
International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.3, Issue.2, March-April. 2013 pp-622-625 ISSN: 2249-6645

www.ijmer.com 622 | Page

Gnanasoundari.A,
 1
 Dr.S. Tamilarasi

2

1Final Year Student, M.Tech CSE Department, Dr.M.G.R.Educational and Research Institute University, Tamil Nadu, India
2Professor of CSE and IT Department, Dr.M.G.R.Educational And Research Institute University, Tamil Nadu, India

Abstract: The mechanism widely used for an improved system of modularity and flexibility is Dynamic loading of software

components. Dynamic loading can be hijacked by placing an arbitrary file with the specified name in a directory searched
before resolving the target component, thereby making the system more vulnerable. The vulnerable components are

important to be deducted.

In this paper an automated technique to detect vulnerable and unsafe dynamic component loadings are presented. Analysis

has two phases:

1) Online phase – by applying dynamic binary instrumentation to collect runtime information on component loading.

2) Offline phase – to analyze the collected information to detect vulnerable component loadings.

This technique is implemented in networked system of Microsoft Windows and UNIX using system IP address and it

can deduct unsafe components and stopped. Our evaluation results show that unsafe component loading is prevalent in

software on both OS platforms, and it is more severe on Microsoft Windows.

Keywords: Full path, Filename, Online Phase, Offline phase

I. Introduction
Dynamic loading allows an application the flexibility to dynamically link a component and use its exported

functionalities. Benefits include modularity and generic interfaces for third-party software such as plug-ins. It also helps to

isolate software bugs as bug fixes of a shared library can be incorporated easily. With these advantages, dynamic loading is

widely used in designing and implementing software.

Important stage in dynamic loading is component resolution by locating the correct component for use at runtime.

Two resolution methods are used in Operating systems by either specifying the full path or the filename of the target

component. Using full path, operating systems simply locate the target from the given full path. With filename, operating
systems resolve the target by searching a sequence of directories, determined by the runtime directory search order, to find

the first occurrence of the component.

Operating systems might provide mechanisms to protect system resources. For example, Microsoft Windows

supports Windows Resource Protection (WRP) to avoid system files from being replaced. However, these do not prevent

loading of a malicious component located in a directory searched before the directory where the intended component resides.

In case an attacker sends a victim an archive file containing a document for a vulnerable program (e.g., a Word

document) and a malicious DLL. If the victim opens the document after extracting the archive file, the vulnerable program

will load the malicious DLL, which leads to remote code execution.

II. Unsafe Component Loading
This section describes dynamic loading of components, types of unsafe loadings and remote attack for vulnerable

dynamic loading.

2.1 Dynamic Loading of Components

Software components often use functionalities exported by other components such as shared libraries at runtime.

This operation is generally involves in three phases: resolution, loading, and usage. Specifically, an application resolves the

needed target components, loads them, and utilizes the desired functions provided by them.

Component interoperation can be achieved through dynamic loading provided by operating systems or runtime

environments. For instance, the LoadLibrary and dlopen system calls are used for dynamic loading on Microsoft Windows

and Unix-like operating systems, respectively. Dynamic loading is mostly executed in two steps: component resolution and

chained component loading.

2.1.1 Component Resolution

To resolve a target component, it is required to specify it correctly. Operating systems provide two types of target

component specifications: full path and filename. For full path specification, operating systems resolve a target component

based on the provided full path. For filename specification, operating systems obtain the full path of the target component

from the provided file name and a dynamically determined sequence of search directories. Specifically, an operating system

iterates through the directories until it finds a file with the specified file name, which is the resolved component. For

example, suppose that a target component is specified as audmigplugin.dll and the directory search order is given as

Automatic Detection of Unsafe Dynamic Component Loadings

in Multi-Terminals by Using IP Address

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.3, Issue.2, March-April. 2013 pp-622-625 ISSN: 2249-6645

www.ijmer.com 623 | Page

C:\Program Files\iTunes; C:\Windows\System32; ...; $PATH on Microsoft Windows. If the first directory containing a file

with the name audmigplugin.dll is C:\Windows\System32, the resolved full path is determined by this directory.

