On G[#]P-Continuous Maps In Topological Spaces

K. Alli, ¹ S. Pious missier, ² A. Subramanian³

^{1,3}P.G.Department of Mathematics, The M. D. T. Hindu College, Tirunelveli, Tamil Nadu (India)-627010, ²P.G.Department of Mathematics, V. O. Chidambaram College, Thoothukudi, Tamil Nadu (India)-628008,

Abstract: The aim of this paper is to introduce and study $g^{\#}p$ -continuous maps. Basic characterizations and several properties concerning them are obtained. Further, $g^{\#}p$ -irresolute map is also defined. Some of the properties are investigated. **1991 AMS Classification:** 54A05, 54D10.

Keywords: $g^{\#}$ - closed set, $g^{\#}p$ -closed set, $g^{\#}p$ -continuous maps and $g^{\#}p$ -irresolute maps.

I. INTRODUCTION

N.Levine [16] introduced the class of g-closed sets. M.K.R.S.Veerakumar introduced several generalized closed sets namely, g^* -closed sets, $g^$

II. PRELIMINARIES

Throughout this paper $(X,\tau)(\text{or } X)$ represent topological spaces on which no separation axioms are assumed unless otherwise mentioned. For a subset A of a space (X,τ) , cl(A), int (A) and C(A) denote the closure of A, the interior of A and the complement of A respectively.

We recall the following definitions which are useful in the sequel.

Definition2.1:

A subset A of a space (X,τ) is called

(i) a semi-open set [17] if $A \subseteq cl(int(A))$ and a semi-closed [17] set if $int(cl(A)) \subseteq A$.

(ii) a preopen set [21] if $A \subseteq int(cl(A))$ and a preclosed [21] set if $cl(int(A)) \subseteq A$.

(iii) an α -open set [23] if A \subseteq int(cl(int(A))) and an α -closed [23] set if cl(int(cl(A))) \subseteq A.

(iv) a semi-preopen set [2] (= β -open [1]) if A \subseteq cl(int(cl(A))) and a semi-preclosed set [2] (= β -closed [1]) if int(cl(int(A))) \subseteq Aand

(v) a regular open [15] set if A = int(cl(A)) and a regular closed[15] set if cl(int(A)) = A.

The semi-closure (resp. preclosure, α -closure, semi-preclosure) of a subset A of a space (X, τ) is the intersection of all semi-closed (resp. preclosed, α -closed, semi-preclosed) sets that contain A and is denoted by scl (A) (resp. pcl (A), α cl(A),spcl (A)).

Definition 2.2:

A subset A of a space (X, τ) is called

(i) a generalized closed (briefly g-closed) set [16] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .

(ii) a semi-generalized closed (briefly sg-closed) set [6] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open in (X, τ) . The complement of a sg-closed set is called a sg-open [6] set.

(iii) a generalized semi-closed (briefly gs-closed) set [4] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .

(iv) an α -generalized closed (briefly α g-closed) set [18] if α cl(A) \subseteq U whenever A \subseteq U and U is open in (X, τ).

(v) a generalized α -closed (briefly g α -closed) set [19] if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is α -open in (X, τ) .

The complement of a g α -closed set is called a g α -open [7] set.

(vi) a generalized preclosed (briefly gp-closed) set [20] if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ)

(vii) a generalized semi-preclosed (briefly gsp-closed) set [10] if $spcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .

(viii) a generalized preregular closed (briefly gpr-closed) set [13] if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is regular open in (X,τ) .

(ix) a g[#]-closed set [27] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is αg - open in (X, τ) .

(x) a g^{*}-pre closed set [28] (briefly g^{*}p-closed)set if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is a g- open set in (X, τ) .

(xi) a $g^{\#}$ -pre closed set [26] (briefly $g^{\#}$ p-closed) set if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is a $g^{\#}$ - open set in (X, τ) .

