EXTREMALLY β-DISCONNECTEDNESS IN SMOOTH FUZZY β-CENTERED SYSTEM

T. Nithiya, 1 M.K. Uma, 2 E. Roja³

¹Department of Mathematics, Avs Engineering College, Salem-636003 Tamil Nadu, India ²³Department of Mathematics, Sri Sarada College for Women, Salem-636016 Tamil Nadu, India

Abstract: In this paper, we introduce maximal smooth fuzzy β-centered system, the smooth fuzzy space (R). Also extremally β-disconnectedness in smooth fuzzy β-centered system and its properties are studied.

Keywords: Maximal smooth fuzzy β-centered system, the smooth fuzzy space $θ(R)$ and smooth fuzzy extremally βdisconnectedness.

2000 Mathematics Subject Classification: 54A40-03E72.

I. Introduction and Preliminaries

The concept of fuzzy set was introduced by Zadeh [8]. Since then the concept has invaded nearly all branches of mathematics. In 1985, a fuzzy topology on a set X was defined as a fuzzy subset T of the family I^X of fuzzy subsets of X satisfying three axioms, the basic properties of such a topology were represented by Sostak [6]. In 1992, Ramadan [4], studied the concepts of smooth topological spaces. The method of centered systems in the theory of topology was introduced in [3]. In 2007, the above concept was extended to fuzzy topological spaces by Uma, Roja and Balasubramanian [8]. In this paper, the method of β-centered system is studied in the theory of smooth fuzzy topology. The concept of extremally βdisconnectedness in maximal structure $θ(R)$ of maximal smooth fuzzy β-centered system is introduced and its properties are studied.

Definition 1.1. [6]

A function T: $I^X \rightarrow I$ is called a smooth fuzzy topology on X if it satisfies the following conditions:

- a) $T(0) = T(1) = 1$
- b) $T(\mu_1 \wedge \mu_2) \ge T(\mu_1) \wedge T(\mu_2)$ for any $\mu_1, \mu_2 \in I^X$
- c) $T\left(\bigvee_{i\in\Gamma}\mu_i\right)\geq \bigwedge_{i\in\Gamma}T(\mu_i)$ $\left\{\mu_i\right\} \geq \Lambda \prod_{i=1}^N \left[\mu_i\right]$ For any $\left\{\mu_i\right\}_{i \in \Gamma} \in I^X$

The pair (X, T) is called a smooth fuzzy topological space.

Definition 1.2. [7]

Let R be a fuzzy Hausdroff space. A system $p = \{ \lambda_{\alpha} \}$ of fuzzy open sets of R is called fuzzy centered system if any finite collection of fuzzy sets of the system has a non-zero intersection. The system p is called maximal fuzzy centered system or a fuzzy end if it cannot be included in any larger fuzzy centered system.

Definition 1.3. [7]

Let $\theta(R)$ denotes the collection of all fuzzy ends belonging to R. We introduce a fuzzy topology in $\theta(R)$ in the following way: Let P_b be the set of all fuzzy ends that include λ as an element, where λ is a fuzzy open set of R. Now P_h is a fuzzy neighbourhood of each fuzzy end contained in P_{λ} . Thus to each fuzzy open set of R, there corresponds a fuzzy neighbourhood P_{λ} in $\theta(R)$.

Definition 1.4. [7]

A fuzzy Hausdroff space R is extremally disconnected if the closure of an open set is open.

Definition 1.5. [1]

The fuzzy real line R(L) is the set of all monotone decreasing elements $\lambda \in L^R$ satisfying $\vee \{\lambda(t)/t \in R\} = 1$ and \wedge { $\lambda(t)/t \in R$ } = 0, after the identification of $\lambda, \mu \in L^R$ iff $\lambda(t-) = \mu(t-)$ and $\lambda(t+) = \mu(t+)$ for all $t \in R$, where $\lambda(t-) = \lambda \{ \lambda(s)$: $s < t$ } and $\lambda(t+) = \vee \{ \lambda(s) : s > t \}$. The natural L-fuzzy topology on R(L) is generated from the sub-basis $\{ L_t, R_t \}$ where $L_t(\lambda) = \lambda(t-)$ and $R_t(\lambda) = \lambda(t+)$.

Definition 1.6. [2]

The L-fuzzy unit interval I (L) is a subset of R(L) such that $[\lambda] \in I(L)$ if $\lambda(t) = 1$ for $t < 0$ and $\lambda(t) = 0$ for $t > 1$.

Definition 1.7. [5]

A fuzzy set λ is quasi-coincident with a fuzzy set μ , denoted by $\lambda \neq \mu$, if there exists $x \in X$ such that $\lambda(x) + \mu(x)$ 1, otherwise $\lambda \neq \mu$.

II. The Spaces of maximal smooth fuzzy β-centered systems

In this section the maximal smooth fuzzy centered system is introduced and its properties are discussed.

Definition 2.1.

A smooth fuzzy topological space (X, T) is said to be smooth fuzzy β-Hausdorff iff for any two distinct fuzzy points x_{t_1}, x_{t_2} in X, there exists r-fuzzy β -open sets $\lambda, \mu \in I^X$ such that $x_{t_1} \in \lambda$ and $x_{t_2} \in \mu$ with $\lambda \neq \mu$.

Definition 2.2.

Let R be a smooth fuzzy β-Hausdorff space. A system $p_\beta = \{\lambda_i\}$ of r-fuzzy β-open sets of R is called a smooth fuzzy β-centered system if any finite collection of { λ_i } is such that λ_i **q** λ_j for $i \neq j$. The system p_β is called maximal smooth fuzzy β-centered system or a smooth fuzzy β-end if it cannot be included in any larger smooth fuzzy β-centered system.

Definition 2.3.

Let (X, T) be a smooth fuzzy topological space. Its Q*β-neighbourhood structure is a mapping Q* : X x I \rightarrow I (X denotes the totality of all fuzzy points in X), defined by

Q^{*}(x_0^t , λ) = sup { μ : μ is an r-fuzzy β -open set, $\mu \le \lambda$, $x_0^t \in \mu$ } and

$$
\lambda\,=\,\inf_{x_0^t q\lambda}\,Q^*(\,x_0^{\,t}\,,\,\lambda)\text{ is r-fuzzy }\beta\text{-open set}.
$$

We note the following Properties of maximal smooth fuzzy β-centred system.

