EXTREMALLY β-DISCONNECTEDNESS IN SMOOTH FUZZY β-CENTERED SYSTEM

T. Nithiya, ¹ M.K. Uma, ² E. Roja³

¹Department of Mathematics, Avs Engineering College, Salem-636003 Tamil Nadu, India ²³Department of Mathematics, Sri Sarada College for Women, Salem-636016 Tamil Nadu, India

Abstract: In this paper, we introduce maximal smooth fuzzy β -centered system, the smooth fuzzy space $\theta(R)$. Also extremally β -disconnectedness in smooth fuzzy β -centered system and its properties are studied.

Keywords: Maximal smooth fuzzy β -centered system, the smooth fuzzy space $\theta(R)$ and smooth fuzzy extremally β -disconnectedness.

2000 Mathematics Subject Classification: 54A40-03E72.

I. Introduction and Preliminaries

The concept of fuzzy set was introduced by Zadeh [8]. Since then the concept has invaded nearly all branches of mathematics. In 1985, a fuzzy topology on a set X was defined as a fuzzy subset T of the family I^X of fuzzy subsets of X satisfying three axioms, the basic properties of such a topology were represented by Sostak [6]. In 1992, Ramadan [4], studied the concepts of smooth topological spaces. The method of centered systems in the theory of topology was introduced in [3]. In 2007, the above concept was extended to fuzzy topological spaces by Uma, Roja and Balasubramanian [8]. In this paper, the method of β -centered system is studied in the theory of smooth fuzzy topology. The concept of extremally β -disconnectedness in maximal structure $\theta(R)$ of maximal smooth fuzzy β -centered system is introduced and its properties are studied.

Definition 1.1. [6]

A function T: $I \xrightarrow{x} I$ is called a smooth fuzzy topology on X if it satisfies the following conditions:

- a) $T(\overline{0}) = T(\overline{1}) = 1$
- b) $T(\mu_1 \land \mu_2) \ge T(\mu_1) \land T(\mu_2)$ for any $\mu_1, \mu_2 \in I^X$
- c) $T\left(\bigvee_{i\in\Gamma}\mu_{i}\right) \geq \bigwedge_{i\in\Gamma}T(\mu_{i})$ For any $\{\mu_{i}\}_{i\in\Gamma} \in I^{X}$

The pair (X, T) is called a smooth fuzzy topological space.

Definition 1.2. [7]

Let R be a fuzzy Hausdroff space. A system $p = \{\lambda_{\alpha}\}$ of fuzzy open sets of R is called fuzzy centered system if any finite collection of fuzzy sets of the system has a non-zero intersection. The system p is called maximal fuzzy centered system or a fuzzy end if it cannot be included in any larger fuzzy centered system.

Definition 1.3. [7]

Let $\theta(R)$ denotes the collection of all fuzzy ends belonging to R. We introduce a fuzzy topology in $\theta(R)$ in the following way: Let P_{λ} be the set of all fuzzy ends that include λ as an element, where λ is a fuzzy open set of R. Now P_{λ} is a fuzzy neighbourhood of each fuzzy end contained in P_{λ} . Thus to each fuzzy open set of R, there corresponds a fuzzy neighbourhood P_{λ} in $\theta(R)$.

Definition 1.4. [7]

A fuzzy Hausdroff space R is extremally disconnected if the closure of an open set is open.

Definition 1.5. [1]

 $\begin{array}{l} \text{The fuzzy real line } R(L) \text{ is the set of all monotone decreasing elements } \lambda \in L^R \text{ satisfying } \vee \{ \ \lambda(t)/\ t \in R \ \} = 1 \text{ and } \wedge \{ \ \lambda(t)/\ t \in R \ \} = 0, \text{ after the identification of } \lambda, \ \mu \in L^R \text{ iff } \lambda(t-) = \mu(t-) \text{ and } \lambda(t+) = \mu(t+) \text{ for all } t \in R, \text{ where } \lambda(t-) = \wedge \{ \ \lambda(s) : s < t \ \} \text{ and } \lambda(t+) = & \quad \lor \{ \ \lambda(s) : s > t \ \}. \text{ The natural } L\text{-fuzzy topology on } R(L) \text{ is generated from the sub-basis } \{ \ L_t, \ R_t \ \} \text{ where } L_t(\lambda) = \lambda(t-)' \text{ and } R_t(\lambda) = \lambda(t+). \end{array}$

Definition 1.6. [2]

The L-fuzzy unit interval I (L) is a subset of R(L) such that $[\lambda] \in I(L)$ if $\lambda(t) = 1$ for t < 0 and $\lambda(t) = 0$ for t > 1.

Definition 1.7. [5]

A fuzzy set λ is quasi-coincident with a fuzzy set μ , denoted by $\lambda q \mu$, if there exists $x \in X$ such that $\lambda(x) + \mu(x) > 1$, otherwise $\lambda q \mu$.

Π. The Spaces of maximal smooth fuzzy β-centered systems

In this section the maximal smooth fuzzy centered system is introduced and its properties are discussed.

Definition 2.1.

A smooth fuzzy topological space (X, T) is said to be smooth fuzzy β -Hausdorff iff for any two distinct fuzzy points x_{t_1} , x_{t_2} in X, there exists r-fuzzy β -open sets λ , $\mu \in I^X$ such that $x_{t_1} \in \lambda$ and $x_{t_2} \in \mu$ with $\lambda q \mu$.

Definition 2.2.

Let R be a smooth fuzzy β -Hausdorff space. A system $p_{\beta} = \{\lambda_i\}$ of r-fuzzy β -open sets of R is called a smooth fuzzy β -centered system if any finite collection of $\{\lambda_i\}$ is such that $\lambda_i q \lambda_j$ for $i \neq j$. The system p_{β} is called maximal smooth fuzzy β -centered system or a smooth fuzzy β -end if it cannot be included in any larger smooth fuzzy β -centered system.

Definition 2.3.

Let (X, T) be a smooth fuzzy topological space. Its $Q^*\beta$ -neighbourhood structure is a mapping $Q^* : X \ge I \xrightarrow{X} J$ (X denotes the totality of all fuzzy points in X), defined by

 $Q^*(x_0^t, \lambda) = \sup \{ \mu : \mu \text{ is an } r \text{-fuzzy } \beta \text{-open set}, \mu \leq \lambda, x_0^t \in \mu \} \text{ and }$

$$\lambda = \inf_{x_0^t q \lambda} Q^*(x_0^t, \lambda) \text{ is r-fuzzy } \beta \text{-open set.}$$

We note the following Properties of maximal smooth fuzzy β -centred system.

