
International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.3, Issue.2, March-April. 2013 pp-990-995 ISSN: 2249-6645

www.ijmer.com 990 | Page

Balinder Singh

Abstract: End-user programmers do not have broad knowledge about software testing methodologies. Errors are persistent

in program due to lack of testing approaches take up by end-user programmers. It is not easy to employ oracle for end-users

programs. Metamorphic testing is very effective approach for end-users which also address the oracle problem. In this

paper, a metamorphic testing approach for spreadsheet application is used effectively. Metamorphic testing is automated

testing approach, which uses expected properties of the objective function to test program without human contribution. This

approach defines a set of expected properties called Metamorphic Relations to detect errors in spreadsheet.

Keywords: Metamorphic Testing, Oracle, Spreadsheet, Metamorphic Relations.

I. Introduction
These days, it has become very usual for the end-users to write the program code themselves [4]. End-user

programmers are not properly skilled in programming, but they write program to achieve their main goals, such as

accounting, office work, scientific work, designing web application etc. Softwares like spreadsheets, databases, web

application, simulations etc are being created by end-users. Unluckily, errors are persistent in end-user programs, because

End-user programmers do not develop the program according to the software engineering principles as software developed

by professional developers. Manuscripts must be in English. These guidelines include complete descriptions of the fonts,

spacing, and related information for producing your proceedings manuscripts.

Evidence has pointed out that errors are persistent in Software developed by end-users and may be the reason of

losing millions of US dollars [3]. End-user programmers do not have sufficient training for testing, debugging, code

inspection etc as like by professional programmers. A variety of software testing methodologies are not easily understood

by end-users. So it is required to introduce effective and simple software testing techniques for end- user programmers [6],

[11].

Spreadsheet systems have become usual end-user programming environment which is used in different enterprises

[5], [12], [18]. Spreadsheets are used for a variety of important tasks such as accounting, scientific computations, data

analysis, office work, graphical representation of data.

The Metamorphic Testing (MT) technique that is practical and appropriate where test oracle is very difficult to

apply. In software testing, an oracle is a procedure that helps the tester to decide whether the output of a program is

correct [19]. According to oracle assumption [19], Let foo(x) be a function such that {foo(x): x ∈ X} and pro(x) be a

program, implementation of foo(x). Let a set of test cases: T = {t1 ,t2 ,...., tn} ⊂ X, where n ≥ 1 generated according to

some test case selection strategy. Executing the pro on these test cases, the tester checks the outputs pro(t1), pro(t2),....,

pro(tn) against the expected results foo(t1), foo(t2),...., foo(tn) respectively. If pro(ti) = foo(ti), for some i, where 1 ≤ i ≤ n,

then ti is known a successful test case, otherwise ti is a failure-causing test case. The method by which the tester can

decide whether pro(ti) = foo(ti) is known as an oracle [19]. For example, let foo(x) = x
2
, the test case ti will be {x =

2.6}, the pro(ti) is = 6.76. The output can be verified by the tester either manually evaluating the multiplication of 2.6 *

2.6 or by using the inverse function to verify whether 6.76 / 2.6 = 2.6. The inverse can be made either using a correct inverse

program or manually.

In the literature of software testing, it has to take assumption for the availability of the oracle. In many

circumstances, the oracle is not too simple to apply. This is called as the oracle problem [19]. For instance, the output of

complicated computations program, such as solving partial differential equations; when compilers are tested, it is very

difficult to test the equivalence between source code and the generated object code; conducting testing for a program

that compute combinatorial problems, testing program which performs simulations, drawing the complicated graphics to

the monitor etc. Indeed, when the oracle is available and if it is not automated, then human tester performs comparison and

predication on the test result manually, that means it becomes too expensive, time consuming and prone to error [2], [21].

As a matter of fact, in software testing, the oracle problem has been one of the most difficult tasks [2].

A Metamorphic Testing method [19] was introduced by Chen et al. to use successful test cases and to address the

oracle problem. The idea behind this method is to generate follow-up test cases based on the existing successful test cases.