(1) If
$$
\lambda_i \in p_{\beta}
$$
 (i = 1, 2, 3...n), then $\bigwedge_{i=1}^{n} \lambda_i \in p$.

Proof:

If $\lambda_i \in p_{\beta}$ (i = 1, 2, 3...n), then $\lambda_i \notin \lambda_j$ for $i \neq j$. If $\lambda_i \in \lambda_i$ n $\bigwedge_{i=1}^{\Lambda} \lambda_i \notin p_{\beta}$, then $p_{\beta} \cup \{ \bigwedge_{i=1}^{\Lambda} \lambda_i \}$ n \wedge λ_i } will be a larger smooth fuzzy β-end than p. n

This contradicts the maximality of p_{β} . Therefore, $\bigwedge_{i=1}^{\infty} \lambda_i$ $\bigwedge_{i=1} \lambda_i \in p_{\beta}.$

 (2) $0 \neq \lambda < \mu$, $\lambda \in p_{\beta}$ and μ is an r-fuzzy β-open set, then $\mu \in p_{\beta}$.

Proof:

If $\mu \notin p_{\beta}$, then $p_{\beta} \cup \{\mu\}$ will be a larger smooth fuzzy β-end than p_{β} . This contradicts the maximality of p_{β} . Therefore μ \in p_{β} .

(3) If λ is r-fuzzy β -open set, then $\lambda \notin p_{\beta}$ iff there exists $\mu \in p_{\beta}$ such that

λ q μ .

Proof:

Let $\lambda \notin p_{\beta}$ be an r-fuzzy β -open set. If there exists no $\mu \in p_{\beta}$ such that $\lambda \neq \mu$, then $\lambda \notin q$ μ for all $\mu \in p_{\beta}$. That is, $p_{\beta} \cup q$ { λ } will be a larger smooth fuzzy β -end than p_{β} . This contradicts the maximality of p_{β} .

Conversely, suppose that there exists $\mu \in p_{\beta}$ such that $\lambda \neq \mu$. If $\lambda \in p_{\beta}$, then $\lambda \notin \mu$. Contradiction. Hence $\lambda \notin p_{\beta}$.

(3) If $\lambda_1 \vee \lambda_2 = \lambda_3 \in p_\beta$, λ_1 and λ_2 are r-fuzzy β -open sets in R with $\lambda_1 \neq \lambda_2$, then either $\lambda_1 \in p_\beta$ or $\lambda_2 \in p_\beta$.

Proof:

Let us suppose that both $\lambda_1 \in p_\beta$ and $\lambda_2 \in p_\beta$. Then $\lambda_1 \notin \mathcal{A}_2$. Contradiction. Hence either $\lambda_1 \in p_\beta$ or $\lambda_2 \in p_\beta$.

Note 2.1

Every smooth fuzzy β-centered system can be extended in atleast one way to a maximum one.

III. The Smooth Fuzzy maximal structure in $\theta(R)$.

In this section, smooth fuzzy maximal structure in the collection of all smooth fuzzy β-ends $θ(R)$ is introduced and its properties are investigated.

Let $\theta(R)$ denotes the collection of all smooth fuzzy β-ends belonging to R. We introduce a smooth fuzzy maximal structure in $\theta(R)$ in the following way:

Let P_{λ} be the set of all smooth fuzzy β-ends that include λ as an element, where λ is a r-fuzzy β-open set of R. Now, P_{λ} is a smooth fuzzy Q* β-neighbourhood structure of each smooth fuzzy β-end contained in P_{λ} . Thus to each r-fuzzy β-open set λ of R corresponds a smooth fuzzy Q* β-neighbourhood structure P_{λ} in $\theta(R)$.

Proposition 3.1.

If λ and μ are r-fuzzy β-open sets, then (a) $P_{\lambda \vee \mu} = P_{\lambda} \cup P_{\mu}$. (b) $P_{\lambda} \cup P_{\overline{1}-C_{T(R)}(\lambda,r)} = \theta(R)$.

Proof:

(a) Let $p_{\beta} \in P_{\lambda}$. That is, $\lambda \in p_{\beta}$. Then by Property (2), $\lambda \vee \mu \in p_{\beta}$. That is, $p_{\beta} \in P_{\lambda \vee \mu}$. Hence $P_{\lambda} \cup P_{\mu} \subseteq P_{\lambda \vee \mu}$. Let $p\beta \in P_{\lambda \vee \mu}$ That is, $\lambda \vee \mu \in p_{\beta}$. By the definition of P_{λ} , $\lambda \in p_{\beta}$ or $\mu \in p_{\beta}$. That is, $p_{\beta} \in P_{\lambda}$ or $p_{\beta} \in P_{\mu}$, therefore, $p_{\beta} \in P_{\lambda} \cup P_{\mu}$. This shows that $P_{\lambda} \cup P_{\mu} \supseteq P_{\lambda \vee \mu}$. Hence, $P_{\lambda \vee \mu} = P_{\lambda} \cup P_{\mu}$. (b) If $p_{\beta} \notin P_{\overline{1}-C_{T(R)}(\lambda,r)}$, then $\overline{1}-C_{T(R)}(\lambda,r) \notin p_{\beta}$. That is, $\lambda \in p_{\beta}$ and $p_{\beta} \in P_{\lambda}$. Hence, $\theta(R) - P_{\overline{1}-C_{T(R)}(\lambda,r)} \subset P_{\lambda}$. If p_{β} P_{λ} , then $\lambda \in p_{\beta}$. That is, $\overline{1} - C_{T(R)}(\lambda, r) \notin p_{\beta}$, $p_{\beta} \notin P_{\overline{1} - C_{T(R)}(\lambda, r)}$. Therefore, $p_{\beta} \in \theta(R) - P_{\overline{1} - C_{T(R)}(\lambda, r)}$. That is, $P_{\lambda} \subset$

$$
\theta(R) - P_{\overline{1} - C_{T(R)}(\lambda, r)} \text{. Hence, } P_{\lambda} \cup P_{\overline{1} - C_{T(R)}(\lambda, r)} = \theta(R).
$$

Proposition 3.2.

 $\theta(R)$ With the smooth fuzzy maximal structure described above is a smooth fuzzy β-compact space and has a base of smooth fuzzy Q*β-neighbourhood structure ${P_\lambda}$ that are both r-fuzzy β-open and r-fuzzy β-closed.