(1) If
$$\lambda_i \in p_{\beta}$$
 (i = 1, 2, 3...n), then $\bigwedge_{i=1}^{n} \lambda_i \in p$.

Proof:

If $\lambda_i \in p_{\beta}$ (i = 1, 2, 3...n), then $\lambda_i q \lambda_j$ for $i \neq j$. If $\bigwedge_{i=1}^n \lambda_i \notin p_{\beta}$, then $p_{\beta} \cup \{\bigwedge_{i=1}^n \lambda_i\}$ will be a larger smooth fuzzy β -end than p.

This contradicts the maximality of p_{β} . Therefore, $\bigwedge_{i=1}^{n} \lambda_i \in p_{\beta}$.

(2) If $\overline{0} \neq \lambda < \mu, \lambda \in p_{\beta}$ and μ is an r-fuzzy β -open set, then $\mu \in p_{\beta}$.

Proof:

If $\mu \notin p_{\beta}$, then $p_{\beta} \cup \{\mu\}$ will be a larger smooth fuzzy β -end than p_{β} . This contradicts the maximality of p_{β} . Therefore $\mu \in p_{\beta}$.

(3) If λ is r-fuzzy β -open set, then $\lambda \notin p_{\beta}$ iff there exists $\mu \in p_{\beta}$ such that

$\lambda q \mu$.

Proof:

Let $\lambda \notin p_{\beta}$ be an r-fuzzy β -open set. If there exists no $\mu \in p_{\beta}$ such that $\lambda q \mu$, then $\lambda q \mu$ for all $\mu \in p_{\beta}$. That is, $p_{\beta} \cup \{\lambda\}$ will be a larger smooth fuzzy β -end than p_{β} . This contradicts the maximality of p_{β} .

Conversely, suppose that there exists $\mu \in p_{\beta}$ such that $\lambda q \mu$. If $\lambda \in p_{\beta}$, then $\lambda q \mu$. Contradiction. Hence $\lambda \notin p_{\beta}$.

(3) If $\lambda_1 \vee \lambda_2 = \lambda_3 \in p_{\beta}$, λ_1 and λ_2 are r-fuzzy β -open sets in R with $\lambda_1 q \lambda_2$, then either $\lambda_1 \in p_{\beta}$ or $\lambda_2 \in p_{\beta}$.

Proof:

Let us suppose that both $\lambda_1 \in p_{\beta}$ and $\lambda_2 \in p_{\beta}$. Then $\lambda_1 q \lambda_2$. Contradiction. Hence either $\lambda_1 \in p_{\beta}$ or $\lambda_2 \in p_{\beta}$.

Note 2.1

Every smooth fuzzy β -centered system can be extended in atleast one way to a maximum one.

III. The Smooth Fuzzy maximal structure in $\theta(\mathbf{R})$.

In this section, smooth fuzzy maximal structure in the collection of all smooth fuzzy β -ends $\theta(R)$ is introduced and its properties are investigated.

Let $\theta(R)$ denotes the collection of all smooth fuzzy β -ends belonging to R. We introduce a smooth fuzzy maximal structure in $\theta(R)$ in the following way:

Let P_{λ} be the set of all smooth fuzzy β -ends that include λ as an element, where λ is a r-fuzzy β -open set of R. Now, P_{λ} is a smooth fuzzy Q^* β -neighbourhood structure of each smooth fuzzy β -end contained in P_{λ} . Thus to each r-fuzzy β -open set λ of R corresponds a smooth fuzzy Q^* β -neighbourhood structure P_{λ} in $\theta(R)$.

Proposition 3.1.

If λ and μ are r-fuzzy β -open sets, then (a) $P_{\lambda \lor \mu} = P_{\lambda} \cup P_{\mu}$. (b) $P_{\lambda} \cup P_{\overline{1}-C_{T(P_{\lambda})}(\lambda,r)} = \theta(R)$.

Proof:

(a) Let $p_{\beta} \in P_{\lambda}$. That is, $\lambda \in p_{\beta}$. Then by Property (2), $\lambda \lor \mu \in p_{\beta}$. That is, $p_{\beta} \in P_{\lambda \lor \mu}$. Hence $P_{\lambda} \cup P_{\mu} \subseteq P_{\lambda \lor \mu}$. Let $p\beta \in P_{\lambda \lor \mu}$. Let $p\beta \in P_{\lambda \lor \mu}$. That is, $\lambda \lor \mu \in p_{\beta}$. By the definition of P_{λ} , $\lambda \in p_{\beta}$ or $\mu \in p_{\beta}$. That is, $p_{\beta} \in P_{\lambda}$ or $p_{\beta} \in P_{\mu}$, therefore, $p_{\beta} \in P_{\lambda} \cup P_{\mu}$. This shows that $P_{\lambda} \cup P_{\mu} \supseteq P_{\lambda \lor \mu}$. Hence, $P_{\lambda \lor \mu} = P_{\lambda} \cup P_{\mu}$. (b) If $p_{\beta} \notin P_{\overline{1}-C_{T(R)}(\lambda,r)}$, then $\overline{1} - C_{T(R)}(\lambda, r) \notin p_{\beta}$. That is, $\lambda \in p_{\beta}$ and $p_{\beta} \in P_{\lambda}$. Hence, $\theta(R) - P_{\overline{1}-C_{T(R)}(\lambda,r)} \subset P_{\lambda}$. If p_{β} .

 $\in P_{\lambda}, \text{ then } \lambda \in p_{\beta}. \text{ That is, } \overline{1} - C_{T(R)}(\lambda, r) \notin p_{\beta}, p_{\beta} \notin P_{\overline{1} - C_{T(R)}(\lambda, r)}. \text{ Therefore, } p_{\beta} \in \theta(R) - P_{\overline{1} - C_{T(R)}(\lambda, r)}. \text{ That is, } P_{\lambda} \subset \theta(R) - P_{\overline{1} - C_{T(R)}(\lambda, r)}. \text{ Hence, } P_{\lambda} \cup P_{\overline{1} - C_{T(R)}(\lambda, r)} = \theta(R).$

Proposition 3.2.

 $\theta(R)$ With the smooth fuzzy maximal structure described above is a smooth fuzzy β -compact space and has a base of smooth fuzzy Q* β -neighbourhood structure {P_{λ}} that are both r-fuzzy β -open and r-fuzzy β -closed.

