
International Journal of Modern Engineering Research (IJMER) 

www.ijmer.com              Vol.3, Issue.1, Jan-Feb. 2013 pp-231-239             ISSN: 2249-6645 

 

www.ijmer.com                                                                    231 | Page 

 

 
 

Selvam Avadayappan,
 1

   S. Kalaimathy,
 2   

G. Mahadevan
3
  

1, 2 Department of Mathematics, VHNSN College, Virudhunagar - 626001, India. 
3Department of Mathematics, Gandhi gram Rural University, Gandhi gram - 624302, India. 

 

Abstract: Let G (V, E) be a graph. A subset S of V is called a dominating set of G if every vertex in V-S is adjacent to at 

least one vertex in S. The domination number γ (G) is the minimum cardinality taken over all such dominating sets in G. A 

subset S of V is said to be a complementary connected dominating set (ccd-set) if S is a dominating set and < V-S > is 

connected. The chromatic number χ is the minimum number of colours required to colour all the vertices such that no two 

adjacent vertices receive the same colour. In this paper, we characterize the r - regular graphs with γcc = χ = 2 and the 3 - 

regular graphs with γcc = χ = 3. 
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I. INTRODUCTION 
Throughout this paper, by a graph we mean a finite, simple, connected and undirected graph G (V, E). The number 

of vertices in G is denoted by n. We denote a cycle on n vertices by Cn. Δ denotes the maximum degree in G. If S is a subset 
of V, then < S > denotes the induced subgraph of G induced by S. For any two subsets V1 and V2 of V, let E (V1, V2) denote 

the set of all edges with one end in V1 and the other in V2. The girth of G is the length of a shortest cycle in G if exists, 

otherwise it is infinite. The terms which are not defined here can be found in [3].  

 A subset S of V is called a dominating set of G if every vertex in V-S is adjacent to at least one vertex in S. The 

domination number γ(G) of G is the minimum number of vertices in a dominating set G. Various types of dominating set and 

domination number have been introduced and studied by several authors [1], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13] 

and [16]. Many graph theoretic parameters such as χ, α, β etc. have been compared and combined with γ (G). Paulraj Joseph 

and Arumugam discussed the relationship between domination number and connectivity in [14], as well as domination 

number and chromatic number in [15]. 

 T. Tamizhchelvam and B. Jayaprasad [17] have introduced the complementary connected domination number. A 

subset S of V is said to be a complementary connected dominating set (ccd-set) of  G if S is a dominating set and < V-S > is 
connected. The minimum cardinality of S is called the complementary connected domination number and is denoted by γcc.  

 For example, the graph H1 shown in Figure 1, has γcc = 3. Here S = {v2, v4, v7} is a γcc - set of H1. For the graph H2 

shown in Figure 1, γcc = 4 and S = {v1, v2, v3, v6} is a γcc - set of H2.  

   

       

   

           

 

 

  

                                 

 

 

H1                                                                                         H2 

Figure 1 

 

Note that a graph may have more than one γcc - set. For example, S1 = {v1, v4, v6} is also a γcc - set of H1.  

In [17], the following results have been obtained: 

1. For n > 3, γcc (Pn) = n - 2. 

2. For n ≥ 3, γcc (Cn) = n - 2. 

3. For n ≥ 1, γcc (K1, m) = m. 

4. For any graph G, γ (G) ≤ γcc (G) and the inequality is strict. 

For example, consider the graph G shown in Figure 2. Here γ (G) = 1 where as γcc (G) = 2. 
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Figure 2 

 

In fact, we can easily note that for any integer i ≥ 0, there exists a graph G with γcc(G) - γ(G) = i. 

5. If Pk (k ≥ 4) is a subgraph of the graph G, then γcc (G) ≤ n - 2. 

6. Let G be a graph with n ≥ 3. Then there exists a γcc - set S of G which contains all pendant vertices of G. 
7. If γcc(G) ≤ n - 2, then any γcc - set S of G contains all pendant vertices of G.  

