or a

few) tuple(s) in R so she explores R using T till she finds
that one (or few) tuple(s). For example, a user may be

satisfied if she finds just one or two homes that are relevant

to her. For the purpose of modeling, we assume that, in this

case, the user is interested in just one tuple, i.e., the user

explores the result set until finds the first relevant tuple. We

consider these two cases because they both occur commonly

and they differ in their analytical models.

Exploration Model for ‘All’ case

Figure 1 describes the exploration model for all case the user

starts the exploration by exploring the root node. Given user

has decided to explore the node C, if C is a non-leaf node,
user non-deterministically chooses one of the two options

Option ‘SHOWTUPLES’: Browse through the tuples in

tset(C). Note that the user needs to examine all tuples in

tset(C) to make sure that she finds every tuple relevant to

her.

Option ‘SHOWCAT’: Examine the labels of all the n

subcategories of C, exploring the ones relevant to her and

ignoring the rest. More specifically, she examines the label

of each subcategory Ci starting from the first subcategory
and non-deterministically chooses to either explore it or

ignore it. If user chooses to ignore Ci, simply proceeds and

examines the next label (of Ci+1). If user chooses to explore

Ci, it does so recursively based on the same exploration

model, i.e., by choosing either „SHOWTUPLES‟ or

„SHOWCAT‟ if it is an internal node or by choosing

„SHOWTUPLES‟ if it is a leafnode. After she finishes the

exploration of Ci, user goes ahead and examines the label of

the next subcategory of C (of Ci+1). Note that we assume

that the user examines the subcategories in the order it

appears under C it can be from top to bottom or from left to

right depending on how the tree is rendered by the user
interface.

If C is a leaf node, „SHOWTUPLES‟ is the only option

(option „SHOWCAT‟ is not possible since a leaf node has no

subcategories).

Figure 1: Flow chart model of exploration of node C in

‘All’ case

Exploration Model for ‘One’ Scenario

The user starts the exploration by exploring the root node.

Given that the user has decided to explore a node C, user

non-deterministically choose one of the two options

Option ‘SHOWTUPLES’: Check the tuples in tset(C)

starting from the first tuple in tset(C) till user finds the first

relevant tuple. In this paper, we do not assume any particular

ordering/ranking when the tuples in tset(C) are presented to

the user.

Option ‘SHOWCAT’: Examine the labels of the

subcategories of C starting from the first subcategory till the

first one she finds interesting. As in the „ALL‟ case, user

checks the label of each subcategory Ci starting from the

first one and non-deterministically chooses to either explore

it or ignore it. If user chooses to ignore Ci, simply proceeds
and checks the next label. If user chooses to explore Ci, it

does so recursively based on the same exploration model.

We assume that when she drills down into Ci, user finds at

least one relevant tuple in tset (Ci); so, unlike in the „ALL‟

case, the user does not need to examine the labels of the

remaining subcategories of C.

V. Cost Estimation
 Since we want to generate the tree imposes the least
possible information overload on the user, we need to

estimate the information overload that a user will face during

an exploration using a given category T.

Cost Model for ‘ALL’ case

Let us first consider the „ALL‟ case. Given a user

exploration X using category tree T, we define information

overload cost, or simply cost (denoted by Cost All(X, T)), as

the total number of items examined by the user during X.

This definition is based on the assumption that the time spent

in finding the relevant tuples is proportional to the number of
items the user needs to examine more the number of items

user needs to examine, more the time wasted in finding the

relevant tuples, higher the information overload.

Cost Model for ‘ONE’ Scenario

The information overload cost CostOne (T) that a user will

face, on average during an exploration using a given

category tree T is the number of items that a user will need

to examine till user finds the first relevant tuple. Let us

consider the cost CostOne(C) of exploring the subtree rooted

at C given that the user has chosen to explore C, CostOne

(T) is simply CostOne (root). If the user goes for option
„SHOWTUPLES‟ for C and frac (C) denotes the fraction of

tuples in tset(C) that she needs to examine, on average,

before she finds the first relevant tuple, the cost, on average,

is frac(C)*|tset(C)|. If user goes for option „SHOWCAT‟, the

total cost is (K*i + CostOne (Ci)) if Ci is the first

subcategory of C explored by the user (since the user

examines only i labels and explores only Ci).