Proof:

Each P_{λ} in $\theta(R)$ is a r-fuzzy β -open by definition and by (b) of Proposition 3.1, it follows that it is r-fuzzy β -closed. Thus $\theta(R)$ has a base of smooth fuzzy $Q^*\beta$ -neighbourhood structure { P_{λ} } that are both r-fuzzy β -open and r-fuzzy β -closed. We now show that $\theta(R)$ is smooth fuzzy β -compact. Let { $P_{\lambda_{\alpha}}$ } be a covering of $\theta(R)$ where each $P_{\lambda_{\alpha}}$ is r-fuzzy β -open. If it

is impossible to pick a finite sub covering from the covering, then no set of the form $\overline{1} - \bigvee_{i=1}^{n} \beta - C_{T(R)}(\lambda_{\alpha_{i}}, r)$ is $\overline{0}$, since

otherwise the sets $P_{\lambda_{\alpha_{i}}}$ would form a finite covering of $\theta(R)$. Hence the sets $\overline{1} - \bigvee_{i=1}^{n} \beta - C_{T(R)}(\lambda_{\alpha_{i}}, r)$ form a smooth fuzzy β -centered system. It may be extended to a maximal smooth fuzzy β -centered system p_{β} . This maximal smooth fuzzy β -centered system is not contained in $\{P_{\lambda_{\alpha}}\}$ since it contains in particular, all the $\overline{1} - \beta - C_{T(R)}(\lambda_{\alpha_{i}}, r)$. This contradiction proves that $\theta(R)$ is smooth fuzzy β -compact.

IV. Smooth fuzzy Extremally β -Disconnectedness in the maximal structure $\theta(R)$.

Definition 4.1.

A smooth fuzzy β -Hausdorff space R is smooth fuzzy extremally β -disconnected if β -C_{T(R)}(λ , r) is r-fuzzy β -open for any r-fuzzy β -open set λ , $r \in I_0$.

Proposition 4.1.

The maximal smooth fuzzy structure $\theta(R)$ of maximal smooth fuzzy β -centered system of R is smooth fuzzy extremally β -disconnected.

Proof:

The proof of this theorem follows from the following equation $P_{\substack{\alpha \\ \alpha}} = \beta - C_{T(\theta(R))}(\bigcup_{\alpha} P_{\lambda_{\alpha}}, r), r \in I_0$. If $\lambda < \mu$, it follows that $P_{\lambda} \subset P_{\mu}$ and therefore $\bigcup_{\alpha} P_{\lambda_{\alpha}} \subset \beta - C_{T(\theta(R))}(P_{\substack{\alpha \\ \alpha}}, r)$. By Proposition 3.2, $P_{\substack{\alpha \\ \alpha}} = r_{\alpha} P_{\lambda_{\alpha}}$ is r-fuzzy β -closed and therefore, $\beta - C_{T(\theta(R))}(\bigcup_{\alpha} P_{\lambda_{\alpha}}, r) \subset P_{\substack{\alpha \\ \alpha}}$. Let p be an arbitrary element of $P_{\substack{\alpha \\ \alpha}} = \bigcup_{\alpha} P_{\lambda_{\alpha}}$. Then by Pro.3.1 (a), $p_{\beta} \in \beta - C_{T(\theta(R))}(\bigcup_{\alpha} P_{\lambda_{\alpha}}, r)$. Therefore, $P_{\substack{\alpha \\ \alpha}} \subset \beta - C_{T(\theta(R))}(\bigcup_{\alpha} P_{\lambda_{\alpha}}, r)$. Hence, $P_{\substack{\alpha \\ \alpha}} = \beta - C_{T(\theta(R))}(\bigcup_{\alpha} P_{\lambda_{\alpha}}, r)$.

Note 4.1.

The maximal structure $\theta(\mathbf{R})$ of maximal smooth fuzzy β -centered system is smooth fuzzy extremally β -disconnected if $P_{\underset{\alpha}{\vee}\lambda_{\alpha}} = \beta - C_{T(\theta(\mathbf{R}))}(\underset{\alpha}{\cup}P_{\lambda_{\alpha}}, r)$ where λ_{α} 's r-fuzzy β -open sets. By Pro 3.1(a), it follows that $P_{\underset{\alpha}{\vee}\lambda_{\alpha}} = \beta - C_{T(\theta(\mathbf{R}))}(\underset{\alpha}{P}_{\underset{\alpha}{\vee}\lambda_{\alpha}}, r)$. That is, $P_{\lambda_{\Delta}} = \beta - C_{T(\theta(\mathbf{R}))}(P_{\lambda_{\Delta}}, r)$ where $\lambda_{\Delta} = \checkmark \lambda_{\alpha}$.

Proposition 4.2.

Let $\theta(R)$ be an maximal smooth fuzzy β -centered system of the smooth fuzzy β -Hausdorff space R. Then the following conditions are equivalent:

- (a) The space $\theta(R)$ is smooth fuzzy extremally β -disconnected.
- (b) For each r-fuzzy β -open $P_{\lambda_{\Lambda}}$, β - $I_{T(\theta(R))}(\theta(R) P_{\lambda_{\Lambda}}, r)$ is r-fuzzy β -closed, $r \in I_0$.
- (c) For each r-fuzzy β -open $P_{\lambda_{\Lambda}}$, β - $C_{T(\theta(R))}(P_{\lambda_{\Lambda}}, r) + \beta$ - $C_{T(\theta(R))}(\theta(R) C_{T(\theta(R))}(P_{\lambda_{\Lambda}}, r), r) = \theta(R), r \in I_0$.
- (d) For every pair of collections of r-fuzzy β -open sets { $P_{\lambda_{\Delta}}$ } and { $P_{\mu_{\Delta}}$ } such that β - $C_{T(\theta(R))}(P_{\lambda_{\Delta}}, r) + P_{\mu_{\Delta}} = \theta(R)$, we have β - $C_{T(\theta(R))}(P_{\lambda_{\Lambda}}, r) + \beta$ - $C_{T(\theta(R))}(P_{\mu_{\Lambda}}, r) = \theta(R)$, $r \in I_0$.

Proof:

(a) \Rightarrow (b).

Let $\theta(R)$ be an smooth fuzzy extremally β -disconnected space and suppose that $P_{\lambda_{\Delta}}$ be r-fuzzy β -open, $r \in I_0$. Now, β - $C_{T(\theta(R))}(P_{\lambda_{\Delta}}, r) = \theta(R) - \beta - I_{T(\theta(R))}(\theta(R) - P_{\lambda_{\Delta}}, r)$. Since $\theta(R)$ is smooth fuzzy extremally β -disconnected, $P_{\lambda_{\Delta}} = \beta - C_{T(\theta(R))}(P_{\lambda_{\Delta}}, r)$. Now, $P_{\lambda_{\Delta}} = \theta(R) - \beta - I_{T(\theta(R))}(\theta(R) - P_{\lambda_{\Delta}}, r)$. Since $P_{\lambda_{\Delta}}$ is r-fuzzy β -open.