Definition2.3:

A function f: $(X, \tau) \rightarrow (Y, \sigma)$ is said to be (i) Semi-continuous [17] if $f^{-1}(V)$ is semi-open in (X, τ) for every open set V of (Y, σ) . (ii) Pre-continuous [21] if $f^{-1}(V)$ is preclosed in (X,τ) for every closed set V of (Y, σ) . (iii) α -continuous [22] if f⁻¹(V) is α -closed in (X, τ) for every closed set V of (Y, σ). (iv) β -continuous [1] if $f^{-1}(V)$ is semi-preopen in (X, τ) for every open set V of (Y, σ) , (v) g-continuous [5] if $f^{-1}(V)$ is g-closed in (X, τ) for every closed set V of (Y, σ) . (vi) sg-continuous [25] if $f^{-1}(V)$ is sg-closed in (X, τ) for every closed set V of (Y, σ) . (vii) gs-continuous [8] if $f^{-1}(V)$ is gs-closed in (X, τ) for every closed set V of (Y, σ) . (viii) ga-continuous [19] if $f^{-1}(V)$ is ga-closed in (X, τ) for every closed set V of (Y, σ) . (ix) α g-continuous [13] if f⁻¹(V) is α g-closed in (X, τ) for every closed set V of (Y, σ). (x) gsp-continuous [10] if $f^{-1}(V)$ is gsp-closed in (X, τ) for every closed set V of (Y, σ) . (xi) gp-continuous [24] if $f^{-1}(V)$ is gp-closed in (X, τ) for every closed set V of (Y, σ). (xii) gpr-continuous [13] if $f^{-1}(V)$ is gpr-closed in (X, τ) for every closed set V of (Y, σ) . (xiii) gc-irresolute [5] if $f^{-1}(V)$ is g-closed in (X, τ) for every g-closed set V of (Y, σ) . (xiv) gp-irresolute [3] if $f^{-1}(V)$ is gp-closed in (X, τ) for every gp-closed set V of (Y, σ). (xv) gsp-irresolute [10] if $f^{-1}(V)$ is gsp-closed in (X, τ) for every gsp-closed set V of (Y, σ). (xvi) p-open [14] if f(U) is preopen in (Y, σ) for every preopen set U in (X, τ) . (xvii) pre- α -open [7] if f(U) is α -closed in (Y, σ) for every α -closed set U in (X, τ). (xviii)g[#]-continuous [27]if $f^{-1}(V)$ is g[#]-closed in (X, τ) for every closed set V of (Y, σ). (xix) g[#]-irresolute [27] if $f^{-1}(V)$ is g[#]-closed in (X, τ) for every g[#]-closed set V of (Y, σ). (xx) g*p-continuous [28] if f⁻¹(V) is g*p-closed in (X, τ) for every closed set V of (Y, σ). (xxi) g*p-irresolute [28]if $f^{-1}(V)$ is g*p-closed in (X, τ) for every g*p closed set V of (Y, σ).

Definition 2.4:

A space (X,τ) is called a (i) $T_{1/2}$ space [16] if every g-closed set is closed. (ii)semi- $T_{1/2}$ space [6] if every sg-closed set is semi-closed. (iii)semi-pre- $T_{1/2}$ space [10] if every gsp-closed set is semi-preclosed. (iv)preregular $T_{1/2}$ space [13] if every gpr-closed set is preclosed. (v) $T_p^{\#}$ space [26] if every $g^{\#}$ p-closed set is closed. (vi) T_p space [26] if every $g^{\#}$ p-closed set is $g^{\#}$ p-closed (vii) $T_p^{\#}$ space [26] if every $g^{\#}$ p-closed set is $g\alpha$ - closed. (viii) $_{\alpha}T_p^{\#}$ space [26] if every $g^{\#}$ p-closed set is preclosed. (ix) $_{\alpha}T_p^{\#}$ space [26] if every $g^{\#}$ p-closed set is preclosed. (ix) $_{\alpha}T_p^{\#}$ space [26] if every $g^{\#}$ p-closed set is α -closed.

III. g[#]-PRE –CONTINUOUS MAPS AND g[#]-PRE- IRRESOLUTE MAPS

We introduce the following definition

Definition 3.1:

A function $f:(X,\tau)\to(Y,\sigma)$ is said to be $g^{\#}p$ -continuous if $f^{-1}(V)$ is a $g^{\#}p$ -closed set of (X,τ) for every closed set V of (Y,σ) .