Proof:

Each P_λ in θ (R) is a r-fuzzy β-open by definition and by (b) of Proposition 3.1, it follows that it is r-fuzzy β-closed. Thus θ(R) has a base of smooth fuzzy Q*β-neighbourhood structure { $P_λ$ } that are both r-fuzzy β-open and r-fuzzy β-closed. We now show that $\theta(R)$ is smooth fuzzy β-compact. Let { $P_{\lambda_{\alpha}}$ } be a covering of $\theta(R)$ where each $P_{\lambda_{\alpha}}$ is r-fuzzy β-open. If it

is impossible to pick a finite sub covering from the covering, then no set of the form $\overline{1} - \bigvee_{i=1}^{n}$ $\bigvee_{i=1}$ β-C_{T(R)}(λ_{α_i} , r) is 0, since

otherwise the sets $P_{\lambda_{\alpha_i}}$ would form a finite covering of $\theta(R)$. Hence the sets $\overline{1} - \bigvee_{i=1}^n$ $i = 1$ β-C_{T(R)}($\lambda_{\alpha_{\mathbf{i}}}$, r) form a smooth fuzzy βcentered system. It may be extended to a maximal smooth fuzzy β . This maximal smooth fuzzy βcentered system is not contained in { $P_{\lambda_{\alpha}}$ } since it contains in particular, all the $1 - \beta$ -C_{T(R)}(λ_{α_i} , r). This contradiction proves that $θ(R)$ is smooth fuzzy β-compact.

IV. Smooth fuzzy Extremally β-Disconnectedness in the maximal structure $θ(R)$.

Definition 4.1.

A smooth fuzzy β-Hausdorff space R is smooth fuzzy extremally β-disconnected if $β$ -C_{T(R)}($λ$, r) is r-fuzzy β-open for any r-fuzzy β-open set λ , $r \in I_0$.

Proposition 4.1.

The maximal smooth fuzzy structure $\theta(R)$ of maximal smooth fuzzy β-centered system of R is smooth fuzzy extremally β-disconnected.

Proof:

The proof of this theorem follows from the following equation $P_{\underset{\alpha}{\vee}\lambda_{\alpha}} = \beta - C_{T(\theta(R))}(\underset{\alpha}{\cup} P_{\lambda_{\alpha}}), r \in I_{0}$. If $\lambda < \mu$, it follows that $P_{\lambda} \subset P_{\mu}$ and therefore $\bigcup_{\alpha} P_{\lambda_{\alpha}} \subset \beta$ -C_{T(θ (R))}($P_{\lambda_{\alpha}}$, r). By Proposition 3.2, $P_{\lambda_{\alpha}}$ is r-fuzzy β -closed and therefore, β-C_{T(θ(R))}($\bigcup_{\alpha} P_{\lambda_{\alpha}}$, r) $\subset P_{\{x\lambda_{\alpha}\}}$. Let p be an arbitrary element of $P_{\{x\lambda_{\alpha}} = \bigcup_{\alpha} P_{\lambda_{\alpha}}$. Then by Pro.3.1 (a), $p_{\beta} \in \beta$ - $C_{T(\theta(R))}(\bigcup_{\alpha} P_{\lambda_{\alpha}}^{}, r)$. Therefore, $P_{\underset{\alpha}{\vee} \lambda_{\alpha}} \subset \beta \text{-}C_{T(\theta(R))}(\bigcup_{\alpha} P_{\lambda_{\alpha}}^{}, r)$. Hence, $P_{\underset{\alpha}{\vee} \lambda_{\alpha}} = \beta \text{-}C_{T(\theta(R))}(\bigcup_{\alpha} P_{\lambda_{\alpha}}^{}, r)$.

Note 4.1.

The maximal structure $θ(R)$ of maximal smooth fuzzy β-centered system is smooth fuzzy extremally β-disconnected if $P_{\underset{\alpha}{\vee}\lambda_{\alpha}} = \beta - C_{T(\theta(R))}(\underset{\alpha}{\vee}P_{\lambda_{\alpha}}$, r) where λ_{α} 's r-fuzzy β -open sets. By Pro 3.1(a), it follows that $P_{\underset{\alpha}{\vee}\lambda_{\alpha}} = \beta - C_{T(\theta(R))}(P_{\underset{\alpha}{\vee}\lambda_{\alpha}}$, r). That is, $P_{\lambda_{\Delta}} = \beta - C_{T(\theta(R))} (P_{\lambda_{\Delta}}, r)$ where $\lambda_{\Delta} = \sum_{\alpha} \lambda_{\alpha}$.

Proposition 4.2.

Let $\theta(R)$ be an maximal smooth fuzzy β-centered system of the smooth fuzzy β-Hausdorff space R. Then the following conditions are equivalent:

- (a) The space $\theta(R)$ is smooth fuzzy extremally β-disconnected.
- (b) For each r-fuzzy β -open $P_{\lambda_{\Delta}}$, β -I_{T(θ (R)})(θ (R) $P_{\lambda_{\Delta}}$, r) is r-fuzzy β -closed, $r \in I_0$.
- (c) For each r-fuzzy β-open $P_{\lambda_{\Delta}}$, β-C_{T($\theta(R)$}, r) + β-C_{T($\theta(R)$} ($\theta(R)$ C_{T($\theta(R)$}, r), r) = $\theta(R)$, r $\in I_0$.
- (d) For every pair of collections of r-fuzzy β-open sets { $P_{\lambda_{\Delta}}$ } and { $P_{\mu_{\Delta}}$ } such that β -C_{T(θ (R))}($P_{\lambda_{\Delta}}$, r) + $P_{\mu_{\Delta}} = \theta(R)$, we have β-C_{T(θ(R))}($P_{\lambda_{\Delta}}$, r) + β-C_{T(θ(R))}($P_{\mu_{\Delta}}$, r) = θ(R), r ∈ I₀.

