Characteristics of Grade 60 and Grade 72.5 Re-bars in Pakistan

Shahida Manzoor, ¹ Dr. Shuaib Ahmad²

12Department of Civil Engineering, NED University of Engineering & Technology, Pakistan

Abstract: In Pakistan, quality assurance of re-bars is practically non-existent and there is no generally accepted testing method for testing of re-bars. Steel re-bars of Grade 60 are exclusively used in Pakistan; however production of high strength re-bars has recently started. In this study, thirty samples of steel re-bars of Grade 60 and thirty samples of Grade 72.5 were tested using ASTM standard testing protocol to obtain the stress-strain curves and comparisons were made between the experimental results of Grade 60 and Grade 72.5 re-bars. It can be concluded that Grade 72.5 steel shows less deformation capacity as compared to Grade 60 steel. For Grade 60 re-bars, the yield strengths of all individual re-bars were much higher than the prescribed minimum yield strength, i.e. 60 ksi. For the Grade 72.5 re-bars, about 50 % of the re-bars did not reach the prescribed minimum yield strength of 72.5 ksi.

The experimental curves were then compared with an idealized stress-strain curve developed by using a fractional equation. It is recommended that instead of producing Grade 72.5 ksi reinforcing bars, the traditional ASTM Grade 75 reinforcing bars be produced.

Keywords: idealized curve, standardize, stress strain curve, Tension tests

- 1. Lecturer, Department of civil engineering, NED University of Engineering & Technology.
- 2. Professor, Department of civil engineering, NED University of Engineering & Technology.

I. INTRODUCTION

There are number of standards which cover the testing of re-bars in Pakistan. These include; ASTM Standards [1], BS Standards [2], ISO Standards [3] and PS Standard [4]. Pakistan Standards and Quality Control Authority (PSQCA) has adopted a slightly revised/modified version of BS 4449-2005 [2] standard and this standard is PS-1612-2007 [4]. The contents of PS-1612-2007 [4] are essentially the same as BS 4449-2005 [2]. For quality assurance, some agencies prefer to use portions of ASTM A615 [1] test standards and portions of BS 4449-1997 or BS 4449-2005 test standards. The use of portions of one standard and portions of the other standards is not technically correct and should not be permitted. A summary of the review of the standards [1-4] is presented in Table 1.

In Pakistan, steel bars are manufactured using variety of sources. Steel re-bars manufactured from ship scrap materials are likely not to exhibit adequate deformation capacity or ductility. This study was initiated to develop a standard testing protocol to be adopted in Pakistan for standardized testing of re-bars in Pakistan. Evaluation of testing protocol at facility of one re-bar manufacturer and one academic institution was conducted. With slight modification, the testing protocol at NED University of Engineering and technology (NEDUET) Materials Testing Laboratory was made in conformance with ASTM A615 Standard [1]. It is recommended that one internationally recognized test standard should be adopted and used in Pakistan for the testing and quality assurance of re-bars.

Using ASTM A615 [1] testing protocol, thirty samples of #5 bars, (16 mm) of Grade 60 re-bars and thirty samples of #5 bars, (16 mm) Grade 72.5 re-bars were tested and stress-strain curves were obtained. Grade 72.5 re-bars shows less deformation capacity as compared to Grade 60 re-bar steel. The experimental results were compared with idealized analytical stress-strain curve of Grade 60 (420 MPa) and Grade 72.5 (500 MPa) reinforcing bars developed by Ahmad [6, 10]. It is recommended that instead of producing Grade 72.5 ksi reinforcing bars, the traditional ASTM Grade 75 reinforcing bars be produced.

II. EXPERIMENTAL PROGRAM

In the preliminary study, an evaluation of testing protocol at facility of one manufacturer and one academic institution was conducted. For conformance with ASTM A615 Standard [1], a slight modification (adjustment in the rate of loading), was made in the testing protocol at NEDUET Materials Testing Laboratory.