Theorem 3.2:

(i) Every pre-continuous map [resp. α -continuous,g α -continuous and every continuous map]is g[#]p-continuous.

(ii) Every g[#]p-continuous map is gpr-continuous and gsp-continuous.

Proof: Follows from the theorem 3.02 [26]

the converse of the theorem 3.2 need not be true as can be seen from the following examples.

Example 3.3:

Let $X=\{a,b,c\}=Y,\tau=\{\phi,X,\{a\},\{a,c\}\}$ and $\sigma=\{\phi,Y,\{a\},\{b\},\{a,b\},\{a,c\}\}$. Define $f:(X,\tau)\rightarrow(Y,\sigma)$ by f(a)=a,f(b)=c and f(c)=b.f is not a pre-continuous map, since $\{a,c\}$ is a closed set of (Y,σ) but $f^1\{a,c\}=\{a,b\}$ is not a preclosed set of (X,τ) . But it is $g^{\#}p$ -continuous map.

Example3.4:

Let $X=\{a,b,c\}=Y,\tau=\{\phi,X,\{a\},\{a,b\}\}$. Define $g:(X,\tau)\to(X,\tau)$ by g(a)=b,g(b)=c and g(c)=a.g is not a $g^{\#}p$ -continuous map,since $\{b,c\}$ is a closed set of (X,τ) but $g^{-1}(\{b,c\})=\{a,b\}$ is not a $g^{\#}p$ -closed set of (X,τ) . But it is gpr-continuous.

Example3.5:

Let $X=\{a,b,c\}=Y,\tau=\{\phi,X,\{a\},\{b\},\{a,b\}\}$ and $\sigma=\{X,\Phi,\{b,c\},\{b\}\}$. Define $g:(X,\tau)\to(Y,\sigma)$ by g(a)=a,g(b)=b and g(c)=c.g is not a $g^{\#}p$ -continuous map,since $\{a\}$ is a closed set of (Y,σ) but $g^{-1}(\{a\})=\{a\}$ is not a $g^{\#}p$ -closed set of (X,τ) . But it is gsp-continuous.

Thus the class of $g^{\#}p$ -continuous maps properly contains the classes of pre-continuous maps, $g\alpha$ –continuous maps, α -continuous maps and the class of continuous maps .Next we show that the class of $g^{\#}p$ -continuous maps is properly contained in the classes of gpr- continuous and gsp-continuous maps.

Theorem 3.6:

(i) $g^{\#}p$ -continuity is independent of semi –continuity and β -continuity. (ii) $g^{\#}p$ -continuity is independent of gs-continuity and sg-continuity.

Example3.7:

Let $X=\{a,b,c\}=Y,\tau=\{\phi,X,\{a\}\}$. Define f: $(X, \tau) \rightarrow (Y, \tau)$ by f(a)=b,f(b)=c and f(c)=a.f is g[#]p-continuous but not β -continuity and semi-continuity maps.

Example 3.8:

Let $X=\{a,b,c\}=Y,\tau=\{\phi,X,\{a\},\{b\},\{a,b\}\}$ and $\sigma=\{\phi,Y,\{a,b\}\}$. Define $h:(X,\tau)\rightarrow(Y,\sigma)$ by h(a)=c,h(b)=b and h(c)=a. h is not $g^{\#}p$ -continuous map,since $\{c\}$ is a closed set of (Y,σ) but $h^{-1}\{c\}=\{a\}$ is not a $g^{\#}p$ -closed set of (X,τ) . But it is semicontinuous and β -continuous map.

Example 3.9:

Let $X=\{a,b,c\}, \tau=\{\phi, X, \{a,b\}\}$. Define $\theta:(X,\tau) \rightarrow (X,\tau)$ by $\theta(a)=c$, $\theta(b)=b$, $\theta(c)=a$. θ is a $g^{\#}p$ -continuous map but it is not gs-continuous and sg-continuous.

Example 3.10:

Let X,Y, τ as in the example 3.8 and $\sigma = \{ \phi, Y, \{a\}, \{a,c\}\}$. Define h:(X, τ) \rightarrow (Y, σ) by h(a)=b,h(b)=c and h(c)=a. h is not g[#]p-continuous map,since {b} is a closed set of (Y, σ) but h⁻¹{b}={a} is not a g[#]p-closed set of (X, τ). But it is gs-continuous and sg-continuous maps.