(b) \Rightarrow (c).

Suppose that $P_{\lambda_{\Delta}}$ be r-fuzzy β -open, $r \in I_0$. Then,

$$\begin{split} \beta\text{-}C_{T(\theta(R))}(P_{\lambda_{\Delta}},r) &+ \beta\text{-}C_{T(\theta(R))}(\theta(R) - \beta\text{-}C_{T(\theta(R))}(P_{\lambda_{\Delta}},r),r) \\ &= \beta\text{-}C_{T(\theta(R))}(P_{\lambda_{\Delta}},r) + \beta\text{-}C_{T(\theta(R))}(\beta\text{-}I_{T(\theta(R))}(\theta(R) - P_{\lambda_{\Delta}},r),r) \\ &= \beta\text{-}C_{T(\theta(R))}(P_{\lambda_{\Delta}},r) + \beta\text{-}I_{T(\theta(R))}(\theta(R) - P_{\lambda_{\Delta}},r) \\ &= \beta\text{-}C_{T(\theta(R))}(P_{\lambda_{\Delta}},r) + \theta(R) - \beta\text{-}C_{T(\theta(R))}(P_{\lambda_{\Delta}},r) \\ &= \theta(R). \end{split}$$

(c) \Rightarrow (d).

Suppose that $P_{\lambda_{\Delta}}$ and $P_{\mu_{\Delta}}$ are r-fuzzy β -open, $r \in I_0$, with β - $C_{T(\theta(R))}(P_{\lambda_{\Delta}}, r) + P_{\mu_{\Delta}} = \theta(R)$ (4.3.1)

Now by (c), we have

$$\begin{split} \theta(\mathbf{R}) &= \beta \text{-} C_{T(\theta(\mathbf{R}))}(\mathbf{P}_{\lambda_{\Delta}}, \mathbf{r}) + \beta \text{-} C_{T(\theta(\mathbf{R}))}(\theta(\mathbf{R}) - \beta \text{-} C_{T(\theta(\mathbf{R}))}(\mathbf{P}_{\lambda_{\Delta}}, \mathbf{r}), \mathbf{r}) \\ &= \beta \text{-} C_{T(\theta(\mathbf{R}))}(\mathbf{P}_{\lambda_{\Delta}}, \mathbf{r}) + \beta \text{-} C_{T(\theta(\mathbf{R}))}(\mathbf{P}_{\mu_{\Delta}}, \mathbf{r}) \qquad (\text{from (4.3.1)}) \\ \text{Hence, } \beta \text{-} C_{T(\theta(\mathbf{R}))}(\mathbf{P}_{\lambda_{\Lambda}}, \mathbf{r}) + \beta \text{-} C_{T(\theta(\mathbf{R}))}(\mathbf{P}_{\mu_{\Lambda}}, \mathbf{r}) = \theta(\mathbf{R}). \end{split}$$

(d) \Rightarrow (a).

Let us suppose that $P_{\mu_{\Delta}}$ r-fuzzy β -open, $r \in I_0$ and let $P_{\lambda_{\Delta}} = \theta(R) - \beta - C_{T(\theta(R))}(P_{\mu_{\Delta}}, r)$ (4.3.2) This implies that $P_{\lambda_{\Delta}}$ is r-fuzzy β -open. By (d), we have $\beta - C_{T(\theta(R))}(P_{\lambda_{\Delta}}, r) + \beta - C_{T(\theta(R))}(P_{\mu_{\Delta}}, r) = \theta(R)$. (4.3.3) From (4.3.2) and (4.3.3) we have,

 $P_{\lambda_{\Delta}} = \beta - C_{T(\theta(R))}(P_{\lambda_{\Delta}}, r). By Note 4.1, it follows that \theta(R) is smooth fuzzy extremally \beta-disconnected.$

Proposition 4.3.

Let $\theta(R)$ be the space of maximal smooth fuzzy β -centered system of the smooth fuzzy β -Hausdorff space R. Then, $\theta(R)$ is smooth fuzzy extremally β -disconnected iff for all r-fuzzy β -open $P_{\lambda_{\Delta}}$ and r-fuzzy β -closed $P_{\mu_{\Delta}}$ with $P_{\lambda_{\Delta}} \subseteq P_{\mu_{\Delta}}$, β - $C_{T(\theta(R))}(P_{\lambda_{\Delta}}, r) \subseteq \beta$ - $I_{T(\theta(R))}(P_{\mu_{\Delta}}, r)$, $r \in I_0$.

Proof:

 $\begin{array}{ll} \mbox{Let } P_{\lambda_{\Delta}} \mbox{be } r\mbox{-fuzzy }\beta\mbox{-open and } P_{\mu_{\Delta}} \mbox{ be } r\mbox{-fuzzy }\beta\mbox{-closed}, r \in I_0, \mbox{ with } P_{\lambda_{\Delta}} \subseteq P_{\mu_{\Delta}}. \mbox{ Then } \beta\mbox{-}I_{T(\theta(R))}(P_{\lambda_{\Delta}}, r) \subseteq \beta\mbox{-}I_{T(\theta(R))}(P_{\lambda_{\Delta}}, r) \subseteq \beta\mbox{-}I_{T(\theta(R))}(P_{\lambda_{\Delta}}, r) \subseteq \beta\mbox{-}I_{T(\theta(R))}(P_{\lambda_{\Delta}}, r) \subseteq \beta\mbox{-}C_{T(\theta(R))}(P_{\lambda_{\Delta}}, r) \subseteq \beta\mbox{-}C_{T(\theta(R))}(P_{\lambda_{\Delta}}, r) \subseteq \beta\mbox{-}C_{T(\theta(R))}(P_{\lambda_{\Delta}}, r) \subseteq \beta\mbox{-}C_{T(\theta(R))}(P_{\lambda_{\Delta}}, r) \in \beta\mbox{-}C_{T(\theta(R))}(P_{\lambda_{\Delta}}, r) \mbox{-}B_{\Delta} = \beta\mbox{-}I_{T(\theta(R))}(P_{\lambda_{\Delta}}, r) \mbox{-}I_{T(\theta(R))}(P_{\lambda_{\Delta}}, r) \mbox{-}I_{T(\theta(R)})(P_{\lambda_{\Delta}}$

 $\beta \text{-} I_{T(\theta(R))}(P_{\mu_{\Lambda}},r) = \beta \text{-} C_{T(\theta(R))}(\ \beta \text{-} I_{T(\theta(R))}(P_{\mu_{\Lambda}},r),r).$

That is, β -I_{T($\theta(R)$)}(P_{μ_{Δ}}, r)) is r-fuzzy β -closed. By Proposition 4.2(b), it follows that $\theta(R)$ is smooth fuzzy extremally β -disconnected.