Using the ASTM A615 Standard [1] and ASTM A370 [5] testing procedure, tension tests were performed for 60 samples of deformed steel re-bars. The size of bars was taken as #5 (16 mm). Thirty samples were of Grade 60 (420 MPa) rebars and thirty samples were of high strength, Grade 72.5 (500 MPa) re-bars. These tests were performed in the Material testing laboratory of NEDUET. A Universal Testing Machine of 50 tons capacity and an Extensometer were used for the tests. All the samples were cut for the required length of about 24 in (600 mm).

The tests were performed at two rates of loading, 10 mm/min (0.4 in/min) up to one half of the yield point and then rate of loading was reduced to 1.5 mm/min. (1/16 in/min) up to or near yielding. This rate of loading was maintained until the yield point, after which the rate of loading was increased to 10 mm/min (0.4 in/min) until rupture of the specimen (ASTM testing method A 370 [5]).

2.1 Results

Test results of tension tests on Grade 60 #5 (16 mm) re-bars are shown in **Table 2** and it can be observed that all of the bars show yield strength much higher than the prescribed minimum yield strength, i.e. 60 ksi. The average yield value of 30 samples is 77.2 ksi which is substantially higher than specified yield strength of 60 ksi. Stress-strain curves for 30 samples of Grade 60 #5 (16 mm) re-bars are shown in **Figure 1**.

Test results of tension tests on Grade 72.5 deformed bars #5 (16 mm) are shown in **Table 3** and it can be observed that about 50 % of the bars do not reach the prescribed minimum yield strength of 72.5 ksi. The average yield value of 30 samples is 72.7 ksi which is just above the specified yield strength of 72.5 ksi. Stress-strain curves for 30 samples of Grade 72.5 re-bars are shown in **Figure 2**.

2.1.1 Control points of stress-strain curve and Idealized stress-strain Curves

For the development of idealized analytical stress-strain curve of steel re-bars, five (5) control points are used. **Figure 3** shows the control points for an experimental stress strain curve. Using the coordinates of the control points, calibrated by Ahmad [6, 10] for about 2000 samples and the fractional equation developed by Ahmad [6, 10], idealized stress-strain curves for Grade 60 re-bars and Grade 72.5 re-bars are developed. These idealized analytical stress-strain curves are compared with the experimental stress-strain curves.

2.1.2 Average Experimental stress strain curve

The control points from test results of thirty samples of Grade 60 and thirty samples of Grade 72.5 re-bar (High strength) were averaged and the average values of the control points were obtained. **Table 4** shows the average values of the experimental control points for Grade 60 re-bars of #5(16 mm) and **Table 5** shows the average values of the experimental control points for Grade 72.5 re-bars of #5(16 mm).

Figure 4 shows the average stress-strain curve of Grade 60 #5 bars using control points of **Table 4** and **Figure 5** shows the average stress-strain curve of Grade 72.5 #5 bars using control points of **Table 5**.

2.1.3 Comparison of Average Experimental and Idealized stress strain curves

The comparison of experimental average and idealized analytical stress strain curve of Grade 60 re-bars (**Figure 6**) shows that ultimate tensile stress in the idealized stress strain curve is higher than that obtained experimentally. The deformation capacity of the re-bars tested is adequate with a strain of 0.218 %. The strain capacity in the idealized curve is 0.15 %.

The comparison of experimental average and idealized analytical stress strain curve of Grade 72.5 re-bars (**Figure7**) shows that ultimate tensile stress in the idealized stress strain curve is higher than that obtained experimentally. The deformation capacity of the re-bars tested is adequate with a strain of 0.133 %. The strain capacity in the idealized curve is 0.125 %.

III. Conclusions and Recomendations

On the basis of the results, the following conclusions can be drawn:

- 1. The deformation capacity of Grade 72.5 re-bars is less as compared to that of Grade 60 re-bars.
- 2. For Grade 60 re-bars, the yield strengths of all individual re-bars were much higher than the prescribed minimum yield strength of 60 ksi and the average yield value of 30 samples is 77.2 ksi which is substantially higher than specified yield strength of 60 ksi.
- 3. For the Grade 72.5 re- bars, about 50 % of the re-bars did not reach the prescribed minimum yield strength of 72.5 ksi and the average yield value of 30 samples is 72.7 ksi which is just above the specified yield strength of 72.5 ksi.