Remark3.11:

Composition of two $g^{\#}p$ -continuous maps need not be $g^{\#}p$ -continuous maps as seen in the following example.

Example 3.12:

Let $X=\{a,b,c\}=Y=Z$, $\tau=\{\phi,X,\{a\},\{b\},\{a,b\}\}$ and $\sigma=\{\phi,Y,\{a\},\{a,c\}\}$ and $\eta=\{\phi,Z,\{a\},\{b\},\{a,b\},\{a,c\}\}$. Define f: $(X,\tau)\rightarrow(Y,\sigma)$ by f(a)=c, f(b)=a, f(c)=b. Define g: $(Y,\sigma)\rightarrow(Z,\eta)$ by g(a)=a, g(b)=c, g(c)=b. clearly f and g are g[#]p-continuous maps . g o f: $(X,\tau)\rightarrow(Z,\eta)$ is not g[#]p-continuous, since $\{b\}$ is a closed set of (Z,η) but (g o f)⁻¹($\{b\}$)=f¹(g⁻¹ $\{b\}$)= f¹($\{c\}$)= $\{a\}$ is not a g[#]p-closed set of (X,τ) .

We introduce the following definition.

Definition 3.13:

A function $f:(X,\tau)\to(Y,\sigma)$ is said to be $g^{\#}p$ -irresolute if $f^{1}(V)$ is a $g^{\#}p$ -closed set of (X,τ) for every $g^{\#}p$ -closed set V of (Y,σ) .

Clearly every $g^{\#}p$ -irresolute map is $g^{\#}p$ -continuous. The converse is not true as it can be seen by the following example.

Example 3.14:

Let X, Y, τ , σ and f be as in the above example 3.12. f is not g[#]p-irresolute, since {c} is a g[#]p-closed set of (Y, σ) but f¹({c})={a} is not a g[#]p-closed set of (X, τ). But it is g[#]p-continuous.

Theorem 3.15:

Let f: $(X, \tau) \rightarrow (Y, \sigma)$ and g: $(Y, \sigma) \rightarrow (Z, \eta)$ be any two functions. Then (i) g o f : $(X, \tau) \rightarrow (Z, \eta)$ is g[#]p-continuous if g is continuous and f is g[#]p-continuous. (ii) g o f : $(X, \tau) \rightarrow (Z, \eta)$ is g[#]p-irresolute if g is g[#]p-irresolute and f is g[#]p-irresolute. (iii) g o f : $(X, \tau) \rightarrow (Z, \eta)$ is g[#]p-continuous if g is g[#]p-continuous and f is g[#]p-irresolute. The proof is obvious from the definitions 3.1 and 3.13.

Theorem 3.16:

Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be a bijective $g^{\#}$ -irresolute and p-open map. Then f(A) is $g^{\#}p$ -closed in (Y, σ) for every $g^{\#}p$ -closed set A of (X, τ) .

Proof: Let A be a $g^{\#}$ -closed set of (X, τ) . Let V be a $g^{\#}$ -open set of (Y,σ) containing f(A). Since f is $g^{\#}$ -irresolute, then $f^{1}(V)$ is a $g^{\#}$ -open set of (X,τ) . Since $A \subseteq f^{1}(V)$ and A is $g^{\#}$ -closed, then $pcl(A) \subseteq f^{1}(V)$. Then $f(pcl(A)) \subseteq V$. Then f(pcl(A)) = pcl(f(pcl(A))) since f is a bijection and p-open map. Now $pcl(f(A)) \subseteq pcl(f(pcl(A))) = f(pcl(A)) \subseteq V$. Hence f(A) is a $g^{\#}$ -closed set in (Y,σ) .

Theorem 3.17:

Let (X,τ) -> (Y,σ) be a $g^{\#}$ -continuous map. (i)If (X,τ) is a $T_p^{\#}$ space, then f is continuous. (ii) If (X,τ) is a $T_p^{\#\#}$ space ,then f is $g\alpha$ -continuous. (iii)If (X,τ) is a ${}_{\alpha}T_p^{\#}$ space ,then f is pre-continuous. (iv)If (X,τ) is a ${}_{\alpha}T_p^{\#}$ space, then f is α -continuous.