8. For any connected graph G with n vertices and m edges, 









 1

n
 ≤  γcc  ≤  2m - n + 1.  

 Let Pk(m1, m2) where k ≥ 2 and m1, m2  ≥ 1 be the graph obtained by identifying the centers of the stars 
1

m,1
K and 

2
m,1

K at the ends of a path Pk respectively. The graph C3(m1, m2, 0) is obtained from C3 by identifying the centers of the 

stars 
1

m,1
K and 

2
m,1

K at any two vertices of C3 respectively. 

For example, the graphs P4(3, 2) and C3(4, 1, 0) are shown in Figure 3. 

 

 

 

 

 

 

 

       

 

 

 P4(3, 2)                                                            C3(4, 1, 0) 

Figure 3 

 
         In [2], S. Avadayappan and C.S. Senthilkumar have characterized the graphs with γcc = n - 2. More precisely, 

they have proved that for any graph G, γcc(G) = n - 2 if and only if G is isomorphic to any one of the following graphs: (i) 

Pk(m1, m2) where k ≥ 2, m1, m2  ≥ 1, (ii) Cn,    n ≥ 3, and (iii) C3(m1, m2, 0) where m1, m2 ≥ 0.    

 

II. Complementary Connected Domination Number 
         In this section, we characterize the graphs with γcc = χ = 2 and hence the r - regular graphs with γcc = χ = 2.  

Let G be a bipartite graph with bipartition (X, Y) where X = {u1, u2, …, um} and Y =  { v1,  v2, …, vn}. Then Gu,v is the graph 

obtained from G by adding two new vertices u and v and the new edges uvi ,1 ≤ i ≤ n; vuj, 1 ≤ j ≤ m. Take G
*

v,u  = Gu,v + uv. 

It is clear that Gu,v and  G
*

v,u  are bipartite graphs. 

For example, the graph G and the corresponding graphs Gu,v and G
*

v,u  are shown in Figure 4. 
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It is easy to note that for the graphs Gu,v and G
*

v,u , γcc = 2. In fact, the converse is also true which is proved in the next 

theorem. 

Theorem 1   Let G be a graph. Then γcc = χ = 2 if and only if G   Hu,v or H
*

v,u
 
for some connected bipartite graph H. 

Proof   Suppose γcc = χ = 2. Then G is a bipartite graph with bipartition, say, (X, Y). Let S = {u, v} be a γcc - set. Then 

clearly both u and v cannot be in the same partition. Now, consider the bipartite graph H = G – S. If u and v are not adjacent 

in G, then G  Hu,v. Otherwise, G   H
*

v,u . The converse part is obvious.  Hence the theorem.                                                                                                                                                                    

■ 

The next theorem shows that there are only two r - regular graphs for which γcc = χ = 2. 

 
Theorem 2   Let G be an r - regular graph. Then γcc = χ = 2 if and only if G  Kr, r or Kr+1, r+1-F. 

Proof   Let G be an r - regular graph on n vertices with γcc = χ = 2. 

Then 2 = γcc ≥ 









 1

n
 =










1r

n
. This implies n ≤ 2r + 2. But χ = 2 and hence G is a bipartite graph with bipartition (X, Y). 

Since G is r - regular, YX   and thus n = 2r or 2r + 2. If n = 2r, then clearly G  Kr,r. If n = 2r + 2, then 

1rYX  and so each vertex in X is not adjacent to exactly one vertex in Y and vice versa. Thus G Kr+1, r+1 - F. The 

converse part is trivial.                                                                                        ■ 

 

2. 2 - REGULAR AND 3 - REGULAR GRAPHS 

   Let G be a connected 2 - regular graph. Then clearly G is a cycle. Moreover, for even cycles χ = 2 where as 

for odd cycles, χ = 3. Hence for cycles if γcc = χ then γcc = 2 or 3. But we have  γcc(Cn) = n - 2, for n ≥ 3. If γcc(Cn) = 2, then n = 4 

and so G  C4 and if  γcc(Cn) = 3, then G  C5. Thus, G  C4 or C5. Therefore, we can conclude that C4 and C5 are the only 

connected 2 - regular graphs for which γcc = χ. Next, we characterize the 3 - regular graphs for which γcc = χ = 3. To attain this 

we need Lemma 1.  
                       