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.6, Nov-Dec. 2012 pp-4497-4501 ISSN: 2249-6645

www.ijmer.com 4500 | Page

VI. Categorization Algorithm
 Since we know how to compute the information
overload cost Cost All (T) of a given tree T, we can

enumerate all the permissible category trees on R, compute

their costs and pick the tree Topt with the minimum cost.

This enumerative algorithm will produce the cost-optimal

tree but could be prohibitively expensive as the number of

permissible categorizations may be extremely large.

 Hence we present our preliminary ideas to reduce

the search space of enumeration. First we present our

techniques in the context of 1-level categorization i.e., a root

node pointing to a set of mutually disjoint categories which

are not subcategorized any further.

Reducing the Choices of Categorizing Attribute

 Since the presence of a selection condition on an

attribute in a workload query reflects the user‟s interest in

that attribute, attributes that occur infrequently in the

workload can be discarded right away while searching for

the min-cost tree. Let A be the categorizing attribute chosen

for the 1-level categorization. If the occurrence count

NAttr(A) of A in the workload is low, the SHOWTUPLES

probability Pw(root) of the root node will be high. Since the

SHOWTUPLES cost of a tree is typically much higher than

its SHOWCAT cost and the choice of partitioning affects
only the SHOWCAT cost, a high SHOWTUPLES

probability implies that the cost of the resulting tree would

have a large first component (Pw(root)*|tset(root)|) which

would contribute to a higher total cost. Therefore, it is

reasonable to consider eliminating such low occurring

attributes without considering any of their partitioning.

 Specifically, we eliminate the uninteresting

attributes using the following simple heuristic: if an attribute

A occurs in less than a fraction x of the queries in the

workload, i.e., NAttr (A)/N < x, we eliminate A. The

threshold x will need to be specified by the system
designer/domain expert. For example, for the home

searching application, if we use x=0.4, only 6 attributes,

namely neighborhood, price, bedroomcount, bathcount,

property-type and square footage, are retained from among

53 attributes in the MSN House2Home dataset.

VII. Experimental Evaluation
 To evaluate the performance of the proposed model,

we present the results of an extensive empirical study we
have conducted to evaluate the accuracy of our cost models

in modeling information overload and evaluate our cost-

based categorization algorithm and compare it with

categorization techniques that do not consider such cost

models. Our experiments consist of a real-life user study as

well as a novel, large-scale, simulated, cross-validated user-

study. For both studies, our dataset comprises of a single

table called ListProperty which contains information about

real homes that are available for sale in the whole of United

States. The ListProperty contains 1.7 million rows (each row

is a home) and, in addition to other attributes, has the

following non-null attributes: location (neighborhood, city,
state, zip code), price, bedroomcount, bathcount, year-built,

property-type (whether it is a single family home or condo

etc.) and square-footage.

Accurate Cost Model: There is a strong positive correlation

between the estimated average exploration cost and actual

exploration cost for various users. This indicates that our

workload-based cost models can accurately model
information overload in real life.

Better Categorization Algorithm: Our cost-based

categorization algorithm produces significantly better

category trees compared to techniques that do not consider

such analytical models.

Table 1: Pearson’s Correlation between estimated cost

and actual cost

Subset Correlation

1 0.39

2 0.98

3 0.32

4 0.48

5 0.16

6 0.16

7 0.19

8 0.76

All 0.90

 To further confirm the strength of the positive

correlation between the estimated and actual costs, we

compute the Pearson Correlation Coefficient for each subset

separately as well as together in Table 1. The overall

correlation (0.9) indicates almost perfect linear relationship

while the subset correlations show either weak (between 0.2
and 0.6) or strong (between 0.6 and 1.0) positive correlation.

This shows that our cost models accurately model

information overload faced by users in real-life.

Figure 2: Correlation between actual cost and estimated

cost

Figure 3: Cost of various techniques

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.6, Nov-Dec. 2012 pp-4497-4501 ISSN: 2249-6645

www.ijmer.com 4501 | Page

 Figure 2 plots the estimated cost against the actual

cost for the 800 explorations. The plot along with the trend

line (best linear fit with intercept 0 is y = 1.1002x) shows

that the actual cost incurred by users has strong positive
correlation with the estimated average cost.

 Figure 3 compares the proposed technique with the

Attr-cost and No cost techniques based on the fractional cost

averaged over the queries in a subset.

VIII. Conclusion
 Database systems are being increasingly used for

interactive and exploratory data retrieval. In such retrieval

queries often cause in too many answers, this phenomenon is
referred as “information overload”. In this paper, we

proposed a solution which can automatically categorize the

results of SQL queries to address this problem. The proposed

solution dynamically generate a labeled hierarchical category

structure where users can determine whether a category is

relevant or not by checking its label and can explore the

relevant categories and ignore other categories to reduce

information overload. In the proposed solution, an analytical

model is designed to estimate information overload faced by

a user for a given exploration. Based on the model, we

formulate the categorization problem as a cost optimization

problem and develop heuristic algorithms to calculate the
min-cost categorization. Our proposed cost-based

categorization algorithm produces significant better category

trees compared to techniques that do not consider such cost-

models.

References
[1] S. Agrawal, S. Chaudhuri and G. Das. DBExplorer: A

System for Keyword Search over Relational Databases. In
Proceedings of ICDE Conference, 2002.

[2] S. Agrawal, S. Chaudhuri, G. Das and A. Gionis. Automated
Ranking of Database Query Results. In Proceedings of First
Biennial Conference on Innovative Data Systems Research
(CIDR), 2003.

[3] R. Baeza_yates and B. Ribiero-Neto, Modern Information
Retrieval, ACM Press, 1999.

[4] N. Bruno, L. Gravano and S. Chaudhuri, Top-k Selection

Queries over Relational Databases: Mapping Strategies and
Performance Evaluation. In ACM TODS, VO, 27, No. 2,
June 2002.

[5] N. Bruno, S. Chaudhuri and L. Gravano. STHoles: A

Multidimensional Workload-Aware Histogram. Proc. of
SIGMOD, 2001.

[6] S. Card, J. MacKinlay and B. Shneiderman. Readings in
Information Visualization: Using Vision to Think, Morgan
Kaufmann; 1st edition (1999).

[7] J. Chu-Carroll, J. Prager, Y. Ravin and C. Cesar, A Hybrid
Approach to Natural Language Web Search, In Proc. of
Conference on Empirical Methods in Natural Language

Processing, July 20
[8] S. Dar, G. Entin, S. Geva and E. Palmon, DTL‟s DataSpot:

Database Exploration Using Plain Language, In Proceedings
of VLDB Conference, 1998.

[9] S. Dumais, J. Platt, D. Heckerman and M. Sahami, Inductive
learning algorithms and representations for text
categorization, In Proc. Of CIKM Conference, 1998.

[10] U. Fayyad and K. Irani. Multi-Interval Discretization of
Continuous-Valued Attributes for Classification Learning.

Proc. of IJCAI, 1993.
[11] V. Ganti, J. Gehrke and R. Ramakrishnan. CACTUS -

Clustering Categorical Data Using Summaries. KDD, 1999.
[12] J. Gehrke, V. Ganti, R. Ramakrishnan, W. Loh.

BOATOptimistic Decision Tree Construction. Proc. of
SIGMOD, 1999.

[13] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart,
M. Venkatrao, F. Pellow and H. Pirahesh. Data Cube: A

Relational Aggregation Operator Generalizing Group-By,
Cross-Tab, and Sub-Totals. Journal of Data Mining and
Knowledge Discovery", Vol 1, No. 1, 1997.

[14] V. Hristidis and Y. Papakonstantinou, DISCOVER: Keyword
Search in Relational Databases, In Proc. of VLDB
Conference, 2002

[15] V. Poosala, Y. Ioannidis, P. Haas, E. Shekita. Improved
Histograms for Selectivity Estimation of Range Predicates.

Proc. of SIGMOD, 1996.
[16] F. Sebastiani, Machine learning in automated text

categorization, ACM Computing Surveys, Vol. 34, No. 1,
2002.

[17] T. Zhang, R. Ramakrishnan and M. Livny. BIRCH: an
efficient data clustering method for very large databases.
Proc. of ACM SIGMOD Conference, 1996.

