On Topological g[˜]α--WG Quotient Mappings

G.Anitha,¹ M.Mariasingam²

¹Research Scholar, V.O.Chidambaram College, Tuticorin, Tamil Nadu, India ²Department of Mathematics, V.O.Chidambaram College, Tuticorin, Tamil Nadu, India

Abstract: The aim of this paper is to introduce $\tilde{g}_{\alpha}wg$ -quotient map using $\tilde{g}_{\alpha}wg$ -closed sets and study their basic properties. We also study the relation between weak and strong form of $\tilde{g}_{\alpha}wg$ -quotient maps. We also derive the relation between $\tilde{g}_{\alpha}wg$ -quotient maps and \tilde{g}_{α} -quotient maps and also derive the relation between the $\tilde{g}_{\alpha}wg$ -continuous map and $\tilde{g}_{\alpha}wg$ -quotient maps. Examples are given to illustrate the results.

Keywords: \tilde{g}_{α} -closed sets, \tilde{g}_{α} -open sets, \tilde{g}_{α} wg-closed sets, \tilde{g}_{α} wg-open sets.

2000 Mathematics Subject Classification: 54C10, 54C08, 54C05

I. Introduction

Njastad [12] introduced the concept of an α -sets and Mashhour et al [9] introduced α -continuous mappings in topological spaces. The topological notions of semi-open sets and semi-continuity, and preopen sets and precontinuity were introduced by Levine [5] and Mashhour et al [10] respectively. After advent of these notions, Reilly [14] and Lellis Thivagar [1] obtained many interesting and important results on α -continuity and α -irresolute mappings in topological spaces. Lellis Thivagar [1] introduced the concepts of α -quotient mappings and α^* -quotient mappings in topological spaces. Jafari et al.[15] have introduced \tilde{g}_{α} -closed set in topological spaces. The author [6] introduced \tilde{g}_{α} -WG closed set using \tilde{g}_{α} -closed set. In this paper we have introduced \tilde{g}_{α} -WG quotient mappings.

II. Preliminaries

Throughout this paper (X, τ), (Y, σ) and (Z, η) (or X, Y and Z) represent non empty topological spaces on which no separation axiom is defined unless otherwise mentioned. For a subset A of a space the closure of A, interior of A and complement of A are denoted by cl(A), int(A) and A^c respectively. We recall the following definitions which are useful in the sequel.

Definition 2.1: A subset A of a space (X, t) is called:

(i)semi-open set [5] if $A \subseteq cl(int(A))$; (ii) a α -open set [12] if $A \subseteq int(cl(int(A)))$.

The complement of semi-open set(resp. α -open set) is said to be semi closed (resp. α -closed)

Definition 2.2: A subset A of a topological space(X, τ) is called

(i)w-closed set [13] if $cl(A) \subseteq U$, whenever $A \subseteq U$ and U is semi-open in (X, τ) .

(ii) * g-closed set [16] if $cl(A) \subseteq U$, whenever $A \subseteq U$ and U is w-open in (X, τ) .

(iii) a # g-semi closed set(# gs-closed)[17] if scl(A) \subseteq U, whenever A \subseteq U and U is * g -open in (X, τ).

(iv) a \tilde{g}_{α} -closed [15] if α cl(A) \subseteq U, whenever A \subseteq U and U is # gs-open in (X, τ).

(v) a \tilde{g}_{α} -Weakly generalized closed set(\tilde{g}_{α} wg-closed) [6] if Cl(Int(A)) \subseteq U, whenever A \subseteq U,U is \tilde{g}_{α} -open in (X, τ).

The complements of the above sets are called their respective open sets.

Definition 2.3: A function $f: (X, \tau) \to (Y, \sigma)$ is called

(i) a α -continuous [1] if f(V) is a α -closed set of (X, τ) for each closed set V of (Y, σ) .

(ii)a α -irresolute [1] if f-1(V) is an α -open in (X, τ) for each α -open set V of (Y, σ).

(iii) a \tilde{g}_{α} -continuous [3] if $f^{-1}(V)$ is a \tilde{g}_{α} -closed set of (X, τ) for each closed set V of (Y, σ) ,

(iv)a \tilde{g}_{α} -irresolute [3] if f \Box 1(V) is \tilde{g}_{α} -open in (X, τ) for each \tilde{g}_{α} -open set V of (Y, σ),

(v) \tilde{g}_{α} wg - continuous [7] if f⁻¹(V) is \tilde{g}_{α} wg-closed in (X, τ) for every closed set V of (Y, σ).

(vi) \tilde{g}_{α} wg - irresolute [7] if f⁻¹(v) is \tilde{g}_{α} wg-closed in (X, τ) for every \tilde{g}_{α} wg-closed set V in (Y, σ)

Definition 2.4: A space(X, τ) is called $T_{\tilde{g}_{\alpha}wg}$ -space [6] if every \tilde{g}_{α} wg-closed set is closed.

Definition 2.5: A function $f: (X, \tau) \to (Y, \sigma)$ is said to be

(i) a *g̃_α* wg -open [8] if the image of each open set in (X,τ) is *g̃_α* wg -open set in (Y,σ).
(ii) a strongly *g̃_α* wg -open or ((*g̃_αwg*)*-open)[8] if the image of each *g̃_α* wg -open set in (X,τ) is a *g̃_α* wg -open in (Y,σ).

Definition 2.6: A surjective map $f: (X, \tau) \to (Y, \sigma)$ is said to be

(i) a quotient map [4] provided a subset U of (Y,σ) is open in (Y, σ) if and only if f¹(U) is open in (X, τ),
(ii) An α-quotient map [1] if f is α -continuous and f¹(U) is open in (X, τ) implies U is an α -open in (Y, σ)
(iii) An α* -quotient map [1] if f is α -irresolute and f¹(U) is an α -open set in (X, τ) implies U is an open set in (Y, σ).
(iv) a *g*_α-quotient map[2] if f is *g*_α-continuous and f¹(U) is open in (X,τ) implies U is a *ğ*_α-open set in (Y,σ).
(v) a strongly *g*_α-quotient map[2], provided a set U of (Y,σ) is open in Y if and only if f¹(U) is a *g*_α-open set in (X,τ).
(vi) a *g*_α*-quotient map[2] if f is *g*_α -irresolute and f¹(U) is an *g*_α -open set in (X, τ) implies U is an open set in (X,τ).

Remark 2.7: The collection of all \tilde{g}_{α} wg-closed (\tilde{g}_{α} wg-open sets) are denoted by \tilde{G}_{α} WG_Cl(X) and (\tilde{G}_{α} WG-O(X)), respectively.

III. \tilde{g}_{α} - Weakly Generalized quotient maps.

Definition 3.1: A surjective map $f: (X, \tau) \to (Y, \sigma)$ is said to be \tilde{g}_{α} wg-quotient map if f is \tilde{g}_{α} wg-continuous and $f^{-1}(V)$ is open in (X, τ) implies V is \tilde{g}_{α} wg-open set in (Y, σ) .