The following recommendations are made:

- 1. One internationally recognized standard, preferably ASTM A615 should be adopted and used in Pakistan for the testing and quality assurance of re-bars
- 2. Instead of Grade 72.5 re bars, Grade 75 re-bars as per ASTM A615 should be manufactured in Pakistan.

www.ijmer.com

Table 1: Comparison	of Existing Standards
---------------------	-----------------------

No.	Item ASTM A615 [1] BS 4449-2005[2] ISO 6935-2:2007(E)[3]					
1	Scope	Covers both deformed and	Covers only deformed	This Standard contains technical		
1	Beope	plain carbon steel bars.	bars of grade 72.5 (500	requirements for ten grades of		
		Standard is for grade 40	MPa)	ribbed (deformed) steel bars		
		(280 MPa), grade 60 (420	ivii u)	from grade 43(300 MPa) to		
		MPa) and grade 75 (520		grade 72 (500 MPa) strengths		
		MPa)		and different ductility levels.		
2	Manufacture	Standard specifically	The manufacturing	The manufacturing process is at		
		requires the use of electric	process is at the	the discretion of the		
		furnace, basic oxygen or	discretion of the	manufacturer.		
		open hearth process	manufacturer, but it			
			should be reported to the			
			purchaser.			
3	Chemical	Phosphorous content	It states that values of	It is same as BS 4449-2005 [2].		
	composition	should not exceed 0.06%.	individual elements,			
			namely Carbon, Sulphur,			
			Phosphorous, Nitrogen			
			and Copper should not			
			exceed certain limits. A			
			value of Carbon			
			equivalent content			
			should also be calculated			
			and checked against			
			values given in Table 2 (
4	Tensile	Elongation of 8 in	BS 4449-2005 [2]) It states that ratio of	It is similar to BS 4449-2005[2]		
4	Requirement	(200mm) gauge length is	tensile /yield strength	except that it includes more		
	Kequirement	tested and checked in	and total elongations	grades for bars.		
		percentage of original	must be in accordance	grades for bars.		
		length and compared with	with Table 4 BS 4449-			
		the elongations given in	2005 [2]). Determine			
		Table 2 (ASTM A615	yield strength from 0.2%			
		[1]. For grade 40(280	proof strength if a yield			
		MPa) and 60(420 MPa),	phenomenon is not			
		yield point is taken at a	present.			
		strain of 0.5 % and for				
		grade 75(520 MPa) steel,				
		yield point is taken at a				
		strain of 0.35%.				
5	Bending	The angle of bend should	It is bent up to 90°, aged	The test piece is tested for		
	requirement	be 180° unless otherwise	and then bent back to	bending over a mandrel to an		
		specified.	20° .	angle 160° to 180° .		
		Test is performed at room	Test temperature is 10°-	Test temperature and rate of		
		temperature. Rate of	35° and rate of bending	bending are same as BS 4449 [2]		
6	normissible	bending is not specified. Only 6% variation is	is 60 °/s. ±4.5% on nominal	Permissible deviation is $\pm 4\%$ to		
U	permissible variation in	allowed.	$\pm 4.5\%$ on nominal diameter greater than	$\pm 8\%$, depending upon the		
	weight(mass)	anoweu.	0.32 inch(8mm) and	$\pm 8\%$, depending upon the diameter of the bar.		
	weight(mass)		$\pm 6\%$ on nominal			
			diameter of bar less than			
			0.32in(8mm).			
7	Gauge Length	8 inch (200mm).	5 x diameter of bar	5 x diameter of bar		
,	of specimen	5 mm (200mm).				
	or specificit		I	L		

International Journal of Modern Engineering Research (IJMER) Vol.3, Issue.2, March-April. 2013 pp-667-673