Remark 4.1.

Let $\theta(R)$ be an smooth fuzzy extremally β -disconnected space. Let $\{P_{\lambda_{\Delta_i}}, \theta(R) - P_{\mu_{\Delta_i}}, I \in N\}$ be a collection such that $P_{\lambda_{\Delta_i}}$ are r-fuzzy β -open and $P_{\mu_{\Delta_i}}$ are r-fuzzy β -closed, $r \in I_0$. Let $P_{\lambda_{\Delta}}, P_{\mu_{\Delta}}$ are both r-fuzzy β -open and r-fuzzy β -closed. If $P_{\lambda_{\Delta_i}} \subseteq P_{\lambda_{\Delta}} \subseteq P_{\mu_{\Delta_i}}$ and $P_{\lambda_{\Delta_i}} \subseteq P_{\mu_{\Delta}} \subseteq P_{\mu_{\Delta_i}}$, then there exists an $P_{\eta_{\Delta}}$ which is both r-fuzzy β -open and r-fuzzy β -closed such that β - $C_{T(\theta(R))}(P_{\lambda_{\Delta_i}}, r) \subseteq P_{\eta_{\Delta}} \subseteq \beta$ - $I_{T(\theta(R))}(P_{\mu_{\Delta_i}}, r)$.

Proof:

By proposition 4.3, we have β - $C_{T(\theta(R))}(P_{\lambda_{\Delta_{i}}}, r) \subseteq \beta$ - $C_{T(\theta(R))}(P_{\lambda_{\Delta}}, r) \cap \beta$ - $I_{T(\theta(R))}(P_{\mu_{\Delta}}, r) \subseteq \beta$ - $I_{T(\theta(R))}(P_{\mu_{\Delta_{i}}}, r)$. Therefore, $P_{\eta_{\Delta}} = \beta$ - $C_{T(\theta(R))}(P_{\lambda_{\Delta}}, r) \cap \beta$ - $I_{T(\theta(R))}(P_{\mu_{\Delta}}, r)$ is such that r-fuzzy β -open and r-fuzzy β -closed. Hence β - $C_{T(\theta(R))}(P_{\lambda_{\Delta}}, r) \subseteq P_{\eta_{\Delta}} \subseteq \beta$ - $I_{T(\theta(R))}(P_{\mu_{\Delta}}, r)$.

Proposition 4.4.

Let $\theta(R)$ be an smooth fuzzy extremally β -disconnected space. Let $\{P_{\lambda_{\Delta_q}}\}q_{\in Q}$ and $\{P_{\mu_{\Delta_q}}\}_{q\in Q}$ be monotone increasing collections of r-fuzzy β -open and r-fuzzy β -closed sets and suppose that $P_{\lambda_{\Delta_{q_1}}} \subseteq P_{\mu_{\Delta_{q_2}}}$ whenever $q_1 < q_2$ (Q is the set of all rational numbers). Then there exists a monotone increasing collections $\{P_{\eta_{\Delta_{q_1}}}\}_{q\in Q}$ of r-fuzzy β -open and r-fuzzy β -closed sets such that β -C_{T($\theta(R)$)}($P_{\lambda_{\Delta_{q_1}}}$, r) $\subseteq P_{\eta_{\Delta_{q_2}}}$ and $P_{\eta_{\Delta_{q_1}}} \subseteq \beta$ -I_{T($\theta(R)$)}($P_{\mu_{\Delta_{q_2}}}$, r) whenever $q_1 < q_2$, for all r-fuzzy β -open sets λ_{Δ_q} , μ_{Δ_q} , η_{Δ_q} , $r \in I_0$.

Proof:

Let us arrange into a sequence $\{q_n\}$ of all rational numbers (without repetition). For every $n \ge 2$, we shall define inductively a collection $\{P_{\eta_{AG}} / 1 \le i \le n\}$ such that for all i < n

$$\begin{array}{c} \beta \text{-} C_{T(\theta(R))}(P_{\lambda_{\Delta q}}, r) \subseteq P_{\eta_{\Delta q_i}} & \text{if } q < q_i \\ P_{\eta_{\Delta q_i}} \subseteq \beta \text{-} I_{T(\theta(R))}(P_{\mu_{\Delta q}}, r) & \text{if } q_i < q \end{array} \right\}$$

By Proposition 4.3.3, the countable collection { β -C_{T($\theta(R)$})(P_{$\lambda_{\Delta q_1}$}, r)} and { β -I_{T($\theta(R)$})(P_{$\mu_{\Delta q_2}$}, r)} satisfy β -C_{T($\theta(R)$})(P_{$\lambda_{\Delta q_1}$}, r) $\subseteq \beta$ -I_{T($\theta(R)$})(P_{$\mu_{\Delta q_2}$}, r) if $q_1 < q_2$. By Remark 4.3.1., there exists $P_{\delta_{\Delta_1}}$ which is both r-fuzzy β -open and r-fuzzy β -closed, with β -C_{T($\theta(R)$})(P_{$\lambda_{\Delta q_1}$}, r) $\subseteq P_{\delta_{\Delta_1}} \subseteq \beta$ -I_{T($\theta(R)$})(P_{$\mu_{\Delta q_2}$}, r). Setting $P_{\delta_{\Delta_1}} = P_{\eta_{\Delta q_1}}$ we get (S₂). Define $P_{\Psi_{\Delta}} = \cup \{ P_{\eta_{\Delta q_1}} / i < n, q_i < q_n \} \cup P_{\lambda_{\Delta q_n}}$ and $P_{\Phi_{\Delta}} = \cap \{ P_{\eta_{\Delta q_1}} / j < n, q_j > q_n \} \cap P_{\mu_{\Delta q_n}}$. Then, we have β -C_{T($\theta(R)$})(P_{$\eta_{\Delta q_1}$}, r) $\subseteq \beta$ -I_{T($\theta(R)$})(P_{ψ_{Δ}}, r) $\subseteq \beta$ -I_{T($\theta(R)$})(P_{ϕ_{Δ}}, r) $\subseteq P_{\mu_{\Delta q'}}$ whenever $q < q_n < q'$. This shows that the countable collections {P_{$\theta_{\Delta q_i}$} / $i < n, q_i < q_n$ } $\cup \{ P_{\lambda_{\Delta q}} / q < q_n \}$ and $\{ P_{\eta_{\Delta q_j} / j < n, q_j > q_n \} \cup \{ P_{\mu_{\Delta q} / q > q_n \}$ together with $P_{\Psi_{\Delta}}$ and $P_{\Phi_{\Delta}}$ fulfill all the conditions of Remark 4.1. Hence there exists a collection $P_{\delta_{\Delta q_n}}$ which is r-fuzzy β -open and r-fuzzy β -closed such that