The output of the follow-up test cases can be checked by using relation (called metamorphic relations (MR)), these are the

relations between multiple executions of the target program. Follow-up test cases can be automatically generated, executed,

and the verification of program pro does not require an oracle.

In this paper, we present the implementation of metamorphic testing for spreadsheet applications. We develop six

metamorphic relations to find out errors in spreadsheet application. The rest of the paper is organized as follows. Section II

introduces Background details of Metamorphic testing and Spreadsheet. Problem Analysis has been done in section III, in

section IV Proposed Work and Conclusion has been done in section V.

Implementation of Metamorphic Testing on Spreadsheet

Applications

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.3, Issue.2, March-April. 2013 pp-990-995 ISSN: 2249-6645

www.ijmer.com 991 | Page

i i

II. Background Details
2.1. Metamorphic Testing

Metamorphic testing (MT) technique is a simple and cost-effective approach to find out the important information

from the existing successful test cases (test cases those display no failure) to generate the follow-up test cases [7]. MT can

be applied with the combination of other test case selection strategies which generate the initial test cases. Let foo(x) be a

function such that {foo(x): x ∈ X} and pro(x) be a program, implementation of foo(x). To test program pro, the tester has

adopted Ss as the test case selection strategy, such as branch coverage testing, data flow testing or random testing [1]. Let a

test set T = {t1, t2,, tn} ⊂ X, where n ≥ 1, generated according to Ss. Execute the pro on T produces the output results

pro(t1), pro(t2),...., pro(tn). If the output results pro(t1), pro(t2),...., pro(tn) notice any failure, testing is stopped and the

program is started to be debugged; otherwise T is known as a set of successful test cases.

MT can be performed to make use of T, where in other testing methods, successful test cases have been ignored and

considered useless [9]. Based on the successful test set T, follow-up test cases T‟={t’1 ,t’2 ,..... t’n} ⊂ X can be automatically

generated by MT. Further, program pro is executed against some necessary expected properties (called metamorphic

relations) of the target function foo. MR contains multiple executions of the target program. As an example, If foo(x) = β
y
,

where β is rational number excluding zero, y is an integer, then a program pro implemented on function foo(x) which

calculates the result of target function. The property β
y
 * β

−y
= 1 is considered as a metamorphic relation. Metamorphic

testing checks the program against some necessary excepted properties called Metamorphic Relations. Therefore,

Metamorphic testing executes the implemented program twice, firstly, for a successful test case, i.e. ti = {β = −3.68, y = −6},

secondly, for follow-up test case generated by MT, i.e. t’i: {β = −3.68, y = 6}. Finally, the computed results of both

executions are checked against the expected property pro(ti) ∗ pro(t’i) = 1. If this property is not true, then a fault is detected.

If the given property is true, then MT does not specify that program‟s output may be correct or not. In other words, it is

necessary for MT to check the properties of target function, which may not be sufficient for correctness of implemented

program. Limitation of this type is found in all software testing methods.

The successfully use of MT in many areas such as numerical, spreadsheet and database, graph theory, computer

graphics, compilers, interactive software were described in [13], [14]. Guidelines for selecting good metamorphic relations

in metamorphic testing have been proposed in [10], [16]. To alleviate the oracle problem, fault based testing has been

described in [8].

2.2. Spreadsheet Basis
A spreadsheet is a computing application that displays a rectangular table (or grid) of information, consisting of text

and numbers, where values sit in cells. Spreadsheets allow defining the type of data for each cell (usually limited to texts and

numbers) and defining how different cells depend on each other ([15]). Formulas describe relationships between cells. As

earlier mentioned spreadsheet is end-users application and are very errors-prone. Estimates point out that half of all the

spreadsheets which are created contain errors, this number may be more than as 90% [20].