Tests	f		fin	Ash	fu		fe	A.
1	74.10	0.0025	77.25	0.0189	92.23	0.101	60.77	0.160
2	75.50	0.0031	76.64	0.0197	91.28	0.106	60.95	0.207
3	79.93	0.0025	82.20	0.0246	98.81	0.116	75.71	0.235
4	85.24	0.0028	\$7.60	0.0237	105.62	0.134	78.03	0.270
5	80.90	0.0030	\$1.70	0.0155	97.79	0.120	67.20	0.230
6	74.50	0.0024	78.20	0.0600	93.90	0.148	59.90	0.503
7	77.92	0.0026	77.75	0.0217	93.51	0.118	61.90	0.225
8	77.88	0.0030	77.00	0.0180	92.90	0.151	63.94	0.277
9	74.82	0.0027	79.14	0.0420	96.33	0.150	69.65	0.230
10	79.26	0.0030	80.37	0.0260	92.68	0.132	66.84	0.219
11	70.76	0.0027	70.92	0.0147	\$6.33	0.139	54.20	0.254
12	74.50	0.0025	76.80	0.0167	91.29	0.122	54.30	0.216
13	76.47	0.0027	77.17	0.0250	93.59	0.170	69.40	0.317
14	77.42	0.0023	78.86	0.0660	95.46	0.144	71.64	0.453
15	79.44	0.0029	79.82	0.0147	95.71	0.133	66.22	0.246
16	71.98	0.0023	81.04	0.0170	95.27	0.097	63.55	0.172
17	76.45	0.0024	82.48	0.0175	95.74	0.093	60.32	0.144
18	76.31	0.0027	\$1.40	0.0176	95.19	0.098	67.30	0.160
19	74.41	0.0025	81.43	0.0177	90.62	0.031	63.27	0.187
20	79.58	0.0029	77.98	0.0177	95.70	0.112	62.88	0.164
21	77.55	0.0027	81.44	0.0178	94.77	0.103	61.26	0.158
22	74.85	0.0026	78.68	0.0173	95.00	0.106	63.54	0.190
23	78.78	0.0026	84.78	0.0174	98.54	0.085	77.96	0.132
24	82.60	0.0029	83.20	0.0176	98.68	0.074	70.07	0.182
25	81.31	0.0035	83.20	0.0176	99.63	0.117	65.50	0.178
26	77.61	0.0027	81.52	0.0177	99.00	0.093	67.50	0.156
27	79.81	0.0027	83.72	0.0177	99.12	0.117	62.28	0.194
28	79.58	0.0027	81.90	0.0178	99.46	0.098	65.10	0.155
29	73.10	0.0027	77.74	0.0178	88.25	0.108	53.87	0.191
30	74.10	0.0027	79.55	0.0176	90.45	0.102	60.80	0.157
Average	77.22	0.00271	80.04933	0.022367	95.095	0.113897	64.86167	0.21873

Table 2: Test results of tension tests on Grade 60 deformed bars #5 (16 mm) re-bars

Table 3: Test results of tension tests on Grade 72.5 deformed bars #5 (16 mm) re-bars

Tests	fx		Lah	Hab	fu		fe	Ar
1	70.97	0.0022	71.22	0.002	82.65	0.106	57.50	0.130
2	73.60	0.0025	76.91	0.024	90.93	0.073	60.65	0.100
3	70.48	0.0024	71.53	0.025	82.77	0.123	47.57	0.194
4	68.73	0.0024	68.65	0.023	\$1.65	0.140	76.76	0.221
5	70.45	0.0020	75.46	0.014	83.42	0.111	56.45	0.183
6	69.85	0.0023	75.40	0.015	83.60	0.116	56.33	0.170
7	71.96	0.0025	78.40	0.017	84.34	0.094	57.00	0.14
S	73.61	0.0022	73.50	0.011	84.56	0.137	60.48	0.213
9	69.73	0.0016	71.53	0.007	82.59	0.110	70.28	0.134
10	74.82	0.0024	75.24	0.004	91.22	0.163	75.68	0.26:
11	75.40	0.0024	75.90	0.027	91.92	0.156	62.70	0.314
12	78.91	0.0024	84.94	0.011	92.28	0.089	63.13	0.13
13	73.34	0.0023	74.74	0.008	89.63	0.112	71.40	0.15
14	71.90	0.0020	76.78	0.009	87.86	0.118	57.20	0.11
15	74.97	0.0023	80.00	0.010	91.00	0.098	57.20	0.17
16	75.35	0.0023	81.48	0.010	90.61	0.099	60.80	0.15
17	73.30	0.0020	84.41	0.003	90.20	0.060	60.60	0.09
18	76.66	0.0024	85.78	0.003	92.47	0.060	58.26	0.08
19	69.43	0.0020	78.08	0.003	82.34	0.048	56.26	0.070
20	68.27	0.0015	78.36	0.003	81.73	0.053	55.18	0.076
21	75.55	0.0020	84.32	0.003	91.20	0.049	60.20	0.07
22	72.27	0.0020	78.21	0.003	83.75	0.053	56.96	0.07
23	73.83	0.0020	82.45	0.003	90.30	0.060	62.73	0.08
24	73.41	0.0020	82.35	0.003	90.47	0.053	60.00	0.08-
25	75.38	0.0020	84.25	0.003	90.70	0.050	61.50	0.08-
26	73.14	0.0020	73.54	0.003	\$4.70	0.050	55.96	0.07-
27	73.84	0.0020	79.92	0.003	\$4.74	0.050	56.23	0.07
28	72.20	0.0020	80.67	0.003	88.65	0.066	60.60	0.09
29	69.50	0.0023	73.37	0.003	\$1.00	0.071	55.27	0.09
30	71.48	0.0020	77.36	0.003	83.90	0.077	57.72	0.10
Average	72.7443	0.002144	77.83	0.008	86.906	0.088	60.29	0.13287.

 $f_x =$ yield point, $\Box_x =$ yield point strain, $f_{xh} =$ stress at onset of strain hardening, $\Box_{xh} =$ strain at onset of strain hardening, $f_x =$ ultimate tensile strength, $\Box_x =$ strain at ultimate, $f_x =$ stress at fracture point, $\Box_x =$ strain at fracture point

	International Journal of Modern Engineering Research	(IJMER)
www.ijmer.com	Vol.3, Issue.2, March-April. 2013 pp-667-673	ISSN: 2249-6645

Table 4: Average	experimental co	ontrol points f	for Grade 60	re-bars of #5(16 mm)

Point	Stress (ksi)	Strain (in/in)
1.Origin	0	0
2. Yield point f _y	77.22	0.00271
3. Onset of Strain hardening f_{sh}	80.05	0.02240
4. Ultimate Point f _u	95.10	0.11400
5. Fracture point f _r	64.86	0.21800

Table 5: Average experimental control points for Grade 72.5 re-bars of #5(16 mm)

Point	Stress (ksi)	Strain (in/in)
1.Origin	0	0
2. Yield point f _y	72.74	0.00214
3. Onset of Strain hardening f_{sh}	77.83	0.00840
4. Ultimate Point f _u	86.28	0.08800
5. Fracture point f _r	60.28	0.13300

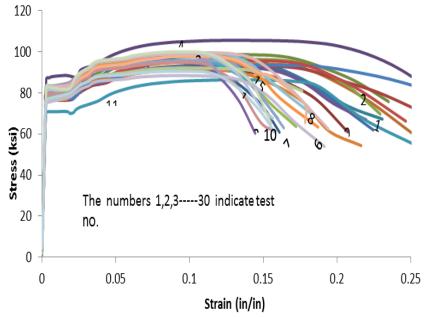


Fig. 1: Stress-strain curves for 30 samples of Grade 60 #5 (16 mm) re-bars

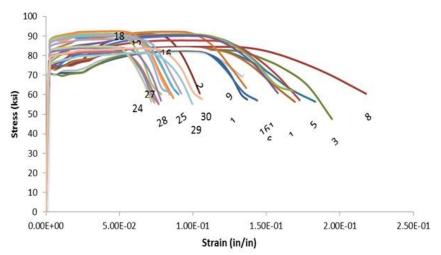


Fig. 2: Stress-strain curves for 30 samples of Grade 72.5 re-bars

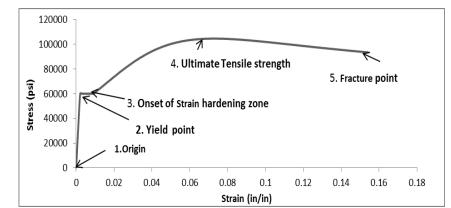


Fig. 3: Control points for an experimental average stress strain curve and idealized stress-strain

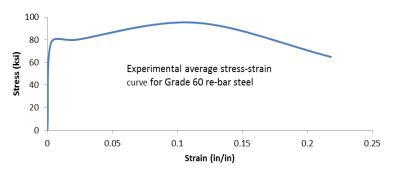


Fig.4: Experimental average stress-strain curve of Grade 60 #5 bars using control points of Table 4

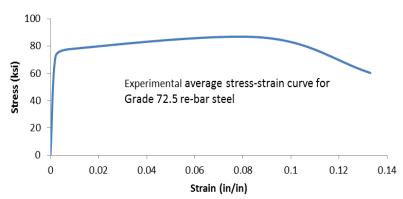


Fig. 5: Experimental average stress-strain curve of Grade 72.5 #5 bars using control points of Table 5

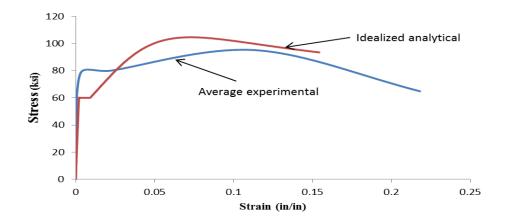


Fig. 6: Comparison of experimental average and idealized analytical stress-strain curve of Grade 60 re-bar

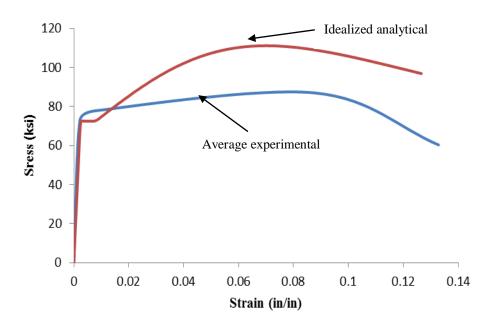


Fig. 7: Comparison of experimental average and idealized analytical stress-strain curve of Grade 72.5 re-bar

References

- ASTM Standard A615/A 615M-04a, Standard Specification for Deformed and Plain Carbon Steel Bars for Concrete Reinforcement, 2006
- [3] International Standards ISO 6935-2:2007 (E), Steel for reinforcement of concrete Part 2: Ribbed bars, 2007
 [4]. Pakistan Standard PS 1612-2007 (R), ICS No.77.140.06, Steel for the reinforcement of concrete-Weld-able reinforcing steel-Bar,
- [4]. Pakistan Standard PS 1612-2007 (R), ICS No.77.140.06, Steel for the reinforcement of concrete-Weld-able reinforcing steel-Bar, coil and de-coiled product-Specification, Pakistan Standards and Quality Control Authority, 2007
- [5]. ASTM Standard A370, Standard Specification for Deformed and Plain Carbon Steel Bars for Concrete Reinforcement, 2006
- [6]. Ahmad, S. H., and Shah, S. P., "Complete Stress-Strain Curve of Concrete and Nonlinear Design," Proceedings of CSCE-ASCE ACI-CES International Symposium of Nonlinear Design of Concrete Structures, Waterloo, August 1979.
- [7]. Ahmad, S. H., and Shah, S. P., "Complete Triaxial Stress-Strain Curves for Concrete," Journal, Structural Division, ASCE, Vol. 108, No. ST4, April 1982, pp. 728-742
- [8]. Ahmad, S. H., and Shah, S. P., "Stress-Strain Curves of Confined Concrete," Journal, American Concrete Institute, Vol. 79, November-December 1982, pp. 484-490
- [9]. Ahmad, S. H., and Shah, S. P., "Behavior of Hoop Confined Concrete Under High Strain Rates," Journal, American Concrete Institute, Vol. 82, No. 5, September-October 1985, pp. 634-647
- [10]. Ahmad, S. H., and Shah, S. P., "Structural Properties of High Strength Concrete and its Implications of Precast and Pre stressed Concrete," Journal of Pre stressed Concrete Institute, Vol. 30, No. 6, November-December 1985, pp. 92-119.