Proof:

 $(a) \Rightarrow (b).$

Let θ (R) be an smooth fuzzy extremally β-disconnected space and suppose that P_λ be r-fuzzy β-open, r $\in I_0$. Now, β- $C_{T(\theta(R))}(P_{\lambda_{\Delta}}, r) = \theta(R) - \beta I_{T(\theta(R))}(\theta(R) - P_{\lambda_{\Delta}}, r)$. Since $\theta(R)$ is smooth fuzzy extremally β -disconnected, $P_{\lambda_{\Delta}} = \beta - C_{T(\theta(R))}(P_{\lambda_{\Delta}}, r)$ r). Now, $P_{\lambda_{\Delta}}$ = $\theta(R) - \beta I_{T(\theta(R))}(\theta(R) - P_{\lambda_{\Delta}}, r)$. Since , P_{λ_Δ} is r-fuzzy β-open.

$$

Suppose that $P_{\lambda_{\Delta}}$ be r-fuzzy β -open, $r \in I_0$. Then, β-C_{T(θ(R))}($P_{\lambda_{\Delta}}$, r) + β-C_{T(θ(R)})(θ(R) – β-C_{T(θ(R)})($P_{\lambda_{\Delta}}$, r), r) = β -C_{T(θ (R))}(P_{λ_{Δ}}, r) + β -C_{T(θ (R))}(β -I_{T(θ (R))}(θ (R) – P $_{\lambda_{\Delta}}$, r), r) = β -C_{T(θ (R))}(P_{λ_{Δ}}, r) + β -I_{T(θ (R))}(θ (R) – P_{λ_{Δ}}, r) = β -C_{T(θ (R))}(P_{λ_{Δ}}, r) + θ (R) – β -C_{T(θ (R))}(P_{λ_{Δ}}, r) $= \theta(R)$.

$(c) \Rightarrow (d)$.

Suppose that
$$
P_{\lambda_{\Delta}}
$$
 and $P_{\mu_{\Delta}}$ are r-fuzzy β -open, $r \in I_0$, with
\n β - $C_{T(\theta(R))}(P_{\lambda_{\Delta}}, r) + P_{\mu_{\Delta}} = \theta(R)$ (4.3.1)

Now by (c), we have

 $\theta(R)$ = β-C_{T(θ(R))}(P_{λ_Δ, r) + β-C_{T(θ(R)})($\theta(R)$ – β-C_{T(θ(R)})(P_{λ_Δ, r), r)}} = β-C_{T(θ(R))}(P_{λ_Δ, r) + β-C_{T(θ(R))}(P_{μ_Δ}} $(from (4.3.1))$ Hence, β -C_{T(θ (R))}(P_{λ_{Δ}}, r) + β -C_{T(θ (R))}(P_{μ_{Δ}}, r) = θ (R).

$(d) \Rightarrow (a)$.

Let us suppose that $P_{\mu_{\Delta}}$ r-fuzzy β-open, $r \in I_0$ and let $P_{\lambda_{\Delta}} = \theta(R) - \beta C_{T(\theta(R))}(P_{\mu_{\Delta}})$ $(4.3.2)$

This implies that $P_{\lambda_{\Delta}}$ is r-fuzzy β -open. By (d), we have $β$ -C_{T(θ(R))}(P_{λ_Δ}, r) + β-C_{T(θ(R))}(P_{μ_Δ, r) = θ(R)_. (4.3.3)} From (4.3.2) and (4.3.3) we have,

 $P_{\lambda_{\Delta}} = \beta - C_{T(\theta(R))} (P_{\lambda_{\Delta}}, r)$. By Note 4.1, it follows that $\theta(R)$ is smooth fuzzy extremally β -disconnected.

Proposition 4.3.

Let $\theta(R)$ be the space of maximal smooth fuzzy β-centered system of the smooth fuzzy β-Hausdorff space R. Then, θ(R) is smooth fuzzy extremally β-disconnected iff for all r-fuzzy β-open $P_{\lambda_{\Delta}}$ and r-fuzzy β-closed $P_{\mu_{\Delta}}$ with $P_{\lambda_{\Delta}} \subseteq P_{\mu_{\Delta}}$, β- $C_{T(\theta(R))}(P_{\lambda_{\Delta}}, r) \subseteq \beta-I_{T(\theta(R))}(P_{\mu_{\Delta}}, r), r \in I_0.$

Proof:

Let P_{λ_Δ be r-fuzzy β-open and P_{µ_Δ} be r-fuzzy β-closed, $r \in I_0$, with P_{λ_Δ \subseteq P_{µ_Δ}}} . Then $β-I_{T(θ(R))}(P_{λ_Δ}, r) \subseteq β I_{T(\theta(R))}(P_{\mu_{\Delta}}, r)$. That is, $P_{\lambda_{\Delta}} \subseteq \beta \cdot I_{T(\theta(R))}(P_{\mu_{\Delta}}, r)$. This implies that, $\beta \cdot C_{T(\theta(R))}(P_{\lambda_{\Delta}}, r)$ $_{\Delta}$, r) \subseteq β-C_{T(θ(R))}(β-I_{T(θ(R))}(P_{μ</sup>Δ}, r), r). By Proposition 4.2.(b), it follows that, $_{\Delta}$, r) \subseteq $I_{T(\theta(R))}$ (P_{λ} , r).

Conversely, suppose that $P_{\mu_{\Delta}}$ be r-fuzzy β -closed, $r \in I_0$. Then, β - $I_{T(\theta(R))}(P_{\mu_{\Delta}}, r) \subseteq P_{\mu_{\Delta}}$. By assumption, β - $C_{T(\theta(R))}(\beta$ - $I_{T(\theta(R))}(P_{\mu_{\Delta}}, r), r) \subseteq \beta - I_{T(\theta(R))}(P_{\mu_{\Delta}})$ $(4.3.1)$ But, β -I_{T(θ (R))}(P_{µ_Δ, r) \subseteq β -C_{T(θ (R))}(β -I_{T(θ (R))}(P_{µ_Δ}} $(4.3.2)$ From (4.3.1) and (4.3.2), we get

 β -I_{T(θ(R))}(P_{μ_Δ, r) = β-C_{T(θ(R))}(β-I_{T(θ(R))}(P_{μ_Δ, r), r).}}

That is, β -I_{T(θ (R))}(P_{μ_A}, r)) is r-fuzzy β -closed. By Proposition 4.2(b), it follows that θ (R) is smooth fuzzy extremally β-disconnected.

Remark 4.1.

Let $\theta(R)$ be an smooth fuzzy extremally β -disconnected space. Let { $P_{\lambda_{\Delta_i}}$, $\theta(R) - P_{\mu_{\Delta_i}}$, I ϵN } be a collection such that $P_{\lambda_{\Delta_i}}$ are r-fuzzy β-open and $P_{\mu_{\Delta_i}}$ are r-fuzzy β-closed, $r \in I_0$. Let $P_{\lambda_{\Delta'}}$, $P_{\mu_{\Delta}}$ are both r-fuzzy β-open and r-fuzzy β-closed. If $P_{\lambda_{\Delta_i}} \subseteq P_{\mu_{\Delta_i}}$ and $P_{\lambda_{\Delta_i}} \subseteq P_{\mu_{\Delta_i}} \subseteq P_{\mu_{\Delta_i}}$, then there exists an $P_{\eta_{\Delta}}$ which is both r-fuzzy β -open and r-fuzzy β -closed such that β -C_{T(θ (R))}(P_{λ_{Δ_i} , r) $\subseteq P_{\eta_{\Delta}} \subseteq \beta$ -I_{T(θ (R))}(P_{μ_{Δ_i}}, r).}

Proof:

By proposition 4.3, we have β -C_{T(θ (R))}(P_{λ_{Δ_i}}, r) $\subseteq \beta$ -C_{T(θ (R))}(P_{λ_{Δ_i}}, r) \cap β -I_{T(θ (R))}(P_{μ_{Δ_i}} , r) \subseteq β -I_{T(θ (R))}(P_{μ_{Δ_i}}, r). Therefore, $P_{\eta_{\Delta}} = \beta - C_{T(\theta(R))}(P_{\lambda_{\Delta}}, r) \cap \beta - I_{T(\theta(R))}(P_{\mu_{\Delta}}, r)$ is such that r-fuzzy β -open and r-fuzzy β -closed. Hence β - $C_{T(\theta(R))}(P_{\lambda_{\Delta_i^{\prime}}}, r) \subseteq P_{\eta_{\Delta}} \subseteq \beta \cdot I_{T(\theta(R))}(P_{\mu_{\Delta_i^{\prime}}}, r).$

Proposition 4.4.

Let $\theta(R)$ be an smooth fuzzy extremally β -disconnected space. Let { $P_{\lambda_{\Delta_{q}}}$ } $q_{\in Q}$ and { $P_{\mu_{\Delta_{q}}}$ } $_{q \in Q}$ be monotone increasing collections of r-fuzzy β-open and r-fuzzy β-closed sets and suppose that $P_{\lambda_{\Delta_{q_1}}} \subseteq P_{\mu_{\Delta_{q_2}}}$ whenever $q_1 < q_2$ (Q is the set of all rational numbers). Then there exists a monotone increasing collections { $P_{\eta_{\Delta q}}$ }_{q∈Q} of r-fuzzy β-open and r-fuzzy βclosed sets such that β -C_{T(θ (R))}($P_{\lambda_{\Delta_{q_1}}}$, r) $\subseteq P_{\eta_{\Delta_{q_2}}}$ and $P_{\eta_{\Delta_{q_1}}}$ $\subseteq \beta$ -I_{T(θ (R))}($P_{\mu_{\Delta_{q_2}}}$, r) whenever $q_1 < q_2$, for all r-fuzzy β -open sets $\lambda_{\Delta q}$, $\mu_{\Delta q}$, $\eta_{\Delta q}$, $r \in I_0$.

Proof:

Let us arrange into a sequence $\{q_n\}$ of all rational numbers (without repetition). For every $n \ge 2$, we shall define inductively a collection { $P_{\eta_{\Delta q_i}} / 1 \le i \le n$ } such that for all $i < n$

$$
\left.\begin{array}{l} \beta\text{-}C_{T(\theta(R))}(\;P_{\lambda_{\Delta q}},r) \subseteq \;P_{\eta_{\Delta q_i}} \; \; \text{if} \; q< q_i \\[.2cm] P_{\eta_{\Delta q_i}} \subseteq \beta\text{-}I_{T(\theta(R))}(\;P_{\mu_{\Delta q}},r) \quad \text{if} \; q_i< q \end{array} \right\} \tag{S_n}
$$

By Proposition 4.3.3, the countable collection { β -C_{T(θ (R))}(P_{$\lambda_{\alpha_{q_1}}$}, r)} and { β -I_{T(θ (R))}(P_{$\mu_{\alpha_{q_2}}$}, r)} satisfy β -C_{T(θ (R))}(P $\lambda_{\alpha_{q_1}}$, r) $\subseteq \beta$ - $I_{T(\theta(R))}(P_{\mu_{\Delta_{q_2}}}, r)$ if $q_1 < q_2$. By Remark 4.3.1., there exists $P_{\delta_{\Delta_1}}$ which is both r-fuzzy β-open and r-fuzzy β-closed, with β- $C_{T(\theta(R))}(P_{\lambda_{\Delta_{q_1}}}, r) \subseteq P_{\delta_{\Delta_1}}$ \subseteq β-I_{T(θ (R))}(P_{$\mu_{\Delta q_2}$}, r). Setting P_{δ_{Δ_1}} $= P_{\eta_{\Delta q_1}}$ we get (S_2) . Define $P_{\psi_{\Delta}} = \bigcup \{ P_{\eta_{\Delta q_i}} / i < n, q_i < q_n \}$ $P_{\lambda_{\Delta q_{n}}}$ and $P_{\phi_{\Delta}} = \bigcap \{ P_{\eta_{\Delta q_{j}}}/j \leq n, q_{j} > q_{n} \} \bigcap P_{\mu_{\Delta q_{n}}}$. Then, we have $\beta - C_{T(\theta(R))}(P_{\eta_{\Delta q_{j}}}, r) \subseteq \beta - C_{T(\theta(R))}(P_{\psi_{\Delta}}, r) \subseteq \beta - I_{T(\theta(R))}(P_{\eta_{\Delta q_{j}}}, r)$ r) and β -C_{T(θ (R))}(P_{$\eta_{\Delta q_i}$}, r) \subseteq β -I_{T(θ (R))}(P_{ϕ_{Δ}}, r) \subseteq β -I_{T(θ (R))}(P_{$\eta_{\Delta q_j}$}, r) whenever $q_i < q_n < q_j$ ($i < j < n$) and $P_{\lambda_{\Delta q_j}} \subseteq \beta$ -C_{T(θ (R))}(P_{ψ_{Δ}}, r) $\subseteq P_{\mu_{\Delta q}}$ and $P_{\lambda_{\Delta q}} \subseteq \beta$ -I_{T($\theta(R)$)}($P_{\phi_{\Delta}}$, r) $\subseteq P_{\mu_{\Delta q}}$, whenever $q < q_n < q'$. This shows that the countable collections $\{P_{\eta_{\Delta q}} / i < n, q_i < q' \}$ $q_{n} \} \cup \{P_{\lambda_{\Delta q}}/q \lt q_{n}\}\$ and $\{P_{\eta_{\Delta q_{j}}}/j \lt n, q_{j} > q_{n}\}\cup \{P_{\mu_{\Delta q}}/q > q_{n}\}\$ together with $P_{\Psi_{\Delta}}$ and $P_{\phi_{\Delta}}$ fulfill all the conditions of Remark 4.1. Hence there exists a collection $P_{\delta_{\Delta q_n}}$ which is r-fuzzy β -open and r-fuzzy β -closed such that

$$
\begin{aligned} &\beta\hbox{-}C_{T(\theta(R))}(P_{\delta_{\Delta q_n}},r)\subseteq P_{\mu_{\Delta q}}\ \text{if}\ q>q_n\\ &P_{\lambda_{\Delta q}}\subseteq& \beta\hbox{-}I_{T(\theta(R))}(\ P_{\delta_{\Delta q_n}},r)\ \ \text{if}\ q< q_n\\ &\beta\hbox{-}C_{T(\theta(R))}(\ P_{\eta_{\Delta q_i}},r)\subseteq& \beta\hbox{-}I_{T(\theta(R))}(\ P_{\delta_{\Delta q_n}},r)\ \text{if}\ q_i< q_n\\ &\beta\hbox{-}C_{T(\theta(R))}(P_{\delta_{\Delta q_n}},r)\subseteq& \beta\hbox{-}I_{T(\theta(R))}(P_{\eta_{\Delta q_j}},r)\ \text{if}\ q_j>q_n\ \text{where}\ 1\leq i,j\leq n-1.\end{aligned}
$$

Now setting $P_{\eta_{\Delta q_n}} = P_{\delta_{\Delta q_n}}$ we obtain the collections $P_{\eta_{\Delta q_1}}, P_{\eta_{\Delta q_2}}, \dots, P_{\eta_{\Delta q_n}}$, that satisfy (S_{n+1}) . Therefore the collection { $P_{\eta_{\Delta q_i}}/i$ $= 1,2,3, --- n$ } has the required property.

Definition 4.2.

Let $\theta(R)$ be an maximal smooth fuzzy β-centered system. The smooth fuzzy real line R*(I) in smooth fuzzy βcentered system is the set of all monotone decreasing $_{\Delta}$ } satisfying \cup { P_{$_{\lambda_{\Delta}(t)}$} / t \in R } = $\theta(R)$ and \cap { $P_{\lambda_{\Delta}(t)}$ /t $\in R$ } = ϕ , after the identification of $P_{\lambda_{\Delta}}$ and $P_{\mu_{\Delta}}$ iff $P_{\lambda_{\Delta}(t)} = P_{\mu_{\Delta}(t)}$ and $P_{\lambda_{\Delta}(t+)} = P_{\mu_{\Delta}(t+)}$ for all $t \in R$, where $P_{\lambda_{\Delta}(t)} =$ \cap { $P_{\lambda_{\Delta}(s)}$ / s < t } and $P_{\lambda_{\Delta}(t+)} = \cup$ { $P_{\lambda_{\Delta}(s)}$ / s > t }. The natural smooth fuzzy topology on R*(I) is generated from the sub-basis $\{L_t^*, R_t^*\}\$ where L_t^* [P_{λ}] = P_{λ} _(t-) and R_t^* [P_{λ}] = P_{λ} _(t+). A partial order on $R^*(I)$ is defined by $[P_{\lambda}$] $\leq [P_{\mu}$] iff P_{λ} _{Δ (t-) \subseteq} $P_{\mu_{\Delta}(t-)}$ and $P_{\lambda_{\Delta}(t+)} \subseteq P_{\mu_{\Delta}(t+)}$ for all $t \in R$.

Definition 4.3.

Let $\theta(R)$ be an maximal smooth fuzzy β-centered system. The smooth fuzzy unit interval I*(I) in smooth fuzzy βcentered system is a subset of $R^*(I)$ such that $[P_{\lambda_{\Delta}}] \in I^*(I)$ if $P_{\lambda_{\Delta}(t)} = \theta(R)$ for $t < 0$ and $P_{\lambda_{\Delta}(t)} = \phi$ for $t > 1$ where λ_{Δ} 's are rfuzzy β-open set and $t \in R$, $r \in I_0$.

Definition 4.4.

Let $\theta(R)$ be an maximal smooth fuzzy β-centered system. A mapping f : $\theta(R) \to R^*(I)$ is called lower (upper) smooth fuzzy β-continuous if $f^{-1}(R_t^*)$ (resp. $f^{-1}(L_t^*)$) is r-fuzzy β-open (resp. $f^{-1}(L_t^*)$) is r-fuzzy β-open and r-fuzzy βclosed set), for all $t \in R$, $r \in I_0$.

Proposition 4.5.

Let $\theta(R)$ be an maximal smooth fuzzy β -centered system. Let $f : \theta(R) \to R^*(I)$ be a mapping such that

$$
f(P_{\lambda_{\Delta}(t)}) = \n\begin{cases}\n\theta(R) & t < 0 \\
P_{\lambda_{\Delta}(t)} & 0 \le t \le 1 \\
\phi & t > 1\n\end{cases}
$$

Where λ_{Δ} is a r-fuzzy β-open set. Then f is lower (upper) smooth fuzzy β-continuous iff λ_{Δ} is a r-fuzzy β-open set (resp rfuzzy β-closed).

Proof:

Now,

$$
f^{-1}(R_t^*) = \begin{cases} \theta(R) & t < 0 \\ 0 \le t \le 1 \\ \phi & t > 1 \end{cases}
$$

implies that f is lower smooth fuzzy β-continuous iff $P_{λ(t)}$ is r-fuzzy β-open. Now, $\theta(R)$ t < 0

$$
\\ \text{low},
$$

$$
f^{-1}(L_t^*) = \begin{cases} \n\frac{1}{2} & \text{if } t < 0 \\ \n\frac{1}{2} & \text{if } t < 1 \\ \n\frac{1}{2} & \text{if } t > 1 \n\end{cases}
$$

implies that f is upper smooth fuzzy β-continuous iff $P_{\lambda_{\Delta}(t)}$ is r-fuzzy β-open and r-fuzzy β-closed.

Definition 4.5.