2.1.2 Chained Component Loading:

In dynamic loading, the full path of the target component is determined by its specification through the resolution

process and the component is incorporated into the host software if it is not already loaded. During the process of

incorporation the target component, the component’s load-time dependent components are also loaded.

Fig. a. Dynamic component loading procedure

Fig. a, demonstrates the general procedure of dynamic loading. Suppose component B is loaded by component A.

B’s dependent components (component C) are also loaded. We can usually obtain information on B’s dependent components
from B’s file description. This process of chained component loading is repeated until all dependent components are loaded.

2.2 Unsafe Component Resolution

Despite dynamic loading is a critical step in software execution, it also has an inherent security implication.

Particularly, a loaded target component is only determined by the specified file name. This can lead to the loading of

unintended or even malicious components and thus may allow arbitrary code execution. Two types of unsafe component

resolution are classified, resolution failure and unsafe resolution, and illustrated their conditions in Table 1.

TABLE 1: Conditions for Detecting Unsafe Component Loadings

Type Conditions

Resolution failure Target component not found

Unsafe resolution

 the target component specified by its file name,

 the resolution is determined by iteratively searching a sequence of directories, and

 There exists another directory searched before the one containing the target component.

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.3, Issue.2, March-April. 2013 pp-622-625 ISSN: 2249-6645

www.ijmer.com 624 | Page

III. Detection of Unsafe Components in Network System
Fig 2 - ARCHITECTURE DIAGRAM

 Fig. 2 shows the high-level overview of our analysis process, which is composed of two phases: dynamic profile

generation and offline profile analysis.

3.1 Dynamic Profile Generation

We dynamically applied the binary executable analysis to capture a sequence of system level actions for dynamic

loading of components. During the instrumented program execution, we collect three types of information: system calls

invoked for dynamic loading, image loading, and process and thread identifiers. The collected information is stored as a

profile for the instrumented application and is analyzed in the offline profile analysis phase.

The dynamic profile generated information extracted from the Client side to monitor the server by using the IP

address. The server can monitor the dynamic loading to detection unsafe components and stop the vulnerable host.

3.2 Offline Profile Analysis
Firstly, we extract each component loading from the profile. First group a sequence of actions in the profile by

process and thread identifiers as the actions performed by different threads may be interleaved due to context switching. This

grouping separates the sequences of dynamic loadings performed by different threads. Then, we divide the sequence for each

thread into subsequence of actions, one for each distinct dynamic loading. This can be achieved by using the first invoked

system call for dynamic loading as a delimiter. Next, we obtain a list of groups, each of which contains a sequence of actions

for loading a component at runtime. This gives the possible control flows in the dynamic loading procedure. Note that each

group contains loading actions for both the target component and the load-time dependent components

Algorithm 1. OfflineProfileAnalysis

Input: S (a sequence of actions for a dynamic loading) Auxiliary functions:

Target Spec(S): return target specification of S

DirSearchOrder(S): return directory search order used
In S

ImgLoad(S): return the image loadings in S

Resolution Failure(S): return the resolution failures in S

Chained Loading(S): return actions for the chained

Loadings in S IsUnsafeResolution (filename, resolved path, search_dirs): check whether the resolution is unsafe

1: img_loads ImgLoad(S)

2: failed resolutions Resolution Failure(S)

3: if jimg_loadsj¼¼0 then

4: if jfailed_resolutionsj¼¼1 then

5: Report this loading as a resolution failure

6: end if

7: else
8: spec Target Spec(S)

9: dirs DirSearchOrder(S)

10: if spec is the filename specification then

11: resolved path img_loads [0].resolved path // retrieve the first load

12: if IsUnsafeResolution (spec, resolved_path, dirs) then

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.3, Issue.2, March-April. 2013 pp-622-625 ISSN: 2249-6645

www.ijmer.com 625 | Page

13: Report this loading as an unsafe resolution

14: end if

15: end if
16: chained loads Chained Loading(S)