Example 3.2: Let $X = \{a, b, c, d\}, \tau = \{\emptyset, X, \{a\}, \{a, c\}, \{a, b, d\}\}, Y = \{1, 2, 3\}, \sigma = \{\emptyset, Y, \{1\}, \{1, 2\}, \{1, 3\}\}, T = \{0, 1, 2\}, \{1, 3\}, T = \{0, 1, 2\}, \{1, 3\}, T = \{0, 1, 2\}, T = \{0, 1, 2\}, T = \{1, 2, 3\}, T = \{1, 3, 3\}, T$

 $\tilde{g}_{\alpha} \operatorname{wg} \mathcal{O}(X) = \{ \emptyset, X, \{a\}, \{a,c\}, \{a,b\}, \{a,d\}, \{a,b,c\}, \{a,b,d\}, \{a,c,d\} \}, \ \tilde{g}_{\alpha} \operatorname{wg} \mathcal{O}(Y) = \{ \emptyset, Y, \{1\}, \{1,2\}, \{1,3\} \}$

The map $f: (X, \tau) \to (Y, \sigma)$ is defined as f(a)=1, f(b)=2=f(d), f(c)=3. The map f is \tilde{g}_{α} wg-quotient map.

Proposition 3.3: If a map $f:(X,\tau) \to (Y,\sigma)$ is \tilde{g}_{α} wg-continuous and \tilde{g}_{α} wg-open then f is \tilde{g}_{α} wg-quotient map.

Proof: We only need to prove $f^{1}(V)$ is open in (X,τ) implies V is \tilde{g}_{α} wg-open in (Y,σ) . Let $f^{1}(V)$ is open in (X,τ) . Then $f(f^{1}(V))$ is \tilde{g}_{α} wg-open in (Y,σ) . Since f is \tilde{g}_{α} wg-open. Hence V is \tilde{g}_{α} wg-open in (X,τ) .

IV. Strong form of \tilde{g}_{α} - Weakly Generalized quotient maps.

Definition 4.1: Let $f: (X, \tau) \to (Y, \sigma)$ be a surjective map. Then f is called strongly \tilde{g}_{α} wg-quotient map provided a set U of (Y, σ) is open in Y if and only if $f^{-1}(U)$ is \tilde{g}_{α} wg-open set in (X, τ)

Example 4.2: Let $X = \{a, b, c, d\}, \tau = \{\emptyset, X, \{a\}, \{b, c\}, \{a, b, c\}\}, Y = \{1, 2, 3\}, \sigma = \{\emptyset, Y, \{1\}, \{2\}, \{1, 2\}\}$ $\tilde{g}_{\alpha} \text{wg} O(X) = \{\emptyset, X, \{a\}, \{b\}, \{c\}, \{a, c\}, \{a, b\}, \{b, c\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}\}, \tilde{g}_{\alpha} \text{wg} O(Y) = \{\emptyset, Y, \{1\}, \{2\}, \{1, 2\}\}$ The map $f: (X, \tau) \to (Y, \sigma)$ is defined as f(a) = 1, f(b) = 2 = f(c), f(d) = 3. The map f is strongly \tilde{g}_{α} wg-quotient map.

Theorem 4.3: Every strongly \tilde{g}_{α} wg-quotient map is \tilde{g}_{α} wg-open map.

Proof: Let $f:(X,\tau) \to (Y,\sigma)$ be a strongly \tilde{g}_{α} wg – *quotient map*. Let V be any open set in (X,τ) . Since every open set is \tilde{g}_{α} wg-open by theorem 3.2[6]. Hence V is \tilde{g}_{α} wg-open in (X,τ) . That is $f^{1}(f(V))$ is \tilde{g}_{α} wg-open in (X,τ) . Since f is strongly \tilde{g}_{α} wg-quotient, then f(V) is open in (Y,σ) and hence f(V) is \tilde{g}_{α} wg-open in (Y,σ) . This shows that f is \tilde{g}_{α} wg-open map.

Remark 4.4: Converse need not be true

Example 4.5: Let $X = \{a, b, c, d\}, \tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}, Y = \{1, 2, 3\}, \sigma = \{\emptyset, Y, \{1\}, \{2\}, \{1, 2\}, \{1, 3\}\}, \tilde{g}_{\alpha} \text{wg} O(X) = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, \{a, b, d\}\}, \tilde{g}_{\alpha} \text{wg} O(Y) = \{\emptyset, Y, \{1\}, \{2\}, \{1, 2\}, \{1, 3\}\}, f: (X, \tau) \to (Y, \sigma) \text{ is defined by } f(a) = 1 = f(b), f(c) = 3, f(d) = 2 \text{ is a } \tilde{g}_{\alpha} \text{wg-open map but not a strongly } \tilde{g}_{\alpha} \text{wg-quotient map. Since the set } \{2\} \text{ is open in } (Y, \sigma) \text{ but } f^{1}(\{2\}) = \{d\} \text{ is not } \tilde{g}_{\alpha} \text{wg-open in } (X, \tau).$

Theorem 4.6: Every strongly \tilde{g}_{α} wg-quotient map is strongly \tilde{g}_{α} wg-open.

Proof: Let $f: (X, \tau) \to (Y, \sigma)$ be a strongly \tilde{g}_{α} wg-quotient map. Let V be a \tilde{g}_{α} wg-open in (X, τ) . That is

 $f^{1}(f(V))$ is \tilde{g}_{α} wg-open in(X, τ). Since f is strongly \tilde{g}_{α} wg-quotient, then f(V) is open in (Y, σ) and hence f(V) is \tilde{g}_{α} wg-open in (Y, σ). This shows that f is \tilde{g}_{α} wg-open map.

Example4.7: Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{a\}, \{c\}, \{a, c\}\}, Y = \{1, 2, 3\}, \sigma = \{\emptyset, Y, \{1, 3\}\}, \tilde{g}_{\alpha} \text{wg} O(X) = \{\emptyset, X, \{a\}, \{c\}, \{a, c\}\}, \tilde{g}_{\alpha} \text{wg} O(Y) = \{\emptyset, Y, \{1\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}\}.$ The map $f: (X, \tau) \to (Y, \sigma)$ is defined as identity map. Then f is strongly \tilde{g}_{α} wg-open but not strongly \tilde{g}_{α} wg-quotient map. Since

f¹{3}={c} is \tilde{g}_{α} wg-open in (X, τ) but {3} is not open in (Y, σ).

Definition 4.8: Let $f: (X, \tau) \to (Y, \sigma)$ be a surjective map. Then f is called a $(\tilde{g}_{\alpha} w g)^*$ -quotient map if f is \tilde{g}_{α} wg-irresolute and $f^{-1}(V)$ is a \tilde{g}_{α} wg-open set in (X, τ) implies V is open in (Y, σ) .

Example 4.9: X={a,b,c,d}, $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}, Y = \{1,2,3\}, \sigma = \{\emptyset, Y, \{1\}, \{3\}, \{1,3\}\}$ $\tilde{\alpha} \ wgO(X) = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{a, b\}\}, \tilde{\alpha} \ wgO(X) = \{\emptyset, Y, \{1\}, \{3\}, \{1,3\}\}$ The map $f: (X, \tau) \to (X, \tau)$

 \tilde{g}_{α} wg $O(X) = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, \{a, b, d\}\}, \tilde{g}_{\alpha}$ wg $O(Y) = \{\emptyset, Y, \{1\}, \{3\}, \{1, 3\}\}$. The map $f: (X, \tau) \to (Y, \sigma)$ defined by f(a)=1, f(b)=3, f(c)=2=f(d). The map f is $(\tilde{g}_{\alpha}wg)^*$ -quotient map.

Theorem 4.10: Every $(\tilde{g}_{\alpha}wg)^*$ -quotient map is \tilde{g}_{α} wg-irresolute.

Proof: Obviously true from the definition. *Remark 4.11:* Converse need not be true.

Example 4.12: X={a,b,c,d}, $\tau = \{\emptyset, X, \{a\}, \{a, c\}, \{a, b, d\}\}, Y = \{1,2,3\}, \sigma = \{\emptyset, Y, \{1\}, \{1,3\}\}$

 \tilde{g}_{α} wg $O(X) = \{\emptyset, X, \{a\}, \{a,c\}, \{a,b\}, \{a,d\}, \{a,b,c\}, \{a,b,d\}, \{a,c,d\}\}, \tilde{g}_{\alpha}$ wg $O(Y) = \{\emptyset, Y, \{1\}, \{1,2\}, \{1,3\}\}$ Let $f: (X, \tau) \to (Y, \sigma)$ is defined by $f(\{a\}) = \{1\}, f(\{b\}) = \{2\} = f(\{d\}), f(\{c\}) = \{3\}$. The map f is \tilde{g}_{α} wg-irresolute but not $(\tilde{g}_{\alpha} wg)^*$ -quotient map Since $f^1\{1,2\} = \{a,b,d\}$ is \tilde{g}_{α} wg-open in (X,τ) but the set $\{1,2\}$ is not open in (Y,σ) .

Theorem 4.13: Every $(\tilde{g}_{\alpha}wg)^*$ -quotient map is strongly \tilde{g}_{α} wg-open map.

Proof: Let $f: (X, \tau) \to (Y, \sigma)$ be a $(\tilde{g}_{\alpha} wg)^*$ -quotient map. Let V be \tilde{g}_{α} wg-open set in (X, τ) . Then $f^{\perp}(f(V))$ is \tilde{g}_{α} wg-open in (X,τ) . Since f is $(\tilde{g}_{\alpha}wg)^*$ -quotient this implies that f(V) is open in (Y,σ) and thus $\tilde{g}_{\alpha}wg$ -open in (Y,σ) and thus f(V) is \tilde{g}_{α} wg-open in (Y, σ). Hence f is strongly \tilde{g}_{α} wg-open.

Remark 4.14: Converse need not be true

Example 4.15: Let X={a,b,c}, $\tau = \{\emptyset, X, \{c\}, \{a, c\}, \{b, c\}\}, Y=\{1,2,3\}, \sigma = \{\emptyset, Y, \{1\}, \{2,3\}\}, \{c, c\}, \{$ \tilde{g}_{α} wg $\mathcal{O}(X) = \{ \emptyset, X, \{c\}, \{a, c\}, \{b, c\} \}, \tilde{g}_{\alpha}$ wg $\mathcal{O}(Y) = \{ \emptyset, Y, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{2, 3\}, \{1, 3\} \}$ Let $f: (X, \tau) \to (Y, \sigma)$ be a identity map, f is strongly \tilde{g}_{α} wg –open map but not $(\tilde{g}_{\alpha} wg)^*$ -quotient map. since F-1{1}={a} is \tilde{g}_{α} wg-open in (Y, σ) but the set{1} is not \tilde{g}_{α} wg-open set in (X, τ).

Proposition 4.16: Every \tilde{g}_{α} -irresolute (α -irresolute) map is \tilde{g}_{α} wg-irresolute.

Proof: Let U be \tilde{g}_{α} -closed (α -closed) set in(Y, σ). Since every \tilde{g}_{α} -closed (α -closed) set is \tilde{g}_{α} wg-closed by theorem 3.7(by theorem 3.11)[6]. Then U is \tilde{g}_{α} wg-closed in (Y, σ). Since f is \tilde{g}_{α} -irresolute (α -irresolute), f¹(U) is \tilde{g}_{α} -closed (α -closed) in (X,τ) which is \tilde{g}_{α} wg-closed in (X,τ) . Hence f is \tilde{g}_{α} wg-irresolute.

V. Comparisons

Proposition 5.1:

(i) Every quotient is \tilde{g}_{α} wg-quotient map.

(ii) Every α -quotient map is \tilde{g}_{α} wg-quotient map.

Proof: Since every continuous and α -continuous map is \tilde{g}_{α} wg-continuous by theorem 2.3 1nd 2.7[7] and every open set and α -open set is \tilde{g}_{α} wg-open by theorem 3.11[6]. The proof follows from the definition.

Remark 5.2: Converse of the above proposition need not be true.

Example 5.3: Let X={a,b,c,d}, $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}, Y = \{1,2,3\}, \sigma = \{\emptyset, Y, \{1,2\}\}$

 $\tilde{g}_{\alpha} \le 0(X) = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, \{a, b, d\}\}, \tilde{g}_{\alpha} \le 0(Y) = \{\emptyset, Y, \{1\}, \{1, 2\}, \{1, 3\}, \{2, 3\}\}.$ Let $f: (X, \tau) \to (Y, \sigma)$ is defined by $f({a})={1}$, $f({b})={2}$, $f({c})={3}=f({d})$. The function f is \tilde{g}_{α} wg-quotient but not a quotient map. Since f ${}^{1}{1} = {a}$ is open in(X, τ) but the set {1} is not open in (Y, σ).

Example 5.4: Let X={a,b,c,d}, $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}, Y = \{1,2,3\}, \sigma = \{\emptyset, Y, \{1,2\}\}$ $\tilde{g}_{\alpha} wgO(X) = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, \{a, b, d\}\}, \alpha O(X) = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, \{a, b, d\}\}, \quad \tilde{g}_{\alpha} wgO(Y) = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{a,$ $\{\emptyset, Y, \{1,2\}\}$. Let $f: (X, \tau) \to (Y, \sigma)$ $\{\emptyset, Y, \{1\}, \{1,2\}, \{1,3\}, \{2,3\}\}, \alpha O(Y) =$ is defined by $f({a})={1},$ $f(\{b\})=\{2\}, f(\{c\})=\{3\}=f(\{d\})$. The function f is \tilde{g}_{α} wg-quotient but not α -quotient map. Since $f^{-1}{1} = {a}$ is open in(X, τ) but the set {1} is not α - open in (Y, σ).

Theorem 5.5: Every \tilde{g}_{α} -quotient map is \tilde{g}_{α} wg-quotient map.

Proof: Let $f:(X,\tau) \to (Y,\sigma)$ be a \tilde{g}_{α} -quotient map. Then f is \tilde{g}_{α} -continuous function. By theorem 2.5[7] every \tilde{g}_{α} continuous function is \tilde{g}_{α} wg-continuous function, then f is \tilde{g}_{α} wg-continuous map. Let $f^{-1}(V)$ is open in (Y,σ) . Since every \tilde{g}_{α} -open set is \tilde{g}_{α} wg-open . Then V is \tilde{g}_{α} wg-open in (Y, σ). Hence V is \tilde{g}_{α} wg-open in (Y, σ). Hence f is \tilde{g}_{α} wg-quotient map. Remark 5.6: Converse need not be true:

Example 5.7: Let X={a,b,c,d}, $\tau = \{\emptyset, X, \{d\}, \{a, c\}, \{a, c, d\}\}, Y = \{1,2,3\}, \sigma = \{\emptyset, Y, \{2\}, \{3\}, \{1,3\}, \{2,3\}\}$ $\tilde{g}_{\alpha} \operatorname{wg} O(X) = \{ \emptyset, X, \{a\}, \{c\}, \{d\}, \{a,c\}, \{a,d\}, \{c,d\}, \{a,c,d\}, \{b,c,d\} \},\$ $\tilde{g}_{\alpha}O(X)$

 $\{\emptyset, Y, \{a\}, \{c\}, \{d\}, \{a,c\}, \{a,d\}, \{c,d\}, \{a,c,d\}\}$. Let $f: (X, \tau) \to (Y, \sigma)$ is defined by f(a)=2, f(b)=1, f(c)=3=f(d). f is \tilde{g}_{α} wgquotient map but not \tilde{g}_{α} -quotient map Since f⁻¹{1,3}={b,c,d} is \tilde{g}_{α} wg-open in(X, τ) but not \tilde{g}_{α} - open in (Y, σ).

Theorem 5.8: Every strongly \tilde{g}_{α} wg-quotient map is \tilde{g}_{α} wg-quotient.

Proof: Let V be any open set in (Y,σ) . Since f is strongly \tilde{g}_{α} wg-quotient, $f^{1}(V)$ is \tilde{g}_{α} wg-open set in (X,τ) . Hence f is \tilde{g}_{α} wg continuous. Let $f^{1}(V)$ be open in (X,τ) . Then $f^{1}(V)$ is \tilde{g}_{α} wg-open in (X,τ) . Since f is strongly \tilde{g}_{α} wg-quotient, V is open in (Y,σ) . Hence f is \tilde{g}_{α} wg quotient map. а

Remark 5.9: Converse need not be true

Example 5.10: Let X= {a, b, c, d}, $\tau = \{\emptyset, X, \{a\}, \{a, c\}, \{a, b, d\}\}, Y = \{1, 2, 3\}, \sigma = \{\emptyset, Y, \{1\}\}$ $\tilde{g}_{\alpha} \le O(X) = \{\emptyset, X, \{a\}, \{a,c\}, \{a,b\}, \{a,b,c\}, \{a,b,c\}, \{a,c,d\}\}, \quad \tilde{g}_{\alpha} \le O(Y) = \{\emptyset, Y, \{1\}, \{1,2\}, \{1,3\}\} \text{ Let } f: (X,\tau) \to (Y,\sigma)$ is defined by $f({a})={1}, f({b})={3}, f({c})=2=f({d})$. The function f is \tilde{g}_{α} wg-quotient but not strongly \tilde{g}_{α} wg-quotient. Since $f^{1}{1,3}={a,b}$ is \tilde{g}_{α} wg-open in(X, τ) but {1,3} is not open in (Y, σ).

Theorem 5.11: Every strongly \tilde{g}_{α} -quotient map is strongly $\tilde{g}_{\alpha}wg$ -quotient map.

Proof: Let $f: (X, \tau) \to (Y, \sigma)$ strongly \tilde{g}_{α} -quotient map. Let V be any open set in (Y, σ) . Since f is strongly \tilde{g}_{α} -quotient, f ¹(V) is \tilde{g}_{α} -open in (X, τ). Since every \tilde{g}_{α} -open set is $\tilde{g}_{\alpha}wg$ -open by theorem. Then $f^{-1}(v)$ is $\tilde{g}_{\alpha}wg$ -open in(X, τ). Hence f is strongly \tilde{g}_{α} wg-quotient map.

Remark 5.12: Converse need not be true.

Example 5.13: Let X={a,b,c,d}, $\tau = \{\emptyset, X, \{d\}, \{a, c\}, \{a, c, d\}\}, Y = \{1,2,3\}, \sigma = \{\emptyset, Y, \{b\}, \{c\}, \{b, c\}, \{a, c\}\}$ \tilde{g}_{α} wg $O(X) = \{\emptyset, X, \{a\}, \{c\}, \{d\}, \{a,c\}, \{a,d\}, \{c,d\}, \{a,b,d\}, \{a,c,d\}, \{b,c,d\}\}, \{a,c,d\}, \{b,c,d\}\}, \{a,c,d\}, \{b,c,d\}, \{a,c,d\}, \{b,c,d\}, \{c,d\}, \{$ $\tilde{g}_{\alpha}O(X)$ $\{\emptyset, Y, \{a\}, \{c\}, \{d\}, \{a,c\}, \{a,d\}, \{c,d\}, \{a,c,d\}\}$. Let $f: (X, \tau) \to (Y, \sigma)$ is defined by $f(\{a\}) = \{b\}, f(\{b\}) = \{a\}, f(\{c\}) = c = f(\{d\})$. Since $f^1{a,c} = {b,c,d}$ is \tilde{g}_{α} wg-open in(X, τ) but not \tilde{g}_{α} - open in (Y, σ).

Theorem 5.14: Every strongly \tilde{g}_{α} wg quotient map is \tilde{g}_{α} wg quotient

Proof: Let V be any open set in (Y,σ) . Since f is strongly \tilde{g}_{α} wg quotient, $f^{1}(V)$ is \tilde{g}_{α} wg-open set in (X,τ) . Hence f is \tilde{g}_{α} wg-continuous. Let $f^{1}(V)$ be open in (X,τ) . Then $f^{1}(V)$ is \tilde{g}_{α} wg open in (X,τ) . Since f is strongly \tilde{g}_{α} wg-quotient V is open in (Y,σ) . Hence f is a \tilde{g}_{α} wg-quotient map.

Remark 5.15: Converse need not be true

Example 5.16: Let X={a,b,c,d}, $\tau = \{\emptyset, X, \{a\}, \{a,c\}, \{a,b,d\}, Y = \{1,2,3\}, \sigma = \{\emptyset, Y, \{1\}\}$ $\tilde{g}_{\alpha} wgO(X) = \{\emptyset, X, \{a\}, \{a,c\}, \{a,b\}, \{a,d\}, \{a,b,c\}, \{a,b,d\}, \{a,c,d\}\}, \tilde{g}_{\alpha} wgO(Y) = \{\emptyset, Y, \{1\}, \{1,2\}, \{1,3\}\}$ Let $f: (X, \tau) \to (Y, \sigma)$ is defined by $f(\{a\}) = \{1\}, f(\{b\}) = \{3\}, f(\{c\}) = 2 = f(\{d\})$. The function f is $\tilde{g}_{\alpha} wg$ -quotient but not strongly $\tilde{g}_{\alpha} wg$ -quotient. Since $f^{-1}\{1,3\} = \{a,b\}$ is $\tilde{g}_{\alpha} wg$ -open in(X, τ) but $\{1,3\}$ is not open in (Y, σ) .

Theorem 5.17: Every $(\tilde{g}_{\alpha} wg)^*$ -quotient map is \tilde{g}_{α} wg-quotient map.

Proof: Let f be $(\tilde{g}_{\alpha}wg)^*$ -quotient map. Then f is \tilde{g}_{α} wg-irresolute, by theorem 3.2[7] f is \tilde{g}_{α} wg-continuous. Let

 $f^{1}(V)$ be an open set in (X,τ) . Then $f^{1}(V)$ is a \tilde{g}_{α} wg-open in (X,τ) . Since f is $(\tilde{g}_{\alpha}wg)^{*}$ -quotient, V is open in (Y,σ) . It means V is \tilde{g}_{α} wg-open in (Y,σ) . Therefore f is a \tilde{g}_{α} wg-quotient map.

Remark 5.18: Converse need not be true

Example 5.19: Let X={a,b,c,d}, $\tau = \{\emptyset, X, \{a\}, \{a,c\}, \{a,b,d\}, Y = \{1,2,3\}, \sigma = \{\emptyset, Y, \{1\}\}$ $\tilde{g}_{\alpha} wgO(X) = \{\emptyset, X, \{a\}, \{a,c\}, \{a,b\}, \{a,d\}, \{a,b,c\}, \{a,b,d\}, \{a,c,d\}\}, \tilde{g}_{\alpha} wgO(Y) = \{\emptyset, Y, \{1\}, \{1,2\}, \{1,3\}\}$ Let $f: (X, \tau) \to (Y, \sigma)$ is defined by $f(\{a\}) = \{1\}, f(\{b\}) = \{3\}, f(\{c\}) = 2 = f(\{d\})$. The function f is $\tilde{g}_{\alpha} wg$ -quotient but not ($\tilde{g}_{\alpha} wg$)^{*}-quotient. Since f $^{1}\{1,2\} = \{a,c,d\}$ is $\tilde{g}_{\alpha} wg$ -open in(X, τ) but $\{1,2\}$ is not open in (Y, σ).

Theorem 5.20: Every α^* -quotient map is $(\tilde{g}_{\alpha}wg)^*$ -quotient map.

Proof: Let f be α^* -quotient map. Then f is surjective, α -irresolute and $f^{-1}(U)$ is α -open in (X,τ) implies U is open set in (Y,σ) . Then U is $\tilde{g}_{\alpha}wg$ -open in (Y,σ) . Since every α -irresolute map is $\tilde{g}_{\alpha}wg$ -irresolute by proposition 4.16 and every α -irresolute map is α -continuous. Then $f^{-1}(U)$ is α -open which is $\tilde{g}_{\alpha}wg$ -open in (X,τ) . Since f is α^* -quotient map, U is open in (Y,σ) . Hence f is $(\tilde{g}_{\alpha}wg)^*$ -quotient map.

Remark 5.21: Converse need not be true

Example 5.22: X={a,b,c,d}, $\tau = \{\emptyset, X, \{d\}, \{a, c\}, \{a, c, d\}\}, Y = \{1, 2, 3\}, \sigma = \{\emptyset, Y, \{2\}, \{3\}, \{2, 3\}, \{1, 3\}\}$

 $\tilde{g}_{\alpha} wgO(X) = \{ \emptyset, X, \{a\}, \{c\}, \{d\}, \{a,c\}, \{a,d\}, \{c,d\}, \{a,c,d\}, \{b,c,d\} \}, \quad \tilde{g}_{\alpha} wgO(Y) = \{ \emptyset, Y, \{2\}, \{3\}, \{2,3\}, \{1,3\} \}, \\ \alpha O(X) = \{ \{d\}, \{a,c\}, \{a,c,d\} \}, \quad \alpha O(Y) = \{ \{2\}, \{3\}, \{2,3\}, \{1,3\} \}.$ The map $f: (X, \tau) \to (Y, \sigma)$ is defined by f(a) = 2, f(b) = 1, f(c) = 3 = f(d). The function f is $(\tilde{g}_{\alpha} wg)^*$ -quotient but not $(\alpha)^*$ -quotient map. Since the set $\{2\}$ is α -open in (Y, σ) but $f^{-1}\{2\} = \{a\}$ is not α -open in (X, τ) .

Theorem 5.23: Every $(\tilde{g}_{\alpha})^*$ quotient map is $(\tilde{g}_{\alpha}wg)^*$ -quotient map:

Proof: Let f be $(\tilde{g}_{\alpha})^*$ -quotient map. Then f is surjective, \tilde{g}_{α} -irresolute and f(U) is \tilde{g}_{α} -open in (X,τ) implies U is open in (Y,σ) . Then U is \tilde{g}_{α} wg-open in (Y,σ) . Since every \tilde{g}_{α} -irresolute map is \tilde{g}_{α} wg-irresolute and every \tilde{g}_{α} -irresolute map is \tilde{g}_{α} wg-irresolute and every \tilde{g}_{α} -irresolute map is \tilde{g}_{α} wg-irresolute map is \tilde{g}_{α} -irresolute map is \tilde{g}_{α} -irresolute

Remark 5.24: Converse need not be true

Example 5.25: Let X={a,b,c,d}, $\tau = \{\emptyset, X, \{d\}, \{a, c\}, \{a, c, d\}\}, Y = \{1,2,3\}, \sigma = \{\emptyset, Y, \{2\}, \{3\}, \{2,3\}, \{1,3\}\}$ $\tilde{g}_{\alpha} wg \mathcal{O}(X) = \{\emptyset, X, \{a\}, \{c\}, \{d\}, \{a, c\}, \{a, d\}, \{c, d\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}\}, \quad \tilde{g}_{\alpha} wg \mathcal{O}(Y) = \{\emptyset, Y, \{2\}, \{3\}, \{2,3\}, \{1,3\}\}, \quad \tilde{g}_{\alpha} \mathcal{O}(X) = \{\{a\}, \{d\}, \{c\}, \{a, c\}, \{a, d\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}\}, \quad \tilde{g}_{\alpha} \mathcal{O}(Y) = \{\{2\}, \{3\}, \{2,3\}, \{1,3\}\}.$ The map $f: (X, \tau) \rightarrow (Y, \sigma)$ is defined by $f(\{a\}) = \{2\}, f(\{b\}) = \{1\}, f(\{c\}) = 3 = f(\{d\})$. The function f is $(\tilde{g}_{\alpha} wg)^*$ -quotient but not $(\tilde{g}_{\alpha})^*$ -quotient map. Since the set $\{1,3\}$ is \tilde{g}_{α} -open in (Y, σ) but $f^1\{1,3\} = \{b, c, d\}$ is not \tilde{g}_{α} -open in (X, τ) .

Theorem 5.26: Every $(\tilde{g}_{\alpha} wg)^*$ -quotient map is strongly \tilde{g}_{α} wg-quotient.

Proof: Let V be an open set in (\dot{Y}, σ) . Then it is \tilde{g}_{α} wg-open in (\dot{Y}, σ) since f is $(\tilde{g}_{\alpha} wg)^*$ -quotient map. $f^1(V)$ is \tilde{g}_{α} wg-open in (X, τ) . (Since f is \tilde{g}_{α} wg-irresolute). Also V is open in (\dot{Y}, σ) implies $f^1(V)$ is \tilde{g}_{α} wg-open in (X, τ) . since f is $(\tilde{g}_{\alpha} wg)^*$ -open V is open in (\dot{Y}, σ) . Hence f is strongly \tilde{g}_{α} wg-quotient map.

Remark 5.27: Converse need not be true

Example 5.28: Let X={a,b,c,d}, $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}, Y = \{1,2,3\}, \sigma = \{\emptyset, Y, \{1\}, \{1,2\}\}$ $\tilde{g}_{\alpha} wg \mathcal{O}(X) = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, \{a, b, d\}\}, \tilde{g}_{\alpha} wg O(Y) = \{\emptyset, Y, \{1\}, \{1,2\}, \{1,3\}\}$ Let $f: (X, \tau) \to (Y, \sigma)$ is defined by $f(\{a\}) = \{1\}, f(\{b\}) = \{2\} = f(\{c\}), f(\{d\}) = \{3\}$. The function f is strongly $\tilde{g}_{\alpha} wg$ -quotient but not a $(\tilde{g}_{\alpha} wg)^*$ -quotient. Since the set $\{1,3\}$ is $\tilde{g}_{\alpha} wg$ -open in (Y, σ) but $f^1\{1,3\} = \{a,d\}$ is not open in (X, τ) .

Remark 5.29: Quotient map and α^* -quotient map are independent

Example 5.30: Let X={a,b,c,d}, $\tau = \{\emptyset, X, \{\alpha\}, \{\alpha, b\}\}, Y = \{1,2,3\}, \sigma = \{\emptyset, Y, \{1\}, \{1,2\}\}$ $\alpha \mathcal{O}(X) = \{\emptyset, X, \{a\}, \{a,c\}, \{a,d\}, \{a,b,c\}, \{a,b,d\}, \{a,c,d\}\}, \alpha O(Y) = \{\emptyset, Y, \{1\}, \{1,2\}, \{1,3\}\}$ Let $f: (X, \tau) \to (Y, \sigma)$ is defined by $f(a)=1, f(b)=\{2\}, f(c)=3=f(d)$. The function f is quotient but not a $(\alpha)^*$ -quotient. Since $f^1\{1,3\}=\{a,c,d\}$ is α -open in (X, τ) but the set $\{1,3\}$ is not open in (Y, σ) .

Example 5.31: Let X={a,b,c,d}, $\tau = \{\emptyset, X, \{a\}, \{a, c\}, \{a, b, c\}\}, Y = \{1,2,3\}, \sigma = \{\emptyset, Y, \{1\}, \{1,2\}, \{1,3\}\}$

 $aO(X) = \{\emptyset, X, \{a\}, \{a, b\}, \{a, c\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}\}, \alpha O(Y) = \{\emptyset, Y, \{1\}, \{1, 2\}, \{1, 3\}\}$ Let $f: (X, \tau) \to (Y, \sigma)$ is defined by f(a) = 1, $f(b) = \{2\}, f(c) = 3 = f(d)$. The function f is α^* quotient but not a quotient map. Since $f^1\{1, 3\} = \{a, c, d\}$ is α -open in (X, τ) but the set $\{1, 3\}$ is not open in (Y, σ)

Remark 5.32: Quotient map and strongly \tilde{g}_{α} wg-quotient map are independent.

Example 5.33: X={a,b,c,d}, $\tau = \{\emptyset, X, \{d\}, \{a, c\}, \{a, c, d\}\}, Y = \{1,2,3\}, \sigma = \{\emptyset, Y, \{2\}, \{3\}, \{2,3\}, \{1,3\}\}$ $\tilde{g}_{\alpha} wg \mathcal{O}(X) = \{\emptyset, X, \{a\}, \{c\}, \{d\}, \{a,c\}, \{a,d\}, \{c,d\}, \{a,b,d\}, \{a,c,d\}, \{b,c,d\}\}, \quad \tilde{g}_{\alpha} wg O(Y) = \{\emptyset, Y, \{2\}, \{3\}, \{2,3\}, \{1,3\}\}, a\mathcal{O}(X) = \{\{d\}, \{a,c\}, \{a,c,d\}\}, \quad \alpha O(Y) = \{\{2\}, \{3\}, \{2,3\}, \{1,3\}\}.$ The map $f: (X, \tau) \to (Y, \sigma)$ is defined by f(a)=2, f(b)=1, f(c)=3=f(d). The function f is strongly \tilde{g}_{α} wg-quotient but not quotient map. Since the set $\{2\}$ is open in (Y, σ) but f ${}^{1}\{2\}=\{a\}$ is not open in (X, τ) .

Example 5.34: X={a,b,c,d}, $\tau = \{\emptyset, X, \{a\}, \{a, b\}\}, Y = \{1,2,3\}, \sigma = \{\emptyset, Y, \{1\}, \{1,2\}\}$

 \tilde{g}_{α} wg $\mathcal{O}(X) = \{\emptyset, X, \{a\}, \{a, b\}, \{a, c\}, \{a, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}\}, \quad \tilde{g}_{\alpha}$ wg $\mathcal{O}(Y) = \{\emptyset, Y, \{1\}, \{1, 2\}, \{1, 3\}\}, \quad \text{The map } f: (X, \tau) \to (Y, \sigma) \text{ is defined by } f(a) = 1, f(b) = 2, f(c) = 3 = f(d). \text{The function } f \text{ is quotient but not strongly } \tilde{g}_{\alpha}$ wg-quotient map. Since $f^{1}(\{1, 3\} \text{ is } \tilde{g}_{\alpha}$ wg -open in (X, τ) but the set $\{1, 3\}$ is not open in (Y, σ) .

Remark 5.35: From the above results we have the following diagram where A \longrightarrow B represent A implies B but not conversely, A \longleftrightarrow B represents A and B are independent each other.

VI. Applications

Theorem 6.1: The composition of two $(\tilde{g}_{\alpha} wg)^*$ -quotient maps is $(\tilde{g}_{\alpha} wg)^*$ -quotient. Proof: Let $f: (X, \tau) \to (Y, \sigma)$ and $g: (Y, \sigma) \to (Z, \eta)$ be two $(\tilde{g}_{\alpha} wg)^*$ -quotient maps. Let V be any \tilde{g}_{α} wg-open set in (Z,η) . Since g is $(\tilde{g}_{\alpha} wg)^*$ -quotient, $g^{-1}(V)$ is \tilde{g}_{α} wg-open in (Y,σ) and since f is $(\tilde{g}_{\alpha} wg)^*$ -quotient then $(f^{-1}(g^{-1}(V))) = (g \circ f)^{-1}(V)$ is \tilde{g}_{α} wg-open in (X, τ) . Hence $g \circ f$ is \tilde{g}_{α} wg-irresolute.

Let $(g \circ f)^{-1}(V)$ is \tilde{g}_{α} wg-open in (X, τ) . Then $f^{-1}(g^{-1}(V))$ is \tilde{g}_{α} wg-open in (X, τ) . Since f is $(\tilde{g}_{\alpha} wg)^*$ -quotient, $g^{-1}(V)$ is open in (Y, σ) . Since g is $(\tilde{g}_{\alpha} wg)^*$ -quotient, V is open in (Z, η) . Hence $g \circ f$ is $(\tilde{g}_{\alpha} wg)^*$ -quotient.

Proposition 6.2: If $h: (X, \tau) \to (Y, \sigma)$ is \tilde{g}_{α} wg-quotient map and $g: (X, \tau) \to (Z, \eta)$ is a continuous map that is constant on each set $h^{-1}(y)$ for $y \in Y$, then g induces a \tilde{g}_{α} wg-continuous map $f: (Y, \sigma) \to (Z, \eta)$ suce $h \ t \ h \ at \ f \circ h = g$. Proof: g is a constant on $h^{-1}(y)$ for each $y \in Y$, the set $g(h^{-1}(y))$ is a one point set in (Z, η) . If f(y) denote this point, then it is

Proof: g is a constant on $h^{-1}(y)$ for each $y \in Y$, the set $g(h^{-1}(y))$ is a one point set in (Z, η) . If f(y) denote this point, then it is clear that f is well defined and for each $x \in X$, f(h(x)) = g(x). We claim that f is \tilde{g}_{α} wg-continuous. For if we let V be any open set in (Z, η) , then $g^{-1}(V)$ is an open set in (X, τ) as g is continuous. But $g^{-1}(V)=h^{-1}(f^{-1}(V))$ is open in (X, τ) . Since h is \tilde{g}_{α} wg-quotient map, $f^{-1}(V)$ is a \tilde{g}_{α} wg-open in (Y, σ) . Hence f is \tilde{g}_{α} wg-continuous.

Proposition 6.3: If a map $f:(X,\tau) \to (Y,\sigma)$ is surjective, \tilde{g}_{α} wg-continuous and \tilde{g}_{α} wg-open then f is a \tilde{g}_{α} wg-quotient map.

Proof: To prove f is \tilde{g}_{α} wg-quotient map. We only need to prove f¹(V) is open in (X, τ) implies V is \tilde{g}_{α} wg-open in (Y, σ). Since f is \tilde{g}_{α} wg-continuous. Let f¹(V) is open in (X, τ). Then f(f¹(V)) is \tilde{g}_{α} wg-open set, since f is \tilde{g}_{α} wg-open. Hence V is \tilde{g}_{α} wg-open set. Hence V is \tilde{g}_{α} wg-open set, as f is surjective, f(f¹(V))=V. Thus f is a \tilde{g}_{α} wg-quotient map.

Proposition 6.4: If $f:(X,\tau) \to (Y,\sigma)$ be open surjective, \tilde{g}_{α} wg-irresolute map, and $g:(Y,\sigma) \to (Z,\eta)$ is a \tilde{g}_{α} wg-quotient map then $g \circ f:(X,\tau) \to (Z,\eta)$ is \tilde{g}_{α} wg-quotient map.

Proof: Let V be any open set in (Z, η) . Since g is \tilde{g}_{α} wg-quotient map then $g^{-1}(V)$ is \tilde{g}_{α} wg-open in (Y, σ) . Since f is \tilde{g}_{α} wg-irresolute, $f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V)$ is \tilde{g}_{α} wg-open in (X, τ) . This implies

 $(g \circ f)^{-1}(V)$ is \tilde{g}_{α} wg-open set in (X, τ) . This shows that $g \circ f$ is \tilde{g}_{α} wg-continuous map. Also assume that

 $(g \circ f)^{-1}(V)$ is open in (X, τ) . For $V \subseteq Z$, t h at is $(f^{-1}(g^{-1}(V)))$ is open in (Y, σ) . It follows that $g^{-1}(V)$ is open in (Y, σ) . Since f is surjective and g is \tilde{g}_{α} wg-quotient map. V is \tilde{g}_{α} wg-open set in (Z, η) .

Proposition 6.5: Let $f:(X,\tau) \to (Y,\sigma)$ be strongly \tilde{g}_{α} wg-open surjective and \tilde{g}_{α} wg-irresolute map and $g:(Y,\sigma) \to (Z,\eta)$ be strongly \tilde{g}_{α} wg-quotient map then $g \circ f$ is a strongly \tilde{g}_{α} wg-quotient map.

Proof: Let V be an open set in(Z, η). Since g is strongly \tilde{g}_{α} wg-quotient, $g^{-1}(V)$ is a \tilde{g}_{α} wg-open in(Y, σ). Since f is \tilde{g}_{α} wg-irresolute, $f^{-1}(g^{-1}(V))$ is a \tilde{g}_{α} wg-open in (X, τ) implies (g of)⁻¹(V) is a \tilde{g}_{α} wg-open in (X, τ). Assume

 $(g \circ f)^{-1}(V)$ is \tilde{g}_{α} wg-open in(X, τ). Then $(f^{-1}(g^{-1}(V)))$ is \tilde{g}_{α} wg-open in (X, τ). Since f is strongly \tilde{g}_{α} wg-open, then f(f ¹(g⁻¹(V))) is \tilde{g}_{α} wg-open in (Y, σ) which implies g⁻¹(V) is \tilde{g}_{α} wg-open in(Y, σ). Since g is strongly \tilde{g}_{α} wg-quotient map, V is open in (\mathbb{Z}, η) . Thus gof is strongly \tilde{g}_{α} wg-quotient map.

Theorem 6.6: Let $p:(X,\tau) \to (Y,\sigma)$ be \tilde{g}_{α} wg-quotient map and the spaces $(X,\tau), (Y,\sigma)$ are $T_{\tilde{g}_{\alpha}wg}$ -spaces. f:(Y, σ) \rightarrow (Z, η) is a strongly \widetilde{g}_{α} wg-continuous iff fo $p:(X, \tau) \rightarrow (Z, \eta)$ is a strongly \widetilde{g}_{α} wg-continuous.

Proof: Let f be strongly \tilde{g}_{α} wg-continuous and U be any \tilde{g}_{α} wg-open set in (Z, η) . Then $f^{1}(U)$ is open in (Y, σ) . Since p is \tilde{g}_{α} wg-quotient map, then $p^{-1}(f^{-1}(U)) = (f \circ p)^{-1}(U)$ is \tilde{g}_{α} wg-open in(X, τ). Since(X, τ) is $\mathcal{T}_{\tilde{g}_{\alpha}wg}$ -space,

 $p^{-1}(f^{-1}(U))$ is open in (X, τ) . Thus for is strongly \tilde{g}_{α} wg-continuous.

Conversely, Let the composite function for is strongly \tilde{g}_{α} wg-continuous. Let U be any \tilde{g}_{α} wg-open set in (Z, η) ,

 $p^{-1}(f^{-1}(U))$ is open in (X, τ) . Since p is a \tilde{g}_{α} wg-quotient map, it implies that $f^{-1}(U)$ is \tilde{g}_{α} wg-open in (Y, σ) . Since (Y, σ) is a $\mathcal{T}_{\tilde{g}_{\alpha}wg}$ -space, f¹(U) is open in (Y, σ). Hence f is strongly is \tilde{g}_{α} wg-continuous.

Theorem 6.7: Let $f:(X,\tau) \to (Y,\sigma)$ be a surjective, strongly \tilde{g}_{α} wg-open and \tilde{g}_{α} wg-irresolute map and $g:(Y,\sigma) \to (Y,\sigma)$ (Z, η) be a $(\tilde{g}_{\alpha} wg)^*$ -quotient map, then gof is a $(\tilde{g}_{\alpha} wg)^*$ -quotient map.

Proof: Let V be \tilde{g}_{α} wg-open set in (Z, η) . Since g is a $(\tilde{g}_{\alpha} wg)^*$ -quotient map, $g^{-1}(V)$ is a \tilde{g}_{α} wg-open set in (Y, σ) , since f is \tilde{g}_{α} wg-irresolute, f¹(g⁻¹(V)) is \tilde{g}_{α} wg-open in (X, τ). Then (go f)⁻¹(V) is \tilde{g}_{α} wg-open in (X, τ). Since f is strongly \tilde{g}_{α} wg-open, f(f⁻¹(g⁻¹(V))) is \tilde{g}_{α} wg-open in (Y, σ) which implies g⁻¹(V) is a \tilde{g}_{α} wg-open in (Y, σ). Since g is (\tilde{g}_{α} wg)^{*}-quotient map then V is open in (Z, η) .

Hence gof is a $(\tilde{g}_{\alpha} wg)^*$ -quotient map.

Theorem 6.8: Let $f: (X, \tau) \to (Y, \sigma)$ be a strongly \tilde{g}_{α} wg-quotient map and $g: (Y, \sigma) \to (Z, \eta)$ be a $(\tilde{g}_{\alpha} wg)^*$ -quotient

map and f is \tilde{g}_{α} wg-irresolute then gof is $(\tilde{g}_{\alpha} wg)^*$ -quotient map. **Proof:** Let V be a \tilde{g}_{α} wg-open in (Z,η) . Then $g^{-1}(V)$ is \tilde{g}_{α} wg-open in (Y,σ) since g is $(\tilde{g}_{\alpha} wg)^*$ -quotient map. Since f is \tilde{g}_{α} wg-irresolute map, then $f^{-1}(g^{-1}(V))$ is \tilde{g}_{α} wg-open in (X, τ) . ie, $(g \circ f)^{-1}(V)$ is \tilde{g}_{α} wg-open in (X, τ) which shows that $g \circ f$ is \tilde{g}_{α} wg -irresolute. Let $f^{1}(g^{-1}(V))$ is \tilde{g}_{α} wg-open in (X, τ) . Since f is strongly \tilde{g}_{α} wg-quotient map then $g^{-1}(V)$ is open in (Y, σ) which implies $g^{-1}(V)$ is \tilde{g}_{α} wg-open in (Y, σ) . Since g is $(\tilde{g}_{\alpha} wg)^{*}$ -quotient map, V is open in (Z, η) . Hence $g \circ f$ is $(\widetilde{g}_{\alpha} wg)^*$ -quotient map.

References

- M. Lellis Thivagar, A note on quotient Mappings, Bull. Malaysian Math. Soc. 14(1991), 21-30. [1]
- M.Lellis Thivagar and Nirmala Rebecca Paul. On topological \tilde{g}_{α} -quotient mappings, Journal of Advanced Studies in Topology Vol.1, 2010, [2] 9-16.
- [3] M.Lellis Thivagar and Nirmala Rebecca Paul. Remarks on \tilde{g}_{α} -irresolute maps, Bol.Soc.Paran.Mat Vol.291(2011) 55-66.
- [4] M.Lellis Thivagar and Nirmala Rebecca Paul, New Types of Topological mappings, International Journal of.Math.Sci and Engg.Appli., Vol No.IV(2011),43-61.
- Levine, N.: Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70(1963), 36-41. [5]
- Maria Singam, M., Anitha, G., \tilde{g}_{α} -Weakly generalized closed sets in topological spaces, Antarctica J.Math;9(20(2012),133-142. [6]
- Maria Singam, M., Anitha, G., \tilde{g}_{α} -Weakly generalized continuous functions, International Journal of Mathematical Archive-2(11), [7] 2011, 2135-2141.
- Maria Singam, M., Anitha, G., Contra \tilde{g}_{α} -WG continuous functions, International Journal of Computer Applications-2(11), 2011, 2135-[8] 2141.
- Mashhour, A. S., Hasanein, I. A and El-Deeb, S. N. α-continuous and α-open mappings, Acta Math. Hungar., 41(1983), 213-218. [9]
- [10] Mashhour, A. S., Abd El-Monsef, M. E and El-Deeb, S. N. On precontinuous mappings and weak pre-continuous mappings, Proc.
- Math. and Phys. Soc. Egypt, 53(1982), 47-53. J. R.Munkres, Topology, A first course, Fourteenth Indian Reprint. [11]
- [12] Njastad. O, on some classes of nearly open sets, Pacific J. Math., 15(1965), 961-970.
- [13] Rajesh.N.,Lellis Thivagar.M.,Sundaram.P.,Zbigniew Duszynski., \tilde{g} semi closed sets in topological spaces, Mathematica Pannonica, 18(2007), 51-61.
- Reilly, I. L and Vamanamurthy, M. K. On α-continuity in topological spaces, Acta Math Hungar., 45(1-2)(1985), 27-2. [14]
- Saeid Jafari, M.Lellis Thivagar and Nirmala Rebecca Paul. Remarks on \tilde{g}_{α} -closed sets in topological spaces, International Mathematical [15] Forum, 5, 2010, no.24, 1167-1178.
- [16] Veera Kumar M.K.R.S.Between * g closed sets and g-closed sets, Mem.Fac.Sci.Kochi Univ.Ser.App.Math.,21(2000),1-19
- [17] Veera kumar M.K.R.S. #g -semi closed sets in topological spaces, Antartica J.Math 2(2005), 201-222.