Let $\theta(R)$ be an maximal smooth fuzzy β -centered system. The characteristic function $\chi_{P_{\lambda_{\Delta}}}$ $(P_{\lambda_{\Delta}})$ is a function $\chi_{P_{\lambda_{\Delta}}}$: $\theta(R) \rightarrow I^*(I)$ defined by $\chi_{P_{\lambda_{\Delta}}}$ $(P_{\mu_{\Delta}}) = P_{\lambda_{\Delta}}$ if $P_{\mu_{\Delta}} \in \theta(R)$.

Definition 4.6.

Let θ(R) be an maximal smooth fuzzy β-centered system. Then $\chi_{P_{\lambda_{\Delta}}}$ is lower (resp. upper) smooth fuzzy βcontinuous iff $P_{\lambda_{\Delta}}$ is r-fuzzy β -open(resp., $P_{\lambda_{\Delta}}$ is r-fuzzy β -open and r-fuzzy β -closed), $r \in I_0$.

Definition 4.7.

Let $\theta(R)$ be an maximal smooth fuzzy β-centered system. Then f : $\theta(R) \to R^*(I)$ is said to be strongly smooth fuzzy β-continuous if $f^{-1}(R_t^*)$ is smooth fuzzy β-open and $f^{-1}(L_t^*)$ is both r-fuzzy β-open and r-fuzzy β-closed, for all $t \in R$, $r \in R$ $\mathrm{I}_{_{0}}$.

Proposition 4.7.

Let $\theta(R)$ be an maximal smooth fuzzy β-centered system. Then the following statements are equivalent :

- (a) $\theta(R)$ is an smooth fuzzy extremally β-disconnected space.
- (b) If g, h : $\theta(R) \rightarrow R^*(I)$, where g is lower smooth fuzzy β-continuous, h is upper smooth fuzzy β-continuous and $g \leq h$, then there exists a strong smooth fuzzy β-continuous function f such that $g \le f \le h$.
- (c) If $\theta(R) P_{\lambda_{\Delta}}$ and $P_{\mu_{\Delta}}$ are both r-fuzzy β-open and β-closed with $P_{\mu_{\Delta}} \subseteq P_{\lambda_{\Delta}}$, then there exist a strong smooth fuzzy β-continuous function $f: \theta(R) \to I$ such that $P_{\mu_{\Delta}} \subseteq (\theta(R) - L_1^*) f \subseteq R_0^* f \subseteq P_{\lambda_{\Delta}}$.

Proof:

$(a) \Rightarrow (b)$

Define $H_i = h^{-1}L_i^*$ and $G_i = g^{-1}(\theta(R) - R_i^*)$, $i \in Q$. Then we have two monotone increasing collections H_i which are rfuzzy β-open sets and G_i r-fuzzy β-closed sets, $r \in I_0$. Moreover H_i $\subseteq G_j$ if i < j. By Proposition 4.3.4, there exists a monotone increasing collections of r-fuzzy β-open and r-fuzzy β-closed sets { F_i }_{ieQ}, such that β -C_{T(θ (R))}(H_i, r) $\subseteq F_j$ and F_i $\subseteq \beta$ -I_{T(θ (R))}(G_j, r) if i < j. Set V_k = $\bigcap_{i \le k} (1 - F_i)$ such that V_k is a monotone decreasing collection of r-fuzzy β -open and r-fuzzy β-closed sets.

Moreover, β -C_{T(θ (R))}(V_k, r) $\subseteq \beta$ -I_{T(θ (R))}(V_j, r) whenever k < j.

Therefore,
$$
\bigcup_{k \in R} V_k = \bigcup_{k \in R} (\bigcap_{i < k} (1 - F_i))
$$
\n
$$
\supseteq \bigcup_{k \in R} (\bigcap_{i < k} (1 - G_i))
$$
\n
$$
= \bigcup_{k \in R} (\bigcap_{i < k} g^{-1}(R_i^*))
$$
\n
$$
= \bigcup_{k \in R} (g^{-1}(R_k^*))
$$
\n
$$
= g^{-1}(\bigcup_{k \in R} R_k^*)
$$
\n
$$
= \theta(R).
$$

Similarly, $\bigcap_{k \in R} V_k = \phi$.

Define a function $f: \theta(R) \to R^*(I)$ satisfying the required properties. Let $f(P_{\lambda_{\Delta_i}}) = \eta_{\Delta_i}(t)$ where $P_{\eta_{\Delta_i}(t)}$ is a collection

in V_k. To prove that f is strongly smooth fuzzy β-continuous. We observe that $\bigcup_{j>k} V_j = \bigcup_{j>k} \beta I_{T(\theta(R))}(V_j, r)$ and $\bigcap_{j < k} V_j =$

 $\bigcap_{j\leq k} \beta$ -C_{T(θ (R))}(V_j, r). Then f⁻¹(R_k*) = $\bigcup_{j>k} V_j = \bigcup_{j>k} \beta$ -I_{T(θ (R))}(V_j, r) is r-fuzzy β -open set and f⁻¹(1 - L_k*) = $\bigcap_{j\leq k} V_j = \bigcap_{j\leq k} \beta$ - $C_{T(\theta(R))}(V_j, r)$ is r-fuzzy β-closed and $f^{-1}(L_k^*)$ is r-fuzzy β-open set. Hence f is strongly smooth fuzzy β-continuous. To show that $g \le f \le h$. That is, $g^{-1}(1 - L_t^*) \subseteq f^{-1}(1 - L_t^*) \subseteq h^{-1}(1 - L_t^*)$, $g^{-1}(R_t^*) \subseteq f^{-1}(R_t^*) \subseteq h^{-1}(R_t^*)$.

Now,
$$
g^{-1}(1 - L_t^*)
$$
 = $\bigcap_{s < t} g^{-1}(1 - L_s^*)$
\n= $\bigcap_{s < t} \bigcap_{p < s} g^{-1}(R_p^*)$
\n= $\bigcap_{s < t} \bigcap_{p < s} (1 - G_p)$
\n= $\bigcap_{s < t} \bigcap_{p < s} (1 - F_p)$
\n= $\bigcap_{s < t} V_s$
\n= $f^{-1}(1 - L_t^*)$
\n $f^{-1}(\theta(R) - L_t^*)$ = $\bigcap_{s < t} V_s$