In [17], a hierarchical classification of spreadsheet errors has been developed which is based on the nature as well

as characteristics of the error and development life cycle of spreadsheet. In [12], three categories of spreadsheet errors

namely, mechanical, logic and omission errors are described. Mechanical errors happen due to mistyping or pointing to a

wrong cell. Logic errors occur due to selecting the wrong algorithm for a particular formula cell or incorrectly use of

formula, resulting incorrect output. Omission errors occur when a spreadsheet developer does not have complete knowledge

of the problem and resulting, an incomplete spreadsheet model of the problem. In experiment, 1.8% of spreadsheet cells

contain mechanical errors and logic errors of 4.1% [3].

In [13], concepts, procedures and applications are defined for Metamorphic Testing but not sufficient gain for

spreadsheet Applications. In [14], Metamorphic testing framework is introduced for finding error in spreadsheet using

circular shift columns. If more than one column involved in formula have same value in their cells, then circular shifting

column is not sufficient to detect errors. We have developed MRs that can detect errors for this problem also.

III. Problem Analysys
1.1. Problem

A spreadsheet may have many rows and columns. It is not easy to check huge amount of rows and columns

manually as it is very time consuming. Test oracle [19] is too difficult for spreadsheet, if it is available and cannot be

automated, resulting too expensive as verification of spreadsheet having huge amount to data is very time consuming.

Therefore, to check spreadsheet application, an effective testing approach is required (generated) that should be simple to

implement and less time consuming. Following assumptions are made:

3.1.1 It is very difficult to create test oracle on the huge amount of data in spreadsheet. Metamorphic testing is carried out

to remove this problem. Many Metamorphic relations are generated that are based on the properties of target spreadsheet.

Metamorphic testing does not guarantee that program under test produces correct output. It guarantees only to check the

properties of target function.

3.1.2. A typical spreadsheet may have hundreds of rows and columns. Checking the huge amount of rows and columns

manually is very time consuming, although, Metamorphic testing method [14] is applied to check errors in huge amount of

data for spreadsheet quickly. As an illustrative instance, lets us take a simplified Excel spreadsheet shown below in Fig.1.

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.3, Issue.2, March-April. 2013 pp-990-995 ISSN: 2249-6645

www.ijmer.com 992 | Page

Fig.1: Spreadsheet

In Fig.1, Aj denotes the attribute, where 1 ≤ j ≤ m and Aj.Vi denotes the value of that attribute, where 1 ≤ i ≤ n.

Values of attributes may be numeric and character type. Horizontal arrows in Fig.1, indicate the columns (Aj , Aj + 1 ,...,

Am − 1) are involving in formula, which is laying in column Am. Formula may be of finding sum, average, percentage,

calculating discount or tax etc. on the attributes values which are involved in formula. The spreadsheet representation of this

type can be used for many real life applications such as calculating total price of sold/purchased items, calculating the

discount or tax on items, finding average marks or aggregate marks of different class tests in a teaching institutes etc. There

may be error in any cells which contain formula [14]. Error of this type can occur when someone tries to enter the formula

manually without copying formula from adjacent cells. The error cannot be noticed due to huge amount of data in

spreadsheet.

This may be very harmful, if the cell containing wrong formula is dragged to copy the formula for cells below it.

Formula errors are very difficult to detect as mentioned in [3]. On the other hand, by using MT, problems of this type can be

easily handled. Take the example of spreadsheet mentioned above to apply MT approach. Suppose Fig.2 describes a

spreadsheet as Real Spreadsheet, which contains few records so that MT approach can be shown easily.

Fig.2: Real spreadsheet

In Fig.2, A6 contains a formula, which may be according to the user requirement. For example, calculating the

discount on attributes, therefore, the formula is “A6 = A3 -(A3 *40%) + A4 -(A4 *50%) + A5 -(A5 *60%)”. Cell F8 describes

the Total of all the values of A6, calculated from the formula. Suppose the formula in the cell F5 has been mistakenly

entered as “A6 = A3 -(A3 *60%) + A4 -(A4 *50%) + A5 -(A5 *40%)”. Error of this type cannot be identified easily, if the

A3.V4 = A5.V4, then A6.V4 is correct according to real formula, although, the formula in cell F5 is really wrong. Errors of this

type can be easily tackled by identifying suitable metamorphic relations corresponding to the nature of spreadsheet.