Lemma 1   Let G be an r - regular graph on 2r + 2 vertices. If γcc(G) = 2, then there exist two non adjacent vertices u and v such 

that N(u)N(v) = ϕ . 

 

Proof   Let G be an r - regular graph on 2r+2 vertices. Suppose γcc(G) = 2. Let S = {u, v} be a γcc - set. Then V(G) = N[u]

N[v]. If u and v are adjacent, then  N[v] N[u]  ≤ 2r, which is a contradiction. Thus u and v are not adjacent. If N (u) N 

(v) ≠ ϕ, then we get N[v] N[u]  ≤  2r+1, a contradiction. Hence, N (u) N (v) = ϕ. Thus there are two non adjacent 

vertices u and v such that N(u)N(v) = ϕ. 

Hence the theorem. 

                                            ■ 

Lemma 2   There does not exist a 3 - regular graph on 6 vertices with γcc(G) = χ(G) =3. 

Proof      Let G be a 3 - regular graph on 6 vertices with γcc = χ = 3. Then the girth of G is 3 or 4. If it is 3, then G  C3P2. 

Otherwise, G  K3,3. But γcc (C3P2) = γcc (K3, 3) = 2, which is a contradiction.                                        ■ 

For further discussion, we need a list of graphs shown in Figure 5.  

   

Lemma 3   Let G be a 3 - regular graph on 8 vertices. Then γcc(G) = χ(G) = 3 if and only if G  G1 or G2. 

Proof   Let G be a 3 - regular graph on 8 vertices with γcc = χ = 3. Then G has 12 edges. Let v1, v2,…,v8  be the vertices of G and 

let S = {v6, v7, v8} be a γcc - set. Take Vs = V- S. Since S is a  γcc - set, < Vs > is connected.  Also ∆ (Vs) = 2 and hence < Vs > is 
either P5 or C5. 

 

Case (i) If < Vs > is isomorphic to C5, then S) ,E(VS
 = 5. This implies that < S > has 2 edges and 3 vertices. Therefore, < S > 

= P3 = v6v7v8. Without loss of generality, we can assume that v7 is adjacent to v1. If N(v6) = {v4, v5, v7}, then N(v8) = {v2, v3, v7} 

and the resultant graph has γcc = 2 with S = {v5, v8}, a contradiction. When the neighbours of v6 are {v3, v5, v7} (or {v2, v5, v7}), 
we get the graph G2 (or G1). 

  

Case (ii) < Vs >   P5.  In this case S) ,E(VS
= 7. Thus, < S > has only one edge. That is, < S > = P2 K1. Without loss of 

generality, we can assume that v8 is the isolated vertex in < S >. Then it is enough to deal the case in which N(v6) and N(v8) 

have a common neighbour or the case in which N(v7) and N(v8) have a common neighbour. In the remaining cases, by Lemma 

1, we get γcc = 2, which is impossible.  
        Suppose the neighbours of v8 are {v1, v2, v5}. When N(v7) = {v1, v3, v6}, the given graph has γcc = 2 with S = {v2, 

v6} which is impossible. And the graph G1 is obtained when the neighbours of v7 are {v1, v4, v6}. On the other side, let {v1, v3, 

v5} be the neighbours of v8. If N(v7) = {v1, v2, v6}, then N(v6) = {v4, v5, v7}. Here {v1, v4} is a ccd set, a contradiction. If N(v7) = 

{v1, v4, v6}, then the resultant graph is G2. 
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        Conversely, since for i = 1, 2, rad(Gi) = diam(Gi) = 2, any two non adjacent vertices have a common neighbour 

and thus γcc ≠ 2. Also it is easy to see that γcc(G1) = γcc(G2) = 3. In addition, it is clear that χ(G1) = χ(G2) = 3. 