$$\begin{split} \beta\text{-}C_{T(\theta(R))}(P_{\delta_{\Delta q_n}},r) &\subseteq P_{\mu_{\Delta q}} \ \text{if} \ q > q_n, \\ P_{\lambda_{\Delta q}} &\subseteq \beta\text{-}I_{T(\theta(R))}(\ P_{\delta_{\Delta q_n}},r) \ \text{if} \ q < q_n \\ \beta\text{-}C_{T(\theta(R))}(\ P_{\eta_{\Delta q_i}},r) &\subseteq \beta\text{-}I_{T(\theta(R))}(\ P_{\delta_{\Delta q_n}},r) \ \text{if} \ q_i < q_n \\ \beta\text{-}C_{T(\theta(R))}(P_{\delta_{\Delta q_n}},r) &\subseteq \beta\text{-}I_{T(\theta(R))}(P_{\eta_{\Delta q_i}},r) \ \text{if} \ q_j > q_n \ \text{where} \ 1 \leq i, j \leq n-1. \end{split}$$

Now setting $P_{\eta_{\Delta q_n}} = P_{\delta_{\Delta q_n}}$ we obtain the collections $P_{\eta_{\Delta q_1}}$, $P_{\eta_{\Delta q_2}}$,..., $P_{\eta_{\Delta q_n}}$, that satisfy (S_{n+1}). Therefore the collection { $P_{\eta_{\Delta q_i}} / i = 1, 2, 3, -- n$ } has the required property.

Definition 4.2.

Let $\theta(R)$ be an maximal smooth fuzzy β -centered system. The smooth fuzzy real line $R^*(I)$ in smooth fuzzy β -centered system is the set of all monotone decreasing r-fuzzy β -sets { $P_{\lambda_{\Delta}}$ } satisfying \cup { $P_{\lambda_{\Delta}(t)} / t \in R$ } = $\theta(R)$ and \cap { $P_{\lambda_{\Delta}(t)} / t \in R$ } = ϕ , after the identification of $P_{\lambda_{\Delta}}$ and $P_{\mu_{\Delta}}$ iff $P_{\lambda_{\Delta}(t-)} = P_{\mu_{\Delta}(t-)}$ and $P_{\lambda_{\Delta}(t+)} = P_{\mu_{\Delta}(t+)}$ for all $t \in R$, where $P_{\lambda_{\Delta}(t-)} = \bigcap \{ P_{\lambda_{\Delta}(s)} / s < t \}$ and $P_{\lambda_{\Delta}(s)} / s > t \}$. The natural smooth fuzzy topology on $R^*(I)$ is generated from the sub-basis { L_t^*, R_t^* } where $L_t^*[P_{\lambda_{\Delta}}] = P_{\lambda_{\Delta}(t-)}$ and $R_t^*[P_{\lambda_{\Delta}}] = P_{\lambda_{\Delta}(t+)}$. A partial order on $R^*(I)$ is defined by $[P_{\lambda_{\Delta}}] \leq [P_{\mu_{\Delta}}]$ iff $P_{\lambda_{\Delta}(t-)} \subseteq P_{\mu_{\Delta}(t+)}$ for all $t \in R$.

Definition 4.3.

Let $\theta(R)$ be an maximal smooth fuzzy β -centered system. The smooth fuzzy unit interval $I^*(I)$ in smooth fuzzy β -centered system is a subset of $R^*(I)$ such that $[P_{\lambda_{\Delta}}] \in I^*(I)$ if $P_{\lambda_{\Delta}(t)} = \theta(R)$ for t < 0 and $P_{\lambda_{\Delta}(t)} = \phi$ for t > 1 where λ_{Δ} 's are r-fuzzy β -open set and $t \in R$, $r \in I_{\alpha}$.

Definition 4.4.

Let $\theta(R)$ be an maximal smooth fuzzy β -centered system. A mapping $f: \theta(R) \to R^*(I)$ is called lower (upper) smooth fuzzy β -continuous if $f^{-1}(R_t^*)$ (resp. $f^{-1}(L_t^*)$) is r-fuzzy β -open (resp. $f^{-1}(L_t^*)$ is r-fuzzy β -open and r-fuzzy β -closed set), for all $t \in R$, $r \in I_0$.

Proposition 4.5.

Let $\theta(R)$ be an maximal smooth fuzzy β -centered system. Let $f: \theta(R) \to R^*(I)$ be a mapping such that

$$f(\mathbf{P}_{\lambda_{\Delta}(t)}) = \begin{array}{c} \Theta(\mathbf{R}) & t < 0 \\ P_{\lambda_{\Delta}(t)} & 0 \le t \le 1 \\ \phi & t > 1 \end{array}$$

Where λ_{Δ} is a r-fuzzy β -open set. Then t is lower (upper) smooth fuzzy β -continuous iff λ_{Δ} is a r-fuzzy β -open set(resp r-fuzzy β -closed).

Proof:

Now,

$$f^{-1}(\mathbf{R}_t^*) = \begin{cases} \theta(\mathbf{R}) & t < 0 \\ 0 \le t \le 1 \\ \phi & t > 1 \end{cases}$$

implies that f is lower smooth fuzzy β -continuous iff $P_{\lambda(t)}$ is r-fuzzy β -open. Now, $\theta(R) = t < 0$

$$\mathbf{f}^{-1}(\mathbf{L}_{t}^{*}) = \begin{cases} \mathbf{P}_{\lambda_{\Delta}(t)} & 0 \le t \le 1 \\ \phi & t > 1 \end{cases}$$

implies that f is upper smooth fuzzy β -continuous iff $P_{\lambda_A(t)}$ is r-fuzzy β -open and r-fuzzy β -closed.

Definition 4.5.

Let $\theta(R)$ be an maximal smooth fuzzy β -centered system. The characteristic function $\chi_{P_{\lambda_{\Delta}}}(P_{\lambda_{\Delta}})$ is a function $\chi_{P_{\lambda_{\Delta}}}:$ $\theta(R) \rightarrow I^*(I)$ defined by $\chi_{P_{\lambda_{\Delta}}}(P_{\mu_{\Delta}}) = P_{\lambda_{\Delta}}$ if $P_{\mu_{\Delta}} \in \theta(R)$.