17: for each load in chained loads do

18: OfflineProfileAnalysis (each load)

19: end for

20: end if

IV. Discussion and Conclusion
In this paper, we have described the analysis technique to detect unsafe dynamic component loadings in networked

systems by using IP address. Our technique works in two phases. It first generates profiles to record a sequence of

component loading behaviours at runtime using dynamic binary instrumentation. It then analyzes the profiles to detect two

types of unsafe component loadings: resolution failures and unsafe resolutions. To assess our technique, we implemented

tools to detect unsafe component loadings on Microsoft Windows and Linux. Our evaluation shows that unsafe component

loadings are prevalent on both platforms and more severe on Windows platforms from a security perspective.

References

[1] “About Windows Resource Protection,” http://msdn.microsoft. Com/en- us/library/aa382503 (VS.85).aspx, 2011.

[2] “Windows DLL Exploits Boom; Hackers Post Attacks for 40-Plus Apps,”

http://www.computerworld.com/s/article/9181918/ Windows_DLL_exploits_boom_hackers_post_attacks_for_40_

plus_apps, 2011.

[3] “Hacking Toolkit Publishes DLL Hijacking Exploit,” http://
www.computerworld.com/s/article/9181513/Hacking_toolkit_ publishes_DLL_hijacking_exploit, 2011.

[4] T. Kwon and Z. Su, “Automatic Detection of Unsafe Component Loadings,” Proc. 19th Int’l Symp. Software Testing

and Analysis, pp. 107-118, 2010.

[5] “Zero-Day Windows Bug Problem Worse than First Thought, Says Expert,”

http://www.computerworld.com/s/article/9180978/ Zero_day_Windows_bug_pro blem_worse_than_first_thought_

says_expert, 2011.

[6] “Update: 40 Windows Apps Contain Critical Bug, Says Researcher,”

http://www.computerworld.com/s/article/9180901/ Update_40_Windows_apps_contain_critical_bug_says_ researcher,

2011.

[7] “Researcher Told Microsoft of Windows Apps Zero-Day Bugs 6 Months Ago,”

http://www.computerworld.com/s/article/ print/9181358/Researcher_told_Mi crosoft_of_Windows_apps_ zero_

day_bugs_6_months_ago, 2011.
[8] “Exploiting DLL Hijacking Flaws,” http://blog.metasploit.com/ 2010/08/exploiting-dll-hijacking-flaws.html, 2011.

[9] “Microsoft Releases Tool to Block DLL Load Hijacking Attacks,”

http://www.computerworld.com/s/article/print/9181518/

Microsoft_releases_tool_to_block_DLL_load_hijacking_attacks, 2011.

[10] “About the Security Content of Safari 3.1.2 for Windows,” http:// support.apple.com/kb/HT2092, 2011.

[11] “IE’s Unsafe DLL Loading,” http://www.milw0rm.com/ exploits/2929, 2011.

[12] “Microsoft Security Bull. MS09-014,” http://www.microsoft. com/TechNet/security/Bulletin/MS09-014.mspx, 2011.

[13] “Microsoft Security Bull. MS09-015,” http://www.microsoft. com/TechNet/security/Bulletin/MS09-015.mspx, 2011.

[14] B. Cornelissen, A. Zaidman, A. van Deursen, L. Moonen, and R. Koschke, “A Systematic Survey of Program

Comprehension through Dynamic Analysis,” IEEE Trans. Software Eng., vol. 35, no. 5, pp. 684-702, Sept./Oct. 2009.

[15] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V.J. Reddi, and K. Hazelwood, “Pin:
Building Customized Program Analysis Tools with Dynamic Instrumentation,”Proc. ACM SIGPLAN Conf.

Programming Language Design and Implementation, pp. 190-200, 2005.

http://www.computerworld.com/s/article/9181918/