www.ijmer.com 469 | Page

$$
= \bigcap_{s < t} \bigcap_{p < s} (1 - F_p)
$$

\n
$$
\subseteq \bigcap_{s < t} \bigcap_{p < s} (1 - H_p)
$$

\n
$$
= \bigcap_{s < t} \bigcap_{p < s} h^{-1} (1 - L_p^*)
$$

\n
$$
= \bigcap_{s < t} h^{-1} (1 - L_s^*)
$$

\n
$$
= h^{-1} (1 - L_t^*)
$$

Similarly we obtain,

$$
g^{-1}(R_t^*) = \bigcup_{s>t} g^{-1}(R_s^*)
$$

\n
$$
= \bigcup_{s>t} \bigcup_{p>s} g^{-1}(R_p^*)
$$

\n
$$
= \bigcup_{s>t} \bigcup_{p>s} (1 - G_p)
$$

\n
$$
\subseteq \bigcup_{s>t} \bigcap_{p
\n
$$
= \bigcup_{s>t} V_s
$$

\n
$$
= f^{-1}(R_t^*) \text{ and }
$$

\n
$$
f^{-1}(R_t^*) = \bigcup V_s
$$
$$

$$
f^{-1}(R_t^*) = \bigcup_{s>t} V_s
$$

\n
$$
= \bigcup_{s>t} \bigcap_{p
\n
$$
\subseteq \bigcup_{s>t} \bigcap_{p
\n
$$
= \bigcup_{s>t} \bigcap_{p
\n
$$
= \bigcup_{s>t} h^{-1}(R_s^*)
$$

\n
$$
= h^{-1}(R_t^*).
$$
$$
$$
$$

Thus (b) is proved.

 $$

Suppose $P_{\lambda_{\Delta}}$ is r-fuzzy β-open set and r-fuzzy β-closed set and $P_{\mu_{\Delta}}$ is r-fuzzy β-open set and r-fuzzy β-closed set with $P_{\mu_{\Delta}} \subseteq P_{\lambda_{\Delta}}$. Then $\chi_{P_{\mu_{\Delta}}}$ $\subseteq \chi_{P_{\lambda_{\Delta}}}$, where $\chi_{P_{\mu_{\Delta}}}$, $\chi_{P_{\lambda_{\Delta}}}$ are lower and upper smooth fuzzy β-continuous function respectively. By (b), there exist a strongly smooth fuzzy β-continuous function $f: \theta(R) \to R(I)$ such that $\chi_{P_{\mu_{\Delta}}}$ $\leq f \leq \chi_{P_{\lambda_{\Delta}}}$. Clearly $f(P_{\lambda_{\Delta}}) \in I^*(I)$ and $P_{\mu_{\Delta}} = (1 - L_1^*) \chi_{P_{\mu_{\Delta}}}$ $\subseteq (1 - L_1^*)f \subseteq R_0^*f \subseteq R_0^* \chi_{P_{\lambda_{\Delta}}}$ $\subseteq P_{\lambda_{\Delta}}$. Therefore, $P_{\mu_{\Delta}} \subseteq (1 - L_1^*) f \subseteq R_0^* f \subseteq P_{\lambda_{\Delta}}$.

 $(c) \Rightarrow (a)$

By (c), it follows that $(1 - L_1^*)$ f and R₀*f are r-fuzzy β-open and r-fuzzy β-closed. By Proposition 4.3, it follows that $θ$ (R) is an smooth fuzzy extremally β-disconnected space.

V. Tietze Extension Theorem

In this section, Tietze Extension Theorem for smooth fuzzy extremally β-disconnected space is discussed.

Proposition 5.1.

Let $\theta(R)$ be a smooth fuzzy extremally β -disconnected space. Let $A \subseteq \theta(R)$ and the collection { P_{λ_A} } in A such that $\chi_{P_{\lambda_{\Delta}}}$ is r-fuzzy β-open. Let $f: A \rightarrow I^*(I)$ be a strongly smooth fuzzy β-continuous function. Then, f has a is r-fuzzy β-open. Let f : A → I^{*}(I) be a strongly smooth fuzzy β-continuous function. Then, f has a strongly smooth fuzzy β-continuous extension over $θ(R)$.

Proof:

Let g, h : $\theta(R) \rightarrow I^*(I)$ be such that $g = f = h$ on A. Now,

$$
R_t{}^\star g = \begin{cases} P_{\mu_{\Delta_t}} \wedge \chi_{P_{\lambda_{\Delta}}}&\text{if }t\geq 0\\qquad \qquad \text{if }t<0\text{ where }P_{\mu_{\Delta_t}}\text{ is r-fuzzy }\beta\text{-open}\end{cases}
$$

set and is such that $P_{\mu_{\Delta_t}} = R_t * g$ in A.

$$
L_t * h = \begin{cases} P_{\lambda_{\Delta_t}} \wedge \chi_{P_{\lambda_{\Delta}}} & \text{if } t \leq 1 \\ \theta(R) & \text{if } t > 1 \text{ where } P_{\lambda} \end{cases}
$$

 Δ_t is both r-fuzzy β-open and β-closed set is such that $P_{\lambda_{\Delta_t}} = L_t * h$ in A. Thus g is lower smooth fuzzy β-continuous, h is upper smooth fuzzy β-continuous and g $\leq h$. By Proposition 4.7, there is a strong smooth fuzzy β-continuous function F: $\theta(R) \rightarrow I^*(I)$ such that $g \le F \le h$. Hence $f = F$ on A.

REFERENCES

- [1] GANTNER.T.E., STEINLAGE.R.C and WARREN.R.H: Compactness in fuzzy topological; spaces, J. Math. Anal. Appl., 62 (1978), 547-562.
- [2] HUTTON.B. : Normality in fuzzy topological spaces, J. Math. Anal. Appl., 43 (1973), 734-742.
- [3] ILLIADIS and FOMIN.S: The method of centred systems in the theory of topological spaces, N, 21(1966), 47 66.
- [4] RAMADAN A.A: A smooth topological spaces, Fuzzy Sets and Systems 48,371 (1992).
- [5] RAMADAN A.A, ABBAS. S.E. and ABD EL LATIF A.A.: On fuzzy bitopological spaces in Sostak's sense, Commun. Korean Math.Soc., 21 [2006), 865 – 877.
- [6] SOSTAK A.P.: On a fuzzy topological structure. Rend. Circ. Materm Palermo (Ser II), 11 (1985), 89 103
- [7] UMA M.K., ROJA.E, BALASUBRAMANIAN.G: The method of centred systems in fuzzy topological spaces, The Journal of fuzzy mathematics, $15(4)$, 2007 , $1 - 7$.
- [8] ZADEH L.A.: Fuzzy sets. Information and Control, 8(1965), 338 353.