Definition 4.6.

Let $\theta(R)$ be an maximal smooth fuzzy β -centered system. Then $\chi_{P_{\lambda_{\Delta}}}$ is lower (resp. upper) smooth fuzzy β -continuous iff $P_{\lambda_{\Delta}}$ is r-fuzzy β -open(resp., $P_{\lambda_{\Delta}}$ is r-fuzzy β -open and r-fuzzy β -closed), $r \in I_{0}$.

Definition 4.7.

Let $\theta(R)$ be an maximal smooth fuzzy β -centered system. Then $f: \theta(R) \to R^*(I)$ is said to be strongly smooth fuzzy β -continuous if $f^{-1}(R_t^*)$ is smooth fuzzy β -open and $f^{-1}(L_t^*)$ is both r-fuzzy β -open and r-fuzzy β -closed, for all $t \in R$, $r \in I_0$.

Proposition 4.7.

Let $\theta(R)$ be an maximal smooth fuzzy β -centered system. Then the following statements are equivalent :

- (a) $\theta(\mathbf{R})$ is an smooth fuzzy extremally β -disconnected space.
- (b) If g, h : θ(R) → R*(I), where g is lower smooth fuzzy β-continuous, h is upper smooth fuzzy β-continuous and g ≤ h, then there exists a strong smooth fuzzy β-continuous function f such that g ≤ f ≤ h.
- (c) If $\theta(R) P_{\lambda_{\Delta}}$ and $P_{\mu_{\Delta}}$ are both r-fuzzy β -open and β -closed with $P_{\mu_{\Delta}} \subseteq P_{\lambda_{\Delta}}$, then there exist a strong smooth fuzzy β -continuous function $f: \theta(R) \rightarrow I$ such that $P_{\mu_{\Delta}} \subseteq (\theta(R) - L_1^*) f \subseteq R_0^* f \subseteq P_{\lambda_{\Delta}}$.

Proof:

(a) \Rightarrow (b)

Define $H_i = h^{-1}L_i^*$ and $G_i = g^{-1}(\theta(R) - R_i^*)$, $i \in Q$. Then we have two monotone increasing collections H_i which are r-fuzzy β -open sets and G_i r-fuzzy β -closed sets, $r \in I_0$. Moreover $H_i \subseteq G_j$ if i < j. By Proposition 4.3.4, there exists a monotone increasing collections of r-fuzzy β -open and r-fuzzy β -closed sets { F_i } $_{i \in Q}$, such that β -C_{T($\theta(R)$)}(H_i , r) \subseteq F_j and $F_i \subseteq \beta$ -I_{T($\theta(R)$)}(G_j , r) if i < j. Set $V_k = \bigcap_{i < k} (1 - F_i)$ such that V_k is a monotone decreasing collection of r-fuzzy β -open and r-fuzzy β -closed sets.

p-closed sets.

 $Moreover, \, \beta \text{-} C_{T(\theta(R))}(V_k, r) \subseteq \beta \text{-} I_{T(\theta(R))}(V_j, r) \text{ whenever } k < j.$

$$\begin{array}{ll} \text{Therefore, } \bigcup_{k \in \mathbb{R}} V_k & = \bigcup_{k \in \mathbb{R}} \big(\bigcap_{i < k} (1 - F_i) \big) \\ & \supseteq \bigcup_{k \in \mathbb{R}} \big(\bigcap_{i < k} (1 - G_i) \big) \\ & = \bigcup_{k \in \mathbb{R}} \big(\bigcap_{i < k} g^{-1}(R_i^*) \big) \\ & = \bigcup_{k \in \mathbb{R}} \big(g^{-1}(R_k^*) \big) \\ & = g^{-1} \big(\bigcup_{k \in \mathbb{R}} R_k^* \big) \\ & = \theta(R). \end{array}$$

Similarly, $\bigcap_{k \in \mathbb{R}} V_k = \phi$.

Define a function $f: \theta(R) \to R^*(I)$ satisfying the required properties. Let $f(P_{\lambda_{\Delta_i}}) = \eta_{\Delta_i}(t)$ where $P_{\eta_{\Delta_i}(t)}$ is a collection

in V_k . To prove that f is strongly smooth fuzzy β -continuous. We observe that $\bigcup_{j>k} V_j = \bigcup_{j>k} \beta - I_{T(\theta(R))}(V_j, r)$ and $\bigcap_{j<k} V_j = 0$

 $\bigcap_{j < k} \beta - C_{T(\theta(R))}(V_j, r). \text{ Then } f^{-1}(R_k^*) = \bigcup_{j > k} V_j = \bigcup_{j > k} \beta - I_{T(\theta(R))}(V_j, r) \text{ is } r \text{-fuzzy } \beta \text{-open set and } f^{-1}(1 - L_k^*) = \bigcap_{j < k} V_j = \bigcap_{j < k} \beta - C_{T(\theta(R))}(V_j, r) \text{ is } r \text{-fuzzy } \beta \text{-closed and } f^{-1}(L_k^*) \text{ is } r \text{-fuzzy } \beta \text{-open set. Hence } f \text{ is strongly smooth fuzzy } \beta \text{-continuous.}$ To show that $g \le f \le h$. That is, $g^{-1}(1 - L_t^*) \subseteq f^{-1}(1 - L_t^*) \subseteq h^{-1}(1 - L_t^*), g^{-1}(R_t^*) \subseteq f^{-1}(R_t^*) \subseteq h^{-1}(R_t^*).$