1.2. Metamorphic Testing

For the problem described above, oracle is not effective to apply because (1) spreadsheet contain huge amount of

data, (2) spreadsheet allows performing complicated function on numeric values. In this situation, if oracle is not automated

then it is too time consuming, expensive and prone to error. For this problem, Metamorphic Testing is effective and less time

consuming, resulting not too expensive. Other advantage of MT is that it only requires the domain knowledge of

spreadsheet to generate the metamorphic relations. On the other hand, spreadsheet is generally used by end-users and end-

users contain great knowledge about their application domain. But they have no knowledge about software testing approach;

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.3, Issue.2, March-April. 2013 pp-990-995 ISSN: 2249-6645

www.ijmer.com 993 | Page

therefore, metamorphic testing for spreadsheet applications can be very efficient for end-users where test oracle is not

available. A spreadsheet has many features like copy, paste, sorting (ascending, descending) etc and many functions. i.e.

sum, average, count, etc which can be used to generate the metamorphic relations. All Metamorphic relations are generated

manually using spreadsheet features and functions.

IV. Our Approach
4.1. Metamorphic Relation generation

For each and every Metamorphic Relation, we have to use Real Spreadsheet to create a new spreadsheet by copy

and paste. The operations used in Metamorphic Relations are easily applied by “copy and paste” on the attributes which are

involved in formula. We have generated six Metamorphic Relations as follow:

1.2.1. Metamorphic Relation1
First, create a new spreadsheet as MR1spreadsheet as shown in Fig.3 by copying the Real Spreadsheet. Apply an

operation (on MR1spreadsheet) i.e. “circular shift up” [14] on the values of attributes. The operation which shift the values

of a single attribute circularly one place up at a time Then compare the Total of all the values of A6, calculated by the

formula, from Real Spreadsheet and MR1spreadsheet i.e. Real. Total = MR1.Total as shown in Fig.2 and Fig.3 in cells F8. If

both Totals are not equal, it means Real Spreadsheet has an error; otherwise perform operation “circular shift up” again on

same attribute and then check the equivalence between Totals. This process is repeated n-1 time on single attribute, where n

is number of values of that attribute. This process is carried on until error is detected or all attributes (involved in formula)

are not passed out by this process.

Fig.3: MR1spreadsheet

Shifting is easily done manually by using copy and paste the values of attribute. Fig.3 shows the operation on A3

only one time.

1.2.2. Metamorphic Relation2

Like Metamorphic Relation1, take copy of Real Spreadsheet and paste to make a new spreadsheet as

MR2spreadsheet, shown in Fig.4.

Fig.4: MR2spreadsheet

In MR2spreadhsheet, apply an operation “circular shift down” [14] which performs shifting the values of an

attribute circularly only one place down at a time. Similar to MR1, compare the Total of Real Spreadsheet and

MR2spreadsheet. If both Totals (Real. Total = MR2.Total) are not equal, it means Real Spreadsheet has an error; otherwise

perform operation “circular shift down” again on same attribute and then check the equivalence. This process is repeated n-1

time on single attribute, where n is declared earlier. We apply this operation until error is detected or all the attributes

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.3, Issue.2, March-April. 2013 pp-990-995 ISSN: 2249-6645

www.ijmer.com 994 | Page

involved in formula are not passed out by this process. Operation is performed manually by copy and paste. In Fig.4, this

operation is performed only two times on A3, manually by “copy and paste”.

1.2.3. Metamorphic Relation3

Sorting is one of the main features of spreadsheet. Create a new spreadsheet as MR3spreadsheet by copying Real

Spreadsheet. MR3spreadsheet is used to perform an operation “ascending sort” which sort the values of an attribute in

ascending order. Then, compare the Total of both the spreadsheets i.e. Real Spreadsheet and MR3spreadsheet. If there is no

equivalence between both Totals, it means error in Real Spreadsheet; otherwise perform the operation on the second

attribute and check the equivalence between Totals and so on until error is detected or this procedure is not carried on for all

the attