On Topological g ̃α--WG Quotient Mappings

G.Anitha, ¹ M.Mariasingam²

¹Research Scholar, V.O.Chidambaram College, Tuticorin, Tamil Nadu, India ²Department of Mathematics, V.O.Chidambaram College, Tuticorin, Tamil Nadu, India

Abstract: The aim of this paper is to introduce \tilde{g}_a wg-quotient map using \tilde{g}_a wg-closed sets and study their basic properties. We also study the relation between weak and strong form of \tilde{g}_α wg-quotient maps. We also derive the relation between \tilde{g}_α wg-quotient maps and \tilde{g}_α -quotient maps and also derive the relation between the \tilde{g}_α wg-continuous map and \tilde{g}_α wg*quotient maps. Examples are given to illustrate the results.*

Keywords: \tilde{g}_a -closed sets, \tilde{g}_a -open sets, \tilde{g}_a wg-closed sets, \tilde{g}_a wg-open sets.

2000 Mathematics Subject Classification: *54C10, 54C08, 54C05*

I. Introduction

Njastad [12] introduced the concept of an *α*-sets and Mashhour et al [9] introduced *α*-continuous mappings in topological spaces. The topological notions of semi-open sets and semi-continuity, and preopen sets and precontinuity were introduced by Levine [5] and Mashhour et al [10] respectively. After advent of these notions, Reilly [14] and Lellis Thivagar [1] obtained many interesting and important results on *α*-continuity and *α*-irresolute mappings in topological spaces. Lellis Thivagar [1] introduced the concepts of *α*-quotient mappings and *α**-quotient mappings in topological spaces. Jafari et al.[15] have introduced \tilde{g}_α -closed set in topological spaces. The author [6] introduced \tilde{g}_α -WG closed set using \tilde{g}_α -closed set. In this paper we have introduced \tilde{g}_{α} -WG quotient mappings.

II. Preliminaries

Throughout this paper (X, τ) , (Y, σ) and (Z, η) (or X, Y and Z) represent non empty topological spaces on which no separation axiom is defined unless otherwise mentioned. For a subset A of a space the closure of A, interior of A and complement of A are denoted by $cl(A)$, int(A) and A^c respectively. We recall the following definitions which are useful in the sequel.

Definition 2.1: A subset A of a space (X, t) is called:

(i)semi-open set [5] if $A \subseteq cl(int(A));$

(ii) a α -open set [12] if $A \subseteq int(cl(int(A))).$

The complement of semi-open set(resp. α -open set) is said to be semi closed (resp. α -closed)

Definition 2.2: A subset A of a topological space(X, τ) is called

(i)w-closed set [13] if $cl(A) \subseteq U$, whenever $A \subseteq U$ and U is semi-open in (X, τ) .

(ii) * g-closed set [16] if cl(A) $\subseteq U$, whenever A $\subseteq U$ and U is w-open in (X, τ) .

(iii) a # g-semi closed set(# gs-closed)[17] if scl(A) \subseteq U, whenever A \subseteq U and U is * g -open in (X, τ).

(iv) a \tilde{g}_α -closed [15] if α cl(A) $\subseteq U$, whenever A $\subseteq U$ and U is # gs-open in (X, τ) .

(v) a \tilde{g}_α -Weakly generalized closed set(\tilde{g}_α wg-closed) [6] if Cl(Int(A)) $\subseteq U$, whenever A $\subseteq U$,U is \tilde{g}_α -open in (X, τ).

The complements of the above sets are called their respective open sets.

Definition 2.3: A function $f: (X, \tau) \rightarrow (Y, \sigma)$ is called

(i) a α -continuous [1] if f(V) is a α -closed set of (X, τ) for each closed set V of (Y, σ) .

(ii)a α -irresolute [1] if f-1(V) is an α -open in (X,τ) for each α -open set V of (Y,σ) .

(iii) a \tilde{g}_α -continuous [3] if $f^1(V)$ is a \tilde{g}_α -closed set of (X, τ) for each closed set V of (Y, σ) ,

(iv)a \tilde{g}_{α} -irresolute [3] if f $\Box 1(V)$ is \tilde{g}_{α} -open in (X, τ) for each \tilde{g}_{α} -open set V of (Y, σ) ,

(v) \tilde{g}_{α} wg - continuous [7] if f⁻¹(V) is \tilde{g}_{α} wg-closed in (X, τ) for every closed set V of (Y, σ).

(vi) \tilde{g}_α wg - irresolute [7] if f⁻¹(v) is \tilde{g}_α wg-closed in (X, τ) for every \tilde{g}_α wg-closed set V in (Y, σ)

Definition 2.4: A space(X, τ) is called $T_{\tilde{g}_{\alpha}wg}$ -space [6] if every $\tilde{g}_{\alpha}wg$ -closed set is closed.

Definition 2.5: A function $f: (X, \tau) \rightarrow (Y, \sigma)$ is said to be

(i)a \tilde{g}_{α} wg -open [8]if the image of each open set in (X,τ) is \tilde{g}_{α} wg -open set in (Y,σ) . (ii) a strongly \tilde{g}_α wg -open or $((\tilde{g}_\alpha w g)^*$ -open)[8] if the image of each \tilde{g}_α wg -open set in (X,τ) is a \tilde{g}_α wg -open in (Y,σ) .

Definition 2.6: A surjective map $f: (X, \tau) \rightarrow (Y, \sigma)$ is said to be

(i) a quotient map [4] provided a subset U of (Y, σ) is open in (Y, σ) if and only if $f^1(U)$ is open in (X, τ) , (ii) An α -quotient map [1] if f is α -continuous and $f^1(U)$ is open in (X, τ) implies U is an α -open in (Y, σ) (iii) An α^* -quotient map [1] if f is α -irresolute and $f^1(U)$ is an α -open set in (X, τ) implies U is an open set in (Y, σ) . (iv) a \tilde{g}_α -quotient map[2] if f is \tilde{g}_α -continuous and $f^1(U)$ is open in (X,τ) implies U is a \tilde{g}_α -open set in (Y,σ) . (v) a strongly \tilde{g}_α -quotient map[2], provided a set U of (Y,σ) is open in Y if and only if $f^1(U)$ is a \tilde{g}_α -open set in (X,τ) . (vi) a \tilde{g}_{α}^* -quotient map[2] if f is \tilde{g}_{α} -irresolute and $f^1(U)$ is an \tilde{g}_{α} -open set in (X, τ) implies U is an open set in (Y, σ) .

Remark 2.7: The collection of all \tilde{g}_α wg-closed (\tilde{g}_α wg-open sets) are denoted by \tilde{G}_α WG_Cl(X) and (\tilde{G}_α WG-O(X)), respectively.

III. \tilde{g}_a - Weakly Generalized quotient maps.

Definition 3.1: A surjective map $f: (X, \tau) \to (Y, \sigma)$ is said to be \tilde{g}_α wg-quotient map if f is \tilde{g}_α wg-continuous and $f^1(V)$ is open in (X, τ) implies V is \tilde{g}_α wg-open set in (Y, σ) .

Example3.2:Let $X = \{a, b, c, d\}, \tau = \{\emptyset, X, \{a\}, \{a, c\}, \{a, b, d\}\}, Y = \{1, 2, 3\}, \sigma = \{\emptyset, Y, \{1\}, \{1, 2\}, \{1, 3\}\},$ \tilde{g}_{α} wg $O(X)$ ={ \emptyset ,X,{a},{a,c},{a,b},{a,d},{a,b,c},{a,b,d},{a,c,d}}, \tilde{g}_{α} wgO(Y) = { \emptyset ,Y,{1},{1,2},{1,3}}

The map $f: (X, \tau) \to (Y, \sigma)$ is defined as $f(a)=1$, $f(b)=2=f(d)$, $f(c)=3$. The map f is \tilde{g}_{α} wg-quotient map.

Proposition 3.3: If a map $f: (X, \tau) \to (Y, \sigma)$ is \tilde{g}_{α} wg-continuous and \tilde{g}_{α} wg-open then f is \tilde{g}_{α} wg-quotient map. Proof: We only need to prove $f'(V)$ is open in (X,τ) implies V is \tilde{g}_α wg-open in (Y,σ) . Let $f'(V)$ is open in (X,τ) . Then f(f $(1)(V)$) is \tilde{g}_{α} wg-open in (Y,σ) . Since f is \tilde{g}_{α} wg-open. Hence V is \tilde{g}_{α} wg-open in (X,τ) .

IV. Strong form of \widetilde{g}_a **- Weakly Generalized quotient maps.**

Definition 4.1: Let $f: (X, \tau) \to (Y, \sigma)$ be a surjective map. Then f is called strongly \tilde{g}_{σ} wg-quotient map provided a set U of (Y, σ) is open in Y if and only if $f^{-1}(U)$ is \tilde{g}_{α} wg-open set in (X, τ)

Example 4.2: Let $X = \{a, b, c, d\}, \tau = \{\emptyset, X, \{a\}, \{b, c\}, \{a, b, c\}\}, Y = \{1, 2, 3\}, \sigma = \{\emptyset, Y, \{1\}, \{2\}, \{1, 2\}\}$ \tilde{g}_{α} wg $O(X)$ ={Ø,X,{a},{b},{c},{a,c},{a,b},{b,c},{a,b,c},{a,b,d},{a,c,d}}, \tilde{g}_{α} wgO(Y) = {Ø,Y,{1},{2},{1,2}} The map $f: (X, \tau) \to (Y, \sigma)$ is defined as $f(a)=1$, $f(b)=2=f(c)$, $f(d)=3$. The map f is strongly \tilde{g}_{α} wg-quotient map.

Theorem 4.3: Every strongly \tilde{g}_{α} wg-quotient map is \tilde{g}_{α} wg-open map.

Proof: Let $f: (X, \tau) \to (Y, \sigma)$ be a strongly \tilde{g}_α wg – quotient map. Let V be any open set in (X, τ) . Since every open set is \tilde{g}_{α} wg-open by theorem 3.2[6]. Hence V is \tilde{g}_{α} wg-open in (X, τ) . That is $f^1(f(V))$ is \tilde{g}_{α} wg-open in (X, τ) . Since f is strongly \tilde{g}_{α} wg-quotient, then f(V) is open in (Y,σ) and hence f(V) is \tilde{g}_{α} wg-open in (Y,σ) . This shows that f is \tilde{g}_{α} wg-open map.

Remark 4.4: Converse need not be true

Example 4.5: Let $X = \{a, b, c, d\}, \tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}, Y = \{1, 2, 3\}, \sigma = \{\emptyset, Y, \{1\}, \{2\}, \{1, 2\}, \{1, 3\}\},\$ \tilde{g}_{α} wg $O(X) = {\phi, X, \{a\}, \{b\}, \{a,b\}, \{a,b,c\}, \{a,b,d\}}$, \tilde{g}_{α} wg $O(Y) = {\phi, Y, \{1\}, \{2\}, \{1,2\}, \{1,3\}}$. $f: (X, \tau) \rightarrow (Y, \sigma)$ is defined by f(a)=1=f(b), f(c)=3, f(d)=2 is a \tilde{g}_α wg-open map but not a strongly \tilde{g}_α wg-quotient map. Since the set {2} is open in (Y, σ) but $f^1({2})=$ {d} is not \tilde{g}_α wg-open in (X,τ) .

Theorem 4.6: Every strongly \tilde{g}_{α} wg-quotient map is strongly \tilde{g}_{α} wg-open.

Proof: Let $f: (X, \tau) \to (Y, \sigma)$ be a strongly \tilde{g}_{α} wg-quotient map. Let V be a \tilde{g}_{α} wg-open in (X, τ) . That is

 $f^1(f(V))$ is \tilde{g}_α wg-open in(X, τ). Since f is strongly \tilde{g}_α wg-quotient, then $f(V)$ is open in (Y,σ) and hence $f(V)$ is \tilde{g}_α wg-open in (Y, σ) . This shows that f is \tilde{g}_α wg-open map.

Example4.7: Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{a\}, \{c\}, \{a, c\}\}, Y = \{1, 2, 3\}, \sigma = \{\emptyset, Y, \{1, 3\}\}, \tilde{g}_{\alpha} \le 0(X) = \{S\emptyset, X, \{a\}, \{c\}, \{a, c\}\},$ \tilde{g}_α wgO(Y) = {Ø,Y,{1},{3},{1,2},{1,3},{2,3}}. The map $f: (X, \tau) \to (Y, \sigma)$ is defined as identity map. Then f is strongly \tilde{g}_{α} wg-open but not strongly \tilde{g}_{α} wg-quotient map. Since

 $f^{\dagger}\{3\} = \{c\}$ is \tilde{g}_{α} wg-open in (X,τ) but $\{3\}$ is not open in (Y,σ) .

Definition 4.8: Let $f: (X, \tau) \to (Y, \sigma)$ be a surjective map. Then f is called a $(\tilde{g}_{\alpha}wg)^*$ -quotient map if f is $\tilde{g}_{\alpha}wg\text{-}irresolute$ and $f'(V)$ is a \tilde{g}_{α} wg-open set in (X,τ) implies V is open in (Y,σ) .

Example 4.9: X={a,b,c,d}, τ ={ \emptyset , X, {a}, {b}, {a, b}}, Y={1,2,3}, σ = { \emptyset , Y, {1}, {3}, {1,3}}

 \tilde{g}_α wg $O(X) = \{\emptyset, X, \{a\}, \{b\}, \{a,b\}, \{a,b,c\}, \{a,b,d\}\}\$, \tilde{g}_α wg $O(Y) = \{\emptyset, Y, \{1\}, \{3\}, \{1,3\}\}\$. The map $f: (X, \tau) \to (Y, \sigma)$ defined by f(a)=1, f(b)=3, f(c)=2=f(d). The map f is $(\tilde{g}_{\alpha}wg)^*$ -quotient map.

Theorem 4.10: Every $(\tilde{g}_{\alpha}wg)^*$ -quotient map is $\tilde{g}_{\alpha}wg$ -irresolute.

Proof: Obviously true from the definition.

Remark 4.11: Converse need not be true.

Example 4.12: $X = \{a,b,c,d\}, \tau = \{0, X, \{a\}, \{a,c\}, \{a,b,d\}\}, Y = \{1,2,3\}, \sigma = \{0, Y, \{1\}, \{1,3\}\}$

 \tilde{g}_α wg $O(X) = \{ \emptyset, X, \{a\}, \{a,c\}, \{a,b\}, \{a,d\}, \{a,b,c\}, \{a,b,d\}, \{a,c,d\} \}, \tilde{g}_\alpha$ wg $O(Y) = \{ \emptyset, Y, \{1\}, \{1,2\}, \{1,3\} \}$ Let $f: (X, \tau) \to (Y, \sigma)$ is defined by $f({a})= {1}$, $f({b})= {2} = f({d})$, $f({c})= {3}$. The map f is \tilde{g}_{α} wg-irresolute but not $(\tilde{g}_{\alpha}wg)^*$ -quotient map Since $f^1\{1,2\} = \{a,b,d\}$ is \tilde{g}_α wg-open in (X,τ) but the set $\{1,2\}$ is not open in (Y,σ) .

Theorem 4.13: Every $(\tilde{g}_{\alpha}wg)^*$ -quotient map is strongly $\tilde{g}_{\alpha}wg$ -open map.

Proof: Let $f: (X, \tau) \to (Y, \sigma)$ be a $(\tilde{g}_{\alpha}wg)^*$ -quotient map. Let V be $\tilde{g}_{\alpha}wg$ -open set in (X, τ) . Then $f^1(f(V))$ is $\tilde{g}_{\alpha}wg$ -open in (X, τ). Since f is $(\tilde{g}_\alpha wg)^*$ -quotient this implies that f(V) is open in (Y, σ) and thus \tilde{g}_α wg-open in (Y, σ) and thus f(V) is \tilde{g}_{α} wg-open in (Y,σ) . Hence f is strongly \tilde{g}_{α} wg-open.

Remark 4.14: Converse need not be true

Example 4.15: Let $X = \{a,b,c\}$, $\tau = \{\emptyset, X, \{c\}, \{a,c\}, \{b,c\}\}\$, $Y = \{1,2,3\}$, $\sigma = \{\emptyset, Y, \{1\}, \{2,3\}\}\$, \tilde{g}_{α} wg $O(X)$ ={ \emptyset ,X,{c}.{a,c},{b,c}}, \tilde{g}_{α} wgO(Y) = { \emptyset ,Y,{1},{2},{3},{1,2},{2,3},{1,3}} Let $f: (X, \tau) \to (Y, \sigma)$ be a identity map, f is strongly \tilde{g}_α wg –open map but not $(\tilde{g}_\alpha w g)^*$ -quotient map. since $F-1{1}={a}$ is \tilde{g}_{α} wg-open in (Y,σ) but the set ${1}$ is not \tilde{g}_{α} wg-open set in (X,τ) .

Proposition 4.16: Every \tilde{g}_{α} -irresolute (α -irresolute) map is \tilde{g}_{α} wg-irresolute.

Proof: Let U be \tilde{g}_α -closed (α -closed) set in(Y, σ). Since every \tilde{g}_α -closed (α -closed) set is \tilde{g}_α wg-closed by theorem 3.7(by theorem 3.11)[6]. Then U is \tilde{g}_{α} wg-closed in (Y,σ) . Since f is \tilde{g}_{α} -irresolute (α -irresolute), $f^{\text{-I}}(U)$ is \tilde{g}_{α} -closed (α -closed) in (X,τ) which is \tilde{g}_{α} wg-closed in (X,τ) . Hence f is \tilde{g}_{α} wg-irresolute.

V. Comparisons

Proposition 5.1:

(i) Every quotient is \tilde{g}_{α} wg-quotient map.

(ii) Every α -quotient map is \tilde{g}_{α} wg-quotient map.

Proof: Since every continuous and α -continuous map is \tilde{g}_{α} wg-continuous by theorem 2.3 1nd 2.7[7] and every open set and α -open set is \tilde{g}_α wg-open by theorem 3.11[6]. The proof follows from the definition.

Remark 5.2: Converse of the above proposition need not be true.

Example 5.3: Let $X = \{a,b,c,d\}, \tau = \{\emptyset, X, \{a\}, \{b\}, \{a,b\}\}, Y = \{1,2,3\}, \sigma = \{\emptyset, Y, \{1,2\}\}\$

 \tilde{g}_a wg $O(X) = \{ \emptyset, X, \{a\}, \{b\}, \{a,b\}, \{a,b,c\}, \{a,b,d\} \}$, \tilde{g}_a wg $O(Y) = \{ \emptyset, Y, \{1\}, \{1,2\}, \{1,3\}, \{2,3\} \}$. Let $f: (X, \tau) \to (Y, \sigma)$ is defined by $f({a})=[1]$, $f({b})=[2]$, $f({c})=[3]=f({d})$. The function f is \tilde{g}_{α} wg-quotient but not a quotient map. Since f $\binom{1}{1} = \{a\}$ is open in(X, τ) but the set $\{1\}$ is not open in (Y, σ) .

Example 5.4: Let $X = \{a,b,c,d\}, \tau = \{\emptyset, X, \{a\}, \{b\}, \{a,b\}\}, Y = \{1,2,3\}, \sigma = \{\emptyset, Y, \{1,2\}\}$ \tilde{g}_a wg $O(X) = {\emptyset, X, \{a\}, \{b\}}, \{a,b,c\}, \{a,b,d\}, \alpha O(X) = {\emptyset, X, \{a\}, \{b\}}, \{a,b,c\}, \{a,b,d\}}$, \tilde{g}_a wg $O(Y) =$ $\{\emptyset, Y, \{1\}, \{1,2\}, \{1,3\}, \{2,3\}\}, \alpha O(Y) = \{\emptyset, Y, \{1,2\}\}.$ Let $f: (X, \tau) \to (Y, \sigma)$ is defined by $f(\{a\}) = \{1\},$ $f({b})={2},f({c})={3}={f({d})}.$ The function f is \tilde{g}_{α} wg-quotient but not α -quotient map. Since f' {1}={a} is open in(X, τ) but the set {1} is not α - open in (Y, σ).

Theorem 5.5: Every \tilde{g}_{α} -quotient map is \tilde{g}_{α} wg-quotient map.

Proof: Let $f: (X, \tau) \to (Y, \sigma)$ be a \tilde{g}_{α} -quotient map. Then f is \tilde{g}_{α} -continuous function. By theorem 2.5[7] every \tilde{g}_{α} continuous function is \tilde{g}_α wg-continuous function, then f is \tilde{g}_α wg-continuous map. Let $f^1(V)$ is open in (Y,σ) . Since every \tilde{g}_α -open set is \tilde{g}_α wg-open . Then V is \tilde{g}_α wg-open in (Y,σ) . Hence V is \tilde{g}_α wg-open in (Y,σ) . Hence f is \tilde{g}_α wg-quotient map. *Remark 5.6:* Converse need not be true:

Example 5.7: Let $X = \{a,b,c,d\}, \tau = \{\emptyset, X, \{d\}, \{a,c\}, \{a,c,d\}\}, Y = \{1,2,3\}, \sigma = \{\emptyset, Y, \{2\}, \{3\}, \{1,3\}, \{2,3\}\}$ \tilde{g}_α wg $O(X) = {\emptyset, X, \{a\}, \{c\}, \{d\}, \{a,c\}, \{a,d\}, \{c,d\}, \{a,c,d\}, \{b,c,d\}}}, \qquad \tilde{g}_\alpha O(X)$

 ${\emptyset, Y, \{a\}, \{c\}, \{d\}, \{a,c\}, \{a,d\}, \{c,d\}\}.$ Let $f: (X, \tau) \to (Y, \sigma)$ is defined by $f(a)=2$, $f(b)=1, f(c)=3=f(d)$. f is \tilde{g}_{α} wgquotient map but not \tilde{g}_α -quotient map Since $f^{-1}\{1,3\} = \{b,c,d\}$ is \tilde{g}_α wg-open in (X,τ) but not \tilde{g}_α - open in (Y,σ) .

Theorem 5.8: Every strongly \tilde{g}_{α} wg-quotient map is \tilde{g}_{α} wg-quotient.

Proof: Let V be any open set in(Y, σ). Since f is strongly \tilde{g}_α wg-quotient, $f^1(V)$ is \tilde{g}_α wg-open set in (X, τ). Hence f is \tilde{g}_α wg continuous. Let $f'(V)$ be open in (X,τ) . Then $f'(V)$ is \tilde{g}_α wg-open in (X,τ) . Since f is strongly \tilde{g}_α wg-quotient, V is open in (Y,σ) . Hence f is a $\tilde{g}_{\alpha}wg$ quotient map. *Remark 5.9:* Converse need not be true

Example 5.10: Let $X = \{a, b, c, d\}, \tau = \{0, X, \{a\}, \{a, c\}, \{a, b, d\}\}, Y = \{1, 2, 3\}, \sigma = \{0, Y, \{1\}\}$ \tilde{g}_α wg $O(X)$ ={ \emptyset ,X,{a},{a,c},{a,b},{a,d},{a,b,c},{a,b,d},{a,c,d}}, \tilde{g}_α wg $O(Y)$ = { \emptyset ,Y,{1},{1,2},{1,3}} Let $f: (X, \tau) \to (Y, \sigma)$ is defined by $f({a})= {1}$, $f({b})= {3}$, $f({c})=2=f({d})$. The function f is \tilde{g}_{α} wg-quotient but not strongly \tilde{g}_{α} wg-quotient. Since $f^1\{1,3\} = \{a,b\}$ is \tilde{g}_α wg-open in(X, τ) but $\{1,3\}$ is not open in (Y,σ) .

Theorem 5.11: Every strongly \tilde{g}_{α} -quotient map is strongly \tilde{g}_{α} wg-quotient map.

Proof: Let $f: (X, \tau) \to (Y, \sigma)$ strongly \tilde{g}_α -quotient map. Let V be any open set in (Y, σ) . Since f is strongly \tilde{g}_α -quotient, f ¹(V) is \tilde{g}_α -open in (X, τ). Since every \tilde{g}_α -open set is \tilde{g}_α wg-open by theorem. Then $f^1(v)$ is \tilde{g}_α wg-open in(X, τ). Hence f is strongly \tilde{g}_{α} wg-quotient map.

Remark 5.12: Converse need not be true.

Example 5.13: Let $X = \{a,b,c,d\}, \tau = \{\emptyset, X, \{d\}, \{a,c\}, \{a,c,d\}\}, Y = \{1,2,3\}, \sigma = \{\emptyset, Y, \{b\}, \{c\}, \{b,c\}, \{a,c\}\}$ \tilde{g}_a wg $O(X) = \{ \emptyset, X, \{a\}, \{c\}, \{d\}, \{a,c\}, \{a,d\}, \{a,b,d\}, \{a,c,d\}, \{b,c,d\} \},$ \tilde{g}_a O(X) $\{\emptyset, Y, \{a\}, \{c\}, \{d\}, \{a,c\}, \{a,d\}, \{c,d\}\}.$ Let $f: (X, \tau) \to (Y, \sigma)$ is defined by $f(\{a\}) = \{b\}, f(\{b\}) = \{a\}, f(\{c\}) = c = f(\{d\}).$ Since $f^{-1}\{a,c\} = \{b,c,d\}$ is \tilde{g}_α wg-open in (X,τ) but not \tilde{g}_α -open in (Y,σ) .

Theorem 5.14: Every strongly \tilde{g}_{α} wg quotient map is \tilde{g}_{α} wg quotient

Proof: Let V be any open set in (Y, σ) . Since f is strongly \tilde{g}_α wg quotient, $f^1(V)$ is \tilde{g}_α wg-open set in (X, τ) . Hence f is \tilde{g}_α wgcontinuous. Let $f'(V)$ be open in (X,τ) . Then $f'(V)$ is \tilde{g}_α wg open in (X,τ) . Since f is strongly \tilde{g}_α wg-quotient V is open in (Y,σ) . Hence f is a \tilde{q}_{α} wg-quotient map.

Remark 5.15: Converse need not be true

Example 5.16: Let $X = \{a,b,c,d\}, \tau = \{0, X, \{a\}, \{a,c\}, \{a,b,d\}\}, Y = \{1,2,3\}, \sigma = \{0, Y, \{1\}\}$ \tilde{g}_{α} wg $O(X)$ ={ \emptyset ,X,{a},{a,c},{a,b},{a,d},{a,b,c},{a,b,d},{a,c,d}}, \tilde{g}_{α} wgO(Y) = { \emptyset ,Y,{1},{1,2},{1,3}} Let $f: (X, \tau) \rightarrow (Y, \sigma)$ is defined by $f({a})= {1}$, $f({b})= {3}$, $f({c})=2=f({d})$. The function f is \tilde{g}_{α} wg-quotient but not strongly \tilde{g}_{α} wg-quotient. Since $f^1\{1,3\} = \{a,b\}$ is \tilde{g}_α wg-open in(X, τ) but $\{1,3\}$ is not open in (Y,σ) .

Theorem 5.17: Every $(\tilde{g}_{\alpha}wg)^*$ -quotient map is $\tilde{g}_{\alpha}wg$ -quotient map.

Proof: Let f be $(\tilde{g}_\alpha wg)^*$ -quotient map. Then f is \tilde{g}_α wg-irresolute, by theorem 3.2[7] f is \tilde{g}_α wg-continuous. Let

 $f^1(V)$ be an open set in (X,τ) . Then $f^1(V)$ is a \tilde{g}_{α} wg-open in (X,τ) . Since f is $(\tilde{g}_{\alpha}wg)^*$ -quotient, V is open in (Y,σ) . It means V is \tilde{g}_{α} wg-open in (Y,σ) . Therefore f is a \tilde{g}_{α} wg-quotient map.

Remark 5.18: Converse need not be true

Example 5.19: Let $X = \{a,b,c,d\}, \tau = \{\emptyset, X, \{a\}, \{a,c\}, \{a,b,d\}\}, Y = \{1,2,3\}, \sigma = \{\emptyset, Y, \{1\}\}$

 \tilde{g}_a wg $O(X)$ ={ \emptyset ,X,{a},{a,c},{a,b},{a,d},{a,b,c},{a,b,d},{a,c,d}}, \tilde{g}_a wgO(Y) = { \emptyset ,Y,{1},{1,2},{1,3}} Let $f: (X, \tau) \rightarrow (Y, \sigma)$ is defined by $f({a})= {1}$, $f({b})= {3}$, $f({c})=2=f({d})$. The function f is \tilde{g}_{α} wg-quotient but not (\tilde{g}_{α} wg)^{*}-quotient. Since f \int_0^1 {1,2}={a,c,d} is \tilde{g}_{α} wg-open in(X, τ) but {1,2} is not open in (Y, σ).

Theorem 5.20: Every α^* -quotient map is $(\tilde{g}_{\alpha}wg)^*$ -quotient map.

Proof: Let f be α^* -quotient map. Then f is surjective, α -irresolute and $f^1(U)$ is α -open in (X,τ) implies U is open set in(Y, σ). Then U is \tilde{g}_α wg-open in (Y, σ). Since every α -irresolute map is \tilde{g}_α wg-irresolute by proposition 4.16 and every α irresolute map is α -continuous. Then $f^1(U)$ is α -open which is $\tilde{g}_{\alpha}wg$ -open in (X,τ) . Since f is α^* -quotient map, U is open in (Y, σ) . Hence f is $(\tilde{g}_{\alpha}wg)^*$ -quotient map.

Remark 5.21: Converse need not be true

Example **5.22:** X={a,b,c,d}, τ = { \emptyset , X, {d}, {a, c}, {a, c, d}}, Y = {1,2,3}, σ = { \emptyset , Y, {2}, {3}, {2,3}, {1,3}}

 \tilde{g}_{α} wg $O(X) = {\emptyset, X, \{a\}, \{c\}, \{d\}, \{a,c\}, \{a,d\}, \{c,d\}, \{a,c,d\}, \{b,c,d\}}$, \tilde{g}_{α} wg $O(Y) = {\emptyset, Y, \{2\}, \{3\}, \{2,3\}, \{1,3\}}$, $\alpha O(X) = {\{d\}, {a,c}, {a,c,d}\}, \alpha O(Y) = {\{2\}, {3}, {2,3}, {1,3}\}.$ The map $f: (X, \tau) \to (Y, \sigma)$ is defined by $f(a)=2$, $f(b)=1, f(c)=3=f(d)$. The function f is (\tilde{g}_α wg)^{*}-quotient but not $(\alpha)^*$ -quotient map. Since the set {2} is α -open in (Y,σ) but f $\binom{1}{2}$ ={a} is not α -open in(X, τ).

Theorem 5.23: Every $(\tilde{g}_{\alpha})^*$ quotient map is $(\tilde{g}_{\alpha}wg)^*$ -quotient map:

Proof: Let f be $(\tilde{g}_\alpha)^*$ -quotient map. Then f is surjective, \tilde{g}_α -irresolute and f(U) is \tilde{g}_α -open in (X,τ) implies U is open in(Y, σ). Then U is \tilde{g}_α wg-open in(Y, σ). Since every \tilde{g}_α -irresolute map is \tilde{g}_α wg-irresolute and every \tilde{g}_α -irresolute map is \tilde{g}_α continuous. Then $f^{\bar{1}}(U)$ is \tilde{g}_α -open set which is \tilde{g}_α vg-open set in(X, τ). Since f is a $(\tilde{g}_\alpha)^*$ -quotient map, U is open in (Y, σ). Hence f is a $(\tilde{g}_{\alpha}wg)^*$ -quotient map.

Remark 5.24: Converse need not be true

Example 5.25: Let X={a,b,c,d}, $\tau = \{\emptyset, X, \{d\}, \{a, c\}, \{a, c, d\}\}, Y = \{1, 2, 3\}, \sigma = \{\emptyset, Y, \{2\}, \{3\}, \{2, 3\}, \{1, 3\}\}$ \tilde{g}_{α} wg $O(X) = {\emptyset, X, \{a\}, \{c\}, \{d\}, \{a,c\}, \{a,d\}, \{c,d\}, \{a,c,d\}, \{b,c,d\}}$, \tilde{g}_{α} wg $O(Y) = {\emptyset, Y, \{2\}, \{3\}, \{2,3\}, \{1,3\}}$, $\widetilde{\mathcal{J}}_{\alpha}O(X)$ ={{a},{d},{c},{a,c},{a,d},{c,d},{a,b,d},{a,c,d},{b,c,d}}. $\widetilde{\mathcal{J}}_{\alpha}O(Y)$ ={{2},{3},{2,3},{1,3}}. The map $f:(X,\tau) \to$ (Y, σ) is defined by $f({a})=2$, $f({b})=1$, $f({c})=3=f({d})$. The function f is $(\tilde{\mathcal{J}}_{\alpha}wg)^*$ -quotient but not $(\tilde{\mathcal{J}}_{\alpha})^*$ -quotient map. Since the set $\{1,3\}$ is \tilde{g}_α -open in (Y,σ) but $f^{-1}\{1,3\} = \{b,c,d\}$ is not \tilde{g}_α -open in (X,τ) .

Theorem 5.26: Every $(\tilde{g}_a \mu g)^*$ -quotient map is strongly \tilde{g}_a wg-quotient.

Proof: Let V be an open set in (Y, σ) . Then it is \tilde{g}_α wg-open in (Y, σ) since f is $(\tilde{g}_\alpha w g)^*$ -quotient map. $f'(V)$ is $\tilde{g}_\alpha w g$ open in (X, τ) .(Since f is \tilde{g}_{α} wg-irresolute). Also V is open in(Y, σ) implies $f'(V)$ is \tilde{g}_{α} wg-open in (X, τ) . since f is $(\tilde{g}_{\alpha} \text{wg})^*$ -open V is open in(Y, σ). Hence f is strongly \tilde{g}_{α} wg-quotient map.

Remark 5.27: Converse need not be true

Example 5.28: Let X={a,b,c,d}, $\tau = {\emptyset, X, {\{a\}, \{b\}, \{a, b\}, \{a, b, c\}}}, Y = {1,2,3}, \sigma = {\emptyset, Y, {1}, {1,2}}$ \tilde{g}_a wg $O(X) = \{ \emptyset, X, \{a\}, \{b\}, \{a,b\}, \{a,b,c\}, \{a,b,d\} \}, \tilde{g}_a$ wg $O(Y) = \{ \emptyset, Y, \{1\}, \{1,2\}, \{1,3\} \}$ Let $f : (X, \tau) \to (Y, \sigma)$ is defined by $f(\{a\}) = \{1\}$, $f(\{b\}) = \{2\} = f(\{c\})$, $f(\{d\}) = \{3\}$. The function f is strongly \tilde{g}_a wg-quotient but not a $(\tilde{g}_a$ *wg* $)$ ^{*}-quotient. Since the set {1,3} is \tilde{g}_{α} wg-open in(Y, σ) but f⁻¹{1,3}={a,d} is not open in (X, τ).

Remark 5.29: Quotient map and α^* -quotient map are independent

Example 5.30: Let X={a,b,c,d}, $\tau = {\emptyset, X, \{a\}, \{a, b\}}$, $Y = \{1,2,3\}, \sigma = {\emptyset, Y, \{1\}, \{1,2\}}$ $\alpha\mathcal{O}(X) = {\emptyset, X, \{a\}, \{a,b\}, \{a,c\}, \{a,d\}, \{a,b,c\}, \{a,b,d\}, \{a,c,d\}\}, \alpha O(Y) = {\emptyset, Y, \{1\}, \{1,2\}, \{1,3\}\}\$ Let $f: (X, \tau) \to (Y, \sigma)$ is defined by $f(a)=1, f(b)=\{2\}, f(c)=3=f(d)$. The function f is quotient but not a $(\alpha)^*$ -quotient. Since $f¹{1,3} = {a,c,d}$ is α -open in(X, τ) but the set {1,3} is not open in (Y, σ).

Example **5.31:** Let $X = \{a,b,c,d\}$, $\tau = \{\emptyset, X, \{a\}, \{a,c\}, \{a,b,c\}\}$, $Y = \{1,2,3\}$, $\sigma = \{\emptyset, Y, \{1\}, \{1,2\}, \{1,3\}\}$

 ()={∅,X,{a},{a,b},{a,c},{a,d},{a,b,c},{a,b,d},{a,c,d}}, O(Y) = {∅,Y,{1},{1,2},{1,3}} Let : , → , is defined by $f(a)=1$, $f(b)=\{2\}$, $f(c)=3=f(d)$. The function f is α^* quotient but not a quotient map. Since $f⁻¹{1,3} = {a,c,d}$ is α -open in(X, τ) but the set {1,3} is not open in (Y, σ)

Remark 5.32: Quotient map and strongly \tilde{g}_{α} wg-quotient map are independent.

Example 5.33: X={a,b,c,d}, $\tau = {\emptyset, X, \{d\}, \{a, c\}, \{a, c, d\}\}\$, $Y = \{1, 2, 3\}$, $\sigma = {\emptyset, Y, \{2\}, \{3\}, \{2, 3\}, \{1, 3\}\}\$ \tilde{g}_{α} wg $O(X) = {\emptyset, X, \{a\}, \{c\}, \{d\}, \{a,c\}, \{a,d\}, \{c,d\}, \{a,c,d\}, \{b,c,d\}}$, \tilde{g}_{α} wgO(Y) = {Ø,Y,{2},{3},{2,3},{1,3}}, $a\mathcal{O}(X) = \{\{d\}, \{a,c\}, \{a,c,d\}\}\$, $aO(Y) = \{\{2\}, \{3\}, \{2,3\}, \{1,3\}\}\$. The map $f: (X, \tau) \to (Y, \sigma)$ is defined by $f(a)=2$, f(b)=1,f(c)=3=f(d).The function f is strongly \tilde{g}_a wg-quotient but not quotient map. Since the set {2} is open in (Y, σ) but f $\binom{1}{2} = \{a\}$ is not open in(X, τ).

Example 5.34: $X = \{a,b,c,d\}, \tau = \{\emptyset, X, \{a\}, \{a,b\}\}, Y = \{1,2,3\}, \sigma = \{\emptyset, Y, \{1\}, \{1,2\}\}$

 \tilde{g}_a wg $O(X) = {\emptyset, X, \{a\}, \{a,b\}, \{a,c\}, \{a,d\}, \{a,b,c\}, \{a,b,d\}, \{a,c,d\}}$, \tilde{g}_a wg $O(Y) = {\emptyset, Y, \{1\}, \{1,2\}, \{1,3\}}$, The map $f:(X,\tau) \to (Y,\sigma)$ is defined by $f(a)=1$, $f(b)=2$, $f(c)=3=f(d)$. The function f is quotient but not strongly \tilde{g}_a wg-quotient map. Since $f^1({1,3})$ is \tilde{g}_α wg -open in (X,τ) but the set ${1,3}$ is not open in (Y, σ) .

Remark 5.35: From the above results we have the following diagram where $A \rightarrow B$ represent A implies B but not conversely, $A \leftarrow \rightarrow B$ represents A and B are independent each other.

VI. Applications

Theorem 6.1: The composition of two $(\tilde{g}_a \mu g)^*$ -quotient maps is $(\tilde{g}_a \mu g)^*$ -quotient. Proof: Let $f:(X,\tau) \to (Y,\sigma)$ and $g:(Y,\sigma) \to (Z,\eta)$ be two $(\tilde{g}_{\alpha}wg)^*$ -quotient maps. Let V be any $\tilde{g}_{\alpha}wg$ -open set in (Z, η) . Since g is $(\tilde{g}_{\alpha} \mu g)^*$ -quotient, $g^{-1}(V)$ is \tilde{g}_{α} wg-open in (Y, σ) and since f is $(\tilde{g}_{\alpha} \mu g)^*$ -quotient then

 $(f^{-1}(g^{-1}(V)))$ = $(g \circ f)^{-1}(V)$ is \tilde{g}_α wg-open in (X, τ) . Hence g∘f is \tilde{g}_α wg-irresolute.

Let $(g \circ f)^{-1}(V)$ is \tilde{g}_α wg-open in (X, τ) . Then $f^{-1}(g^{-1}(V))$ is \tilde{g}_α wg-open in (X, τ) . Since f is $(\tilde{g}_\alpha \mu g)^*$ -quotient, $g^{-1}(V)$ is open in (Y, σ) . Since g is $(\tilde{\mathcal{J}}_{\alpha} \text{M} \mathcal{J})^*$ -quotient, V is open in (Z, η) . Hence g∘f is $(\tilde{\mathcal{J}}_{\alpha} \text{M} \mathcal{J})^*$ -quotient.

Proposition 6.2: If $h: (X, \tau) \to (Y, \sigma)$ is \tilde{g}_a wg-quotient map and $g: (X, \tau) \to (Z, \eta)$ is a continuous map that is constant on each set h⁻¹(y) for y∈Y, then g induces a \tilde{g}_a wg-continuous map $f: (Y, \sigma) \to (Z, \eta)$ such that f $\circ h = g$.

Proof: g is a constant on h⁻¹(y) for each y∈Y, the set g(h⁻¹(y)) is a one point set in (Z, η) . If f(y) denote this point, then it is clear that f is well defined and for each $x \in X$, $f(h(x)) = g(x)$. We claim that f is \tilde{g}_a wg-continuous. For if we let V be any open set in (Z, η) , then $g^{-1}(V)$ is an open set in (X, τ) as g is continuous. But $g^{-1}(V) = h^{-1}(f^{-1}(V))$ is open in (X, τ) . Since h is \tilde{g}_α wg-quotient map, $f^1(V)$ is a \tilde{g}_α wg-open in(Y, σ). Hence f is \tilde{g}_α wg-continuous.

Proposition 6.3: If a map $f:(X,\tau) \to (Y,\sigma)$ is surjective, \tilde{g}_{α} wg-continuous and \tilde{g}_{α} wg-open then f is a \tilde{g}_{α} wg-quotient map.

Proof: To prove f is \tilde{g}_α wg-quotient map. We only need to prove $f^1(V)$ is open in (X,τ) implies V is \tilde{g}_α wg-open in (Y,σ) . Since f is \tilde{g}_α wg-continuous. Let $f^1(V)$ is open in (X,τ) . Then $f(f^1(V))$ is \tilde{g}_α wg-open set, since f is \tilde{g}_α wg-open. Hence V is \tilde{g}_α wg-open set. Hence V is \tilde{g}_α wg-open set, as f is surjective, f(f⁻¹(V))=V. Thus f is a \tilde{g}_α wg-quotient map.

Proposition 6.4: If $f: (X, \tau) \to (Y, \sigma)$ be open surjective, \tilde{g}_α wg-irresolute map, and $g: (Y, \sigma) \to (Z, \eta)$ is a \tilde{g}_α wgquotient map then $g \circ f : (X, \tau) \to (Z, \eta)$ is \tilde{g}_{α} wg-quotient map.

Proof: Let V be any open set in (Z, η) . Since g is \tilde{g}_{α} wg-quotient map then $g^{-1}(V)$ is \tilde{g}_{α} wg-open in (Y, σ) . Since f is \tilde{g}_{α} wgirresolute, $f^1(g^{-1}(V)) = (g \circ f)^{-1}(V)$ is \tilde{g}_α wg-open in (X, τ) . This implies

 $(g \circ f)^{-1}(V)$ is \tilde{g}_α wg-open set in (X, τ) . This shows that g∘f is \tilde{g}_α wg-continuous map. Also assume that

 $(g \circ f)^{-1}(V)$ *is open* in (X, τ) . For $V \subseteq Z$, that is $(f^{-1}(g^{-1}(V))$ is open in (Y, σ) . It follows that g $\tilde{J}^1(V)$ is open in (Y, σ) . Since f is surjective and g is \tilde{g}_α wg-quotient map. V is \tilde{g}_α wg-open set in(Z, η).

Proposition 6.5: Let $f:(X,\tau) \to (Y,\sigma)$ be strongly \tilde{g}_α wg-open surjective and \tilde{g}_α wg-irresolute map and $g:(Y,\sigma) \to$ (Z, η) be strongly \tilde{g}_α wg-quotient map then $g \circ f$ is a strongly \tilde{g}_α wg-quotient map.

Proof: Let V be an open set in(Z, η). Since g is strongly \tilde{g}_{α} wg-quotient, g⁻¹(V) is a \tilde{g}_{α} wg-open in(Y, σ). Since f is \tilde{g}_{α} wgirresolute, $f^1(g^{-1}(V))$ is a \tilde{g}_α wg-open in (X,τ) implies $(g \circ f)^{-1}(V)$ is a \tilde{g}_α wg-open in (X,τ) . Assume

 $(\text{gof})^{-1}(V)$ is \tilde{g}_a wg-open in(X, τ). Then $(f^{-1}(\sigma^{-1}(V))\ \dot{s} \ \ \tilde{g}_a$ wg-open in (X, τ). Since f is strongly \tilde{g}_a wg-open, then f(f $\int_{0}^{1}(g^{-1}(V))$) is \tilde{g}_{α} wg-open in (Y,σ) which implies $g^{-1}(V)$ is \tilde{g}_{α} wg-open in (Y,σ) . Since g is strongly \tilde{g}_{α} wg-quotient map, V is open in (Z, η) . Thus g∘f is strongly \tilde{g}_{α} wg-quotient map.

Theorem 6.6: Let $p:(X,\tau) \to (Y,\sigma)$ be \tilde{g}_{α} wg-quotient map and the spaces (X,τ) , (Y,σ) are $T_{\tilde{g}_{\alpha}W}$ -spaces. f:(Y, σ)→(Z, η) is a strongly \tilde{g}_{α} wg-continuous iff f∘ p :(X, τ) → (Z, η) is a strongly \tilde{g}_{α} wg-continuous.

Proof: Let f be strongly \tilde{g}_α wg-continuous and U be any \tilde{g}_α wg-open set in (Z,η) . Then $f^1(U)$ is open in (Y,σ) . Since p is \tilde{g}_{α} wg-quotient map, then p⁻¹(f⁻¹(U))=(f∘p)⁻¹(U) is \tilde{g}_{α} wg-open in(X, τ). Since(X, τ) is $\tau_{\tilde{g}_{\alpha}$ _{wg}-space,

 $p^{-1}(f^{-1}(U))$ is open in (X, τ) . Thus f∘p is strongly \tilde{g}_{α} wg-continuous.

Conversely, Let the composite function f∘p is strongly \tilde{g}_a wg-continuous. Let U be any \tilde{g}_a wg-open set in (Z, η),

 $p^{-1}(f^{-1}(U))$ is open in (X, τ) . Since p is a \tilde{g}_{α} wg-quotient map, it implies that $f^{-1}(U)$ is \tilde{g}_{α} wg-open in (Y, σ) . Since (Y, σ) is a $T_{\tilde{g}_\alpha\mu g}$ -space, $f^1(U)$ is open in (Y,σ) . Hence f is strongly is \tilde{g}_α wg-continuous.

Theorem 6.7: Let $f: (X, \tau) \to (Y, \sigma)$ be a surjective, strongly \tilde{g}_α wg-open and \tilde{g}_α wg-irresolute map and $g: (Y, \sigma) \to$ (Z, η) be a $(\tilde{g}_{\alpha} \mu g)^*$ -quotient map, then g∘f is a $(\tilde{g}_{\alpha} \mu g)^*$ -quotient map.

Proof: Let V be \tilde{g}_α wg-open set in (Z, η) . Since g is a $(\tilde{g}_\alpha w g)^*$ -quotient map, $g^{-1}(V)$ is a \tilde{g}_α wg-open set in (Y, σ) , since f is $\tilde{\mathcal{J}}_{\alpha}$ wg-irresolute, $f^1(g^{-1}(V))$ is $\tilde{\mathcal{J}}_{\alpha}$ wg-open in (X,τ) . Then $(g \circ f)^{-1}(V)$ is $\tilde{\mathcal{J}}_{\alpha}$ wg-open in (X,τ) . Since f is strongly $\tilde{\mathcal{J}}_{\alpha}$ wgopen, f(f⁻¹(g⁻¹(V))) is \tilde{g}_a wg-open in (Y, σ) which implies g⁻¹(V) is a \tilde{g}_a wg-open in (Y, σ) . Since g is $(\tilde{g}_a \mu g)^*$ -quotient map then V is open in (Z, η) .

Hence g∘f is a $(\tilde{g}_a \mu g)^*$ -quotient map.

Theorem 6.8: Let $f: (X, \tau) \to (Y, \sigma)$ be a strongly \tilde{g}_α wg-quotient map and $g: (Y, \sigma) \to (Z, \eta)$ be a $(\tilde{g}_\alpha \omega g)^*$ -quotient map and f is \tilde{g}_a wg-irresolute then g∘f is $(\tilde{g}_a$ *wg*)^{*}-quotient map.

Proof: Let V be a \tilde{g}_a wg-open in (Z, η) . Then $g^{-1}(V)$ is \tilde{g}_a wg-open in (Y, σ) since g is $(\tilde{g}_a$ *wg*)^{*}-quotient map. Since f is \tilde{g}_{α} wg-irresolute map, then $f^1(g^{-1}(V))$ is \tilde{g}_{α} wg-open in (X,τ) . ie, $(g \circ f)^{-1}(V)$ is \tilde{g}_{α} wg-open in (X,τ) which shows that g∘f is \tilde{g}_α wg –irresolute. Let $f^1(g^{-1}(V))$ is \tilde{g}_α wg-open in (X,τ) . Since f is strongly \tilde{g}_α wg-quotient map then $g^{-1}(V)$ is open in (\overline{Y}, σ) which implies $g^{-1}(V)$ is \tilde{g}_{α} wg-open in (Y, σ) . Since g is $(\tilde{g}_{\alpha}$ wg)*-quotient map, V is open in (Z, η) . Hence g∘f is $(\widetilde{g}_{\alpha}$ *wg*)^{*}-quotient map.

References

- [1] M. Lellis Thivagar, A note on quotient Mappings, Bull. Malaysian Math. Soc. 14(1991), 21-30.
- [2] M.Lellis Thivagar and Nirmala Rebecca Paul. On topological \tilde{g}_α -quotient mappings, Journal of Advanced Studies in Topology Vol.1, 2010, 9-16.
- [3] M.Lellis Thivagar and Nirmala Rebecca Paul. Remarks on \tilde{g}_a -irresolute maps , Bol.Soc.Paran.Mat Vol.291(2011) 55-66.
- [4] M.Lellis Thivagar and Nirmala Rebecca Paul, New Types of Topological mappings, International Journal of.Math.Sci and Engg.Appli., Vol No.IV(2011),43-61.
- [5] Levine, N.: Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70(1963), 36-41.
- [6] Maria Singam, M., Anitha, G., \tilde{g}_a -Weakly generalized closed sets in topological spaces,, Antarctica J.Math;9(20(2012),133-142.
- [7] Maria Singam, M., Anitha, G., \tilde{g}_a -Weakly generalized continuous functions, International Journal of Mathematical Archive-2(11), 2011, 2135-2141.
- [8] Maria Singam, M., Anitha, G., Contra \tilde{g}_a -WG continuous functions, International Journal of Computer Applications-2(11), 2011, 2135-2141.
- [9] Mashhour, A. S., Hasanein, I. A and El-Deeb, S. N. *α*-continuous and *α*-open mappings, Acta Math. Hungar., 41(1983), 213-218.
- [10] Mashhour, A. S., Abd El-Monsef, M. E and El-Deeb, S. N. On precontinuous mappings and weak pre-continuous mappings, Proc.
- Math. and Phys. Soc. Egypt, 53(1982), 47-53.
- [11] J. R.Munkres, Topology, A first course, Fourteenth Indian Reprint.
- [12] Njastad. O, on some classes of nearly open sets, Pacific J. Math. , 15(1965), 961-970.
- [13] Rajesh.N.,Lellis Thivagar.M.,Sundaram.P.,Zbigniew Duszynski., \tilde{g} semi closed sets in topological spaces, Mathematica Pannonica,18(2007),51-61.
- [14] Reilly, I. L and Vamanamurthy, M. K. On *α*-continuity in topological spaces, Acta Math Hungar., 45(1-2)(1985), 27- 2.
- [15] Saeid Jafari,M.Lellis Thivagar and Nirmala Rebecca Paul. Remarks on \tilde{g}_a -closed sets in topological spaces, International Mathematical Forum, 5, 2010, no.24, 1167-1178.
- [16] Veera Kumar M.K.R.S.Between * g closed sets and g-closed sets, Mem.Fac.Sci.Kochi Univ.Ser.App.Math.,21(2000),1-19
- [17] Veera kumar M.K.R.S. $^{\#}g$ -semi closed sets in topological spaces, Antartica J.Math 2(2005), 201-222.