Theorem 3.18:

Let $(X,\tau) \rightarrow (Y,\sigma)$ be a gp-continuous map. If (X,τ) is a ${}^{\#}T_{p}$ space, then f is $g^{\#}p$ -continuous.

Theorem 3.19:

Let $(X,\tau) \rightarrow (Y,\sigma)$ be a gsp-continuous map. If (X,τ) is a ${}^{\#}sT_{P}$ space, then f is g ${}^{\#}p$ -continuous.

Theorem 3.20:

Let $(X,\tau) \rightarrow (Y,\sigma)$ be onto, $g^{\#}p$ - irresolute and closed. If (X,τ) is a T_p [#]space, then (Y,σ) is also a T_p [#] space. **Proof:**Let A be a $g^{\#}p$ -closed set of (Y,σ) . Since f is $g^{\#}p$ -irresolute, then $f^1(A)$ is $g^{\#}p$ -closed in (X,τ) . Since (X,τ) is a T_p [#] space, then $f^1(A)$ is closed in (X,τ) . Since f is closed and onto the A=f $(f^1(A))$ is closed in (Y,σ) . Hence (Y,σ) is also a T_p [#] space.

Definition 3.21:

A function f: $(X,\tau) \rightarrow (Y,\sigma)$ is said to be pre-g[#]p-closed if f(U) is g[#]p-closed in (Y,σ) for every g[#]p-closed set U in (X,τ) .

Definition 3.22:

A function f: $(X,\tau) \rightarrow (Y,\sigma)$ is said to be pre-ga-closed if f(U) is ga-closed in (Y,σ) for every ga-closed set U in (X,τ) .

Theorem 3.23:

Let (X,τ) -> (Y,σ) be onto, $g^{\#}p$ - irresolute and pre-g α -closed. If (X,τ) is a $T_p^{\#\#}$ space, then (Y,σ) is also a $T_p^{\#\#}$ space. **Proof:** Let A be a $g^{\#}p$ -closed set of (Y,σ) . Since f is $g^{\#}p$ - irresolute, then $f^1(A)$ is $g^{\#}p$ - closed in (X,τ) . Since (X,τ) is a $T_p^{\#\#}$ space, then $f^1(A)$ is $g\alpha$ -closed in (X,τ) . Since f is pre-g α -closed and onto, then $A=f(f^1(A))$ is $g\alpha$ -closed in (Y,σ) . Hence (Y,σ) is also a $T_p^{\#\#}$ space.

Theorem 3.24:

Let (X,τ) -> (Y,σ) be onto, $g^{\#}p$ - irresolute and p-closed. If (X,τ) is an ${}_{\alpha}T_{p}^{\#}$ space, then (Y,σ) is also an ${}_{\alpha}T_{p}^{\#}$ space.

Theorem 3.25:

Let $(X,\tau) \rightarrow (Y,\sigma)$ be onto, $g^{\#}p$ - irresolute and pre- α -closed. If (X,τ) is an ${}_{\alpha}T_{p}^{\#\#}$ space, then (Y,σ) is also an ${}_{\alpha}T_{p}^{\#\#}$ space.

Theorem 3.26:

Let $(X,\tau) \rightarrow (Y,\sigma)$ be onto, gp- irresolute and pre- $g^{\#}p$ -closed. If (X,τ) is a ${}^{\#}T_{p}$ space, then (Y,σ) is also a ${}^{\#}T_{p}$ space.