Now,
$$g^{-1}(1 - L_t^*)$$
 = $\bigcap_{s < t} g^{-1}(1 - L_s^*)$
= $\bigcap_{s < t} \bigcap_{p < s} g^{-1}(R_p^*)$
= $\bigcap_{s < t} \bigcap_{p < s} (1 - G_p)$
 $\subseteq \bigcap_{s < t} \bigcap_{p < s} (1 - F_p)$
= $\bigcap_{s < t} V_s$
= $f^{-1}(1 - L_t^*)$
 $f^{-1}(\theta(R) - L_t^*)$ = $\bigcap_{s < t} V_s$

www.ijmer.com

$$= \bigcap_{s < t} \bigcap_{p < s} (1 - F_p)$$

$$\subseteq \bigcap_{s < t} \bigcap_{p < s} (1 - H_p)$$

$$= \bigcap_{s < t} \bigcap_{p < s} h^{-1} (1 - L_p^*)$$

$$= \bigcap_{s < t} h^{-1} (1 - L_s^*)$$

$$= h^{-1} (1 - L_t^*)$$

Similarly we obtain,

$$g^{-1}(\mathbf{R}_{t}^{*}) = \bigcup_{s>t} g^{-1}(\mathbf{R}_{s}^{*})$$
$$= \bigcup_{s>t} \bigcup_{p>s} g^{-1}(\mathbf{R}_{p}^{*})$$
$$= \bigcup_{s>t} \bigcup_{p>s} (1 - \mathbf{G}_{p})$$
$$\subseteq \bigcup_{s>t} \bigcap_{p
$$= \bigcup_{s>t} \mathbf{V}_{s}$$
$$= \mathbf{f}^{-1}(\mathbf{R}_{t}^{*}) \text{ and}$$
$$\mathbf{f}^{-1}(\mathbf{P}^{*}) = \bigcup_{s>t} \mathbf{V}_{s}$$$$

$$I^{-}(\mathbf{R}_{t}^{*}) = \bigcup_{s>t} \mathbf{V}_{s}$$
$$= \bigcup_{s>t} \bigcap_{p < s} (1 - F_{p})$$
$$\subseteq \bigcup_{s>t} \bigcap_{p < s} (1 - H_{p})$$
$$= \bigcup_{s>t} \bigcap_{p < s} h^{-1}(1 - L_{p}^{*})$$
$$= \bigcup_{s>t} h^{-1}(\mathbf{R}_{s}^{*})$$
$$= h^{-1}(\mathbf{R}_{t}^{*}).$$

Thus (b) is proved.

(b) \Rightarrow (c)

Suppose $P_{\lambda_{\Delta}}$ is r-fuzzy β -open set and r-fuzzy β -closed set and $P_{\mu_{\Delta}}$ is r-fuzzy β -open set and r-fuzzy β -closed set with $P_{\mu_{\Delta}} \subseteq P_{\lambda_{\Delta}}$. Then $\chi_{P_{\mu_{\Delta}}} \subseteq \chi_{P_{\lambda_{\Delta}}}$, where $\chi_{P_{\mu_{\Delta}}}$, $\chi_{P_{\lambda_{\Delta}}}$ are lower and upper smooth fuzzy β -continuous function respectively. By (b), there exist a strongly smooth fuzzy β -continuous function $f: \theta(R) \rightarrow R(I)$ such that $\chi_{P_{\mu_{\Delta}}} \leq f \leq \chi_{P_{\lambda_{\Delta}}}$. Clearly $f(P_{\lambda_{\Delta}}) \in I^*(I)$ and $P_{\mu_{\Delta}} = (1 - L_1^*)\chi_{P_{\mu_{\Lambda}}} \subseteq (1 - L_1^*)f \subseteq R_0^* f \subseteq R_0^* \chi_{P_{\lambda_{\Lambda}}} \subseteq P_{\lambda_{\Delta}}$. Therefore, $P_{\mu_{\Delta}} \subseteq (1 - L_1^*)f \subseteq R_0^* f \subseteq P_{\lambda_{\Delta}}$.

(c) \Rightarrow (a)

By (c), it follows that $(1 - L_1^*)f$ and R_0^*f are r-fuzzy β -open and r-fuzzy β -closed. By Proposition 4.3, it follows that $\theta(R)$ is an smooth fuzzy extremally β -disconnected space.

V. Tietze Extension Theorem

In this section, Tietze Extension Theorem for smooth fuzzy extremally β-disconnected space is discussed.

Proposition 5.1.

Let $\theta(R)$ be a smooth fuzzy extremally β -disconnected space. Let $A \subseteq \theta(R)$ and the collection $\{P_{\lambda_{\Delta}}\}$ in A such that $\chi_{P_{\lambda_{\Delta}}}$ is r-fuzzy β -open. Let $f : A \to I^*(I)$ be a strongly smooth fuzzy β -continuous function. Then, f has a strongly smooth fuzzy β -continuous extension over $\theta(R)$.

Proof:

Let g, $h: \theta(R) \to I^*(I)$ be such that g = f = h on A. Now,

$$R_t \star g = \begin{cases} P_{\mu_{\Delta_t}} \land \chi_{P_{\lambda_{\Delta}}} & \text{if } t \ge 0 \\ & \text{if } t < 0 \text{ where } P_{\mu_{\Delta_t}} \text{is } r\text{-fuzzy } \beta\text{-open} \end{cases}$$

set and is such that $P_{\mu_{\Delta_t}} = R_t * g$ in A.

$$L_{t}*h = \begin{cases} P_{\lambda_{\Delta_{t}}} \land \chi_{P_{\lambda_{\Delta}}} & \text{if } t \leq 1 \\ \theta(R) & \text{if } t > 1 \text{ where } P_{\lambda_{\Delta_{t}}} \text{ is both } r \text{-fuzzy } \beta \text{-open and } \beta \text{-closed set is such that} \end{cases}$$

 $P_{\lambda_{\Delta_t}} = L_t *h$ in A. Thus g is lower smooth fuzzy β -continuous, h is upper smooth fuzzy β -continuous and $g \le h$. By Proposition 4.7, there is a strong smooth fuzzy β -continuous function F: $\theta(R) \rightarrow I^*(I)$ such that $g \le F \le h$. Hence $f \equiv F$ on A.

REFERENCES

- [1] GANTNER.T.E., STEINLAGE.R.C and WARREN.R.H: Compactness in fuzzy topological; spaces, J. Math. Anal. Appl., 62 (1978), 547-562.
- [2] HUTTON.B. : Normality in fuzzy topological spaces, J. Math. Anal. Appl., 43 (1973), 734-742.
- [3] ILLIADIS and FOMIN.S: The method of centred systems in the theory of topological spaces, N, 21(1966), 47 66.
- [4] RAMADAN A.A: A smooth topological spaces, Fuzzy Sets and Systems 48,371 (1992).
- [5] RAMADAN A.A, ABBAS. S.E. and ABD EL LATIF A.A.: On fuzzy bitopological spaces in Sostak's sense, Commun. Korean Math.Soc., 21 [2006), 865 – 877.
- [6] SOSTAK A.P.: On a fuzzy topological structure. Rend. Circ. Materm Palermo (Ser II), 11 (1985), 89 103
- UMA M.K., ROJA.E, BALASUBRAMANIAN.G: The method of centred systems in fuzzy topological spaces, The Journal of fuzzy mathematics, 15(4), 2007, 1 – 7.
- [8] ZADEH L.A.: Fuzzy sets. Information and Control, 8(1965), 338 353.