This completes the lemma.  
                                                            ■ 

Lemma 4   Let G be a 3 - regular graph on 10 vertices. Then γcc(G) = χ(G) = 3 if and only if G   Gi, 3 ≤ i ≤ 17. 

Proof   Let G be a 3-regular graph on 10 vertices for which γcc(G) = χ(G) = 3. Then G contains 15 edges. Let vi, 1 ≤ i ≤ 10 be 

the vertices of G and let S = {v8, v9, v10} be a γcc- set. Since G is 3-regular and by the definition of a γcc - set, every vertex in < 

VS > has degree 1 or 2. Hence < VS > is isomorphic to C7 or P7. 

  

Case (i) < Vs >  C7. 

Since G is 3-regular, S) ,E(VS
= 7. Then < S > contains only one edge as G has 15 edges. Thus <S> = P2 K1 in which v10 is 

the isolated vertex. 
 Let the three consecutive vertices of C7, say, v1, v2, v3 be the neighbours of v10. Now, the vertex v4 belongs to either v9 

or v8. Without loss of generality, take v4 N(v9). If N(v9) = {v4, v5, v8}, then N(v8) = {v6, v7, v9} and the resultant graph is G9. 

When the neighbours of v9 are {v4, v6, v8} (or {v4, v7, v8}), we get the graph G16 (or G6). In a similar way, we can deal the case 

when v4 N(v10).  

Let N(v10) = {v1, v2, v4} and let v3 N(v9). If we take the neighbours of v9 as {v3, v5, v8}, {v3, v6, v8} or {v3, v7, v8}, 

then we get the graphs G3, G5 and G7 respectively. 

Let N(v10) = {v1, v2, v5}. Without loss of generality, let v3 N(v9). Then the neighbours of v9 are {v3, v4, v8}, {v3, v6, 

v8} or {v3, v7, v8} and so we get the graphs respectively G12, G5 and G4.  

Let N(v10) ={v1, v3, v5}. Take v3   N(v9). If N(v9) are {v2, v4, v8}, {v2, v6, v8} or {v4, v6, v9}, then we get the graphs 

G4, G10 and G14 respectively. 

 
Case (ii) < Vs >   P7. 

Since G is 3-regular, S) ,E(VS
= 9. Thus < S > has no edge, that is < S >  K

c
3 . 

Let N(v10) = {v1, v2, v3}. Then N(v7) = {v6, v8, v9}. Without loss of generality, we can take v1   N(v9). One can easily 

check that if the neighbours of v9 are {v1, v4, v7}, {v1, v5, v7} or {v4, v6, v7}, the corresponding graphs are isomorphic to G8, G6 
and G9 respectively. 

Now, we consider the three consecutive internal vertices in P7 are adjacent to a vertex, say v10 in < S >. That is N(v10) = 

{ v2, v3, v4}. This implies that N(v1) = {v2, v8, v9} and N(v8) = {v1, v6, v7}. And the only possibility is that N(v9) = {v1, v5, v7}. 

In this case, we get the graph isomorphic to G6. 

Take N(v10) = {v1, v2, v4}. If the neighbours of v9 are {v1, v5, v7} (or {v1, v6, v7}), then we get the graph isomorphic to 

G7 (or G3). The remaining possibilities are already discussed in the earlier cases. 

 Now, consider N(v10) = {v2, v3, v5}. This forces that N(v1) = {v2, v8, v9} and N(v7) = {v6, v8, v9}. The only possibility 

is that N(v9) = {v1, v4, v7}, and the resultant graph is isomorphic to G7. 

Let N(v10) = {v3, v4, v6}. This implies that N(v1) = {v2, v8, v9} and N(v7)  ={v4, v8, v9}. Then N(v9) = {v1, v2, v7} and 

the resultant graph is  isomorphic to G3. 

Let N(v10) = {v4, v5, v7}. By leaving the repeated cases, we get the graph G7 when the neighbours of v9 are {v1, v2, v6} 
or {v1, v2, v7}. 

Suppose, N(v10) = {v1, v2, v5}. This implies that N(v1)  ={v6, v8, v9}. When the neighbours of v9 are {v1, v4, v7} or {v1, 

v6, v7}, we get the graph isomorphic to G13 or G12. The remaining cases have been dealt already.  

Let N(v10) = {v2, v3, v6}. This forces that N(v1)  ={v2, v8, v9} and N(v7)  ={v6, v8, v9}. The only possibility is N(v9) = 

{v1, v4, v7}and so we get the resultant graph isomorphic to G5. 

Let N(v10) = {v3, v4, v7}. This gives N(v1)  ={v2, v8, v9}. By omitting the repeated cases, we get the graphs isomorphic 

to G12 and G17, when the neighbours of v9 are {v1, v2, v5}(or {v1, v2, v7}) and {v1, v2, v6} respectively.  

Let N(v10) = {v1, v2, v6} which implies that N(v7) = {v6, v8, v9}. The only case is that if N(v9) = {v1, v4, v7}, then we get 

the graph isomorphic to G5. 

Let N(v10) = {v2, v3, v7}. This forces that N(v1) = {v2, v8, v9}. If N(v9) = {v1, v4, v6}(or {v1, v4, v7}), then the 

corresponding resultant graph is isomorphic to G5(or G13).  
Let N(v10) = {v1, v2, v7}. The only possibility is that N(v9) = {v1, v4, v6}, and so the resultant graph is isomorphic to G4. 

Suppose N(v10) ={v2, v4, v6}. This implies that N(v1)  ={v2, v8, v9} and N(v7)  ={v6, v8, v9}. The only case left is that 

N(v9) = {v1, v3, v7} and N(v8) = {v1, v5, v7}. In this case, we get χ = 2, a contradiction. 

Let the neighbours of v10 be {v1, v3, v6}. This forces that N(v7) = {v6, v8, v9}. By leaving the repeated possibilities, we 

get the isomorphic graphs G11 or G10, when N(v9) = {v1, v4, v7}or {v1, v5, v7} respectively. 

Let N(v10) ={v2, v4, v7}. Then N(v7)  ={v2, v8, v9} and hence N(v9) = {v1, v3, v6}. Then we get the graph isomorphic to 

G10.  

Conversely, suppose γcc = 2 and let {vr, vs} be a γcc - set. Then, )N(v )N(v
sr

  ≤ 8 a contradiction, since G has 10 

vertices. Thus γcc ≠ 2. Also it is clear that γcc(Gi) = 3, for all 3 ≤ i ≤ 17. Moreover, one can easily verify that χ(Gi) = 3,for all i,  3 

≤ i ≤ 17. 
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Hence the lemma                                                                                                                                ■  

    

Lemma 5   Let G be a 3- regular graph on 12 vertices. Then γcc(G) = χ(G) =3 if and only if G  Gi, 18 ≤ i ≤  42. 
Proof   Let G be a 3-regular graph on 12 vertices for which γcc(G) = χ(G) = 3. Then G contains 18 edges. Let       {vi / i = 1, 

2,…,12} be the vertex set of G and let S = {v10, v11, v12} be a γcc-set. Since G is 3 - regular and since S is a dominating set, every 

vertex in < VS > is of degree 1 or 2. Therefore < VS > is isomorphic to P9 or C9. If < Vs >  P9, then S) ,E(VS
= 11, which is 

impossible as G contains 18 edges. This forces that < Vs >   C9. In this case, S) ,E(VS
= 9 which means that < S > contains no 

edge. That is, < S > is isomorphic to Kc
3 . 

 

Case (i) let the neighbours of v12 be three consecutive vertices of C9 say, v1, v2, v3. Now, the vertex v4 belongs to either N(v10) or 
N(v11). Without loss of generality, we can assume that v4N(v11). If N(v11) = {v4, v5, v6}, then N(v10) = {v7, v8, v9} which gives 

the graph isomorphic to G38. In a similar way, one can easily check that if the neighbours of v11 are {v4, v5, v7}, {v4, v5, v8} 

(or{v4, v6, v7}), {v4, v5, v9}(or {v4, v8, v9}), {v4, v6, v8}, {v4, v6, v9}(or {v4, v7, v9}) and {v4, v7, v8} the corresponding  graphs 

are isomorphic to G26, G35, G25, G29, G30  and G39 respectively. 

   

Case(ii) Let {v1, v2, v4} be the neighbours of v12 and let v3N(v11). Then we get the graphs isomorphic to G27, G22, G23, G28, 

G19 and G36 when we take the neighbours of v11 as {v3, v5, v7}, {v3, v5, v8}, {v3, v6, v7}, {v3, v6, v8}, {v3, v6, v9} and {v3, v7, v8} 

respectively. The case when v3N(v10) follows in a similar manner. By case(i), we can omit the remaining cases in which one 

of the vertices of v11 and v10 have the three consecutive neighbours. 

 

Case(iii) Let N(v12) = {v1, v2, v5}. Without loss of generality, assume that v3N(v11). Then the neighbours of v11 can be {v3, v6, 

v7}, {v3, v6, v8}, {v3, v6, v9}, {v3, v7, v8} or {v3, v7, v9}. The corresponding graphs are isomorphic to G31, G24, G20, G33 and G32 
respectively. 

 

Case(iv) Let N(v12) = {v1, v2, v6}. Let N(v11) contain v3. Then the neighbours of v11 are {v3, v4, v8}, {v3, v5, v8}or {v3, v7, v8}. 

Thus the graphs are G34, G41 or G40 respectively.  

 

Case(v)  Suppose N(v12) ={v1, v3, v5}. Without loss of generality, let v2 belong to N(v11). Then we get the isomorphic graphs 

G37 and G42 respective to the neighbours of v11 which are {v2, v6, v8} and {v2, v7, v9}.  

 

Case(vi) Let N(v12) ={v1, v3, v6}. Then the neighbours of v11 are {v2, v5, v8} and so we get the graph isomorphic to G21. The 

remaining possibilities have been dealt in the earlier cases. 

  
Case(vii) Let the neighbours of v12 be {v1, v4, v7}. By leaving the repeated possibilities, we get the only case that N(v11) = {v2, 

v5, v8}. Then the resultant graph is isomorphic to G18. 

Conversely, it is easy to verify that each Gi has a ccd-set with three elements and so γcc(Gi) ≤ 3. In addition, each Gi is a 

3 - regular graph on 12 vertices. Therefore γcc(Gi) ≥ 









 1

n
 = 3. This means that γcc(Gi) = 3, for all i, 18 ≤ i ≤ 42. Also, one can 

easily check that χ(Gi) = 3, for all i, 18 ≤ i ≤ 42. Hence γcc(Gi) = χ(Gi) = 3, for all i, 18 ≤ i ≤ 42. Thus the converse follows.                                                                                                                     

■ 

 

Theorem 3   Let G be a 3 - regular graph. Then γcc = χ = 3 if and only if G  Gi, for 1 ≤ i ≤ 42. 

Proof   Let G be any one of the above 42 graphs. Then it can be easily verified that γcc = χ = 3. Conversely, we know that 3 = γcc 

≥ 









 1

n
 = 









4

n
. This implies that n ≤ 12. Since G is 3 - regular, n = 6, 8, 10 and 12. Now the result follows from the Lemmas 

2, 3, 4 and 5.         

 

 

 

 

 

 

                                                                                                      ■  
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