REFERENCES

- Abd El-Monsef, M.E., El-Deeb, S.N and Mahmud, R.A., β-open sets and β- continuous mappings, Bull. Fac. Sci. Assiut Univ., 12 (1983), 77-90.
- [2] Andrijević, D., Semi-preopen sets, Mat. Vesnik, 38(1)(1986), 24-32.
- [3] Arockiarani, I., Balachandran, K and J.Dontchev., Some characterizations of gp-irresolute and gp-continuous maps between topological spaces, Mem. Fac. Sci. Kochi Univ. Ser.A. Math., 20 (1999), 93-104.
- [4] Arya, S.P and Nour, T., Characterizations of s-normal spaces, Indian J. Pure. Appl. Math., 21(8) (1990), 717-719.
- [5] Balachandran, K., Sundaram, P and Maki, H., On generalized continuous maps in topological spaces, Mem. Fac. Sci. Kochi Univ. Ser. A. Math., 12(1991), 5-13.
- [6] Bhattacharya, P and Lahiri, B.K., Semi-generalized closed sets in topology, Indian J. Math., 29(3)(1987), 375-382.
- [7] Devi,R., Balachandran,K and Maki,H., Generalized α-closed maps and α- generalized closed maps, Indian J. Pure. Appl. Math., 29(1) (1998), 37-49.
- [8] Devi, R., Maki, H and Balachandran, K., Semi-generalized homeomorphisms and generalized semi-Homeomorphisms, Indian J. Pure. Appl. Math., 26 (3) (1995), 271-284.
- [9] Dontchev, J., On door spaces, Indian J. Pure. Appl. Math., 26(9)(1995), 873-881.
- [10] Dontchev, J., On generalizing semi-preopen sets, Mem. Fac. Sci. Kochi Univ. Ser.A. Math., 16 (1995), 35-48.
- [11] Dontchev, J., On some separation axioms associated with the α -topology, Mem. Fac. Sci. Kochi Univ. Ser.A. Math, 18 (1997), 31-35.
- [12] Dunham, W., T1/2 spaces, Kyungpook Math. J., 17 (1977), 161-169.
- [13] Gnanambal, Y., On generalized preregular closed sets in topological spaces, Indian J. Pure. Appl. Math., 28(3)(1997), 351-360.
- [14] Janković, D.S., A note on mappings of extremally disconnected spaces, Acta Math. Hung., 46(1985), 83-92.
- [15] Kuratowski, C., Topology I, Hafner, New York, 1958.

- [16] Levine, N., Generalized closed sets in topology, Rend. Circ. Math. Palermo, 19(2) (1970), 89-96.
- [17] Levine, N., Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70 (1963), 36-41.
- [18] Maki,H., Devi,R., and Balachandran,K., Associated topologies of generalized α-closed sets and α- generalized closed sets, Mem. Fac. Sci. Kochi Univ. Ser.A. Math., 15(1994), 51-63.
- [19] Maki,H., Devi,R., and Balachandran,K., Generalized α-closed sets in topology, Bull. Fukuoka Univ. Ed. Part III, 42 (1993), 13-21.
- [20] Maki,H., Umehara,J and Noiri,T., Every topological space is pre-T_{1/2} space, Mem. Fac. Sci. Kochi Univ. Ser.A. Math., 17 (1996), 33-42.
- [21] Mashhour, A.S., Abd El-Monsef, M.E and El-Deeb, S.N., On pre-continuous and weak pre- continuous mappings, Proc. Math. and Phys. Soc. Egypt, 53(1982), 47-53.
- [22] Mashhour, A.S., Hasanein, I.A and El-Deeb, S.N., α -continuous and α -open mappings, Acta Math Hung., 41(3-4)(1983), 213-218.
- [23] Njåstad,O., On some classes of nearly open sets, Pacific J. Math., 15(1965), 961-970.
- [24] Noiri, T., Maki, H and Umehara, J., Generalized preclosed functions, Mem. Fac. Sci. Kochi Univ. Ser. A. Math., 19 (1998), 13-20.
- [25] Sundaram, P., Maki, H and Balachandran, K., Semi-generalized continuous maps and semi-T_{1/2} spaces, Bull. Fukuoka Univ. Ed. Part III, 40 (1991), 33-40.
- [26] Pious Missier, S., Alli, K and Subramanian, A., g[#]p-closed sets in a topological spaces, IJMA (accepted).
- [27] Veera kumar, M.K.R.S., g[#]-closed sets in topological spaces, Mem.Fac.Sci.Kochi Univ.Ser.A.Math 24(2003), 1-13.
- [28] Veera kumar, M.K.R.S., g^{*}-preclosed sets Acta ciencia Indica (Maths) Meerut XXVIII (M)(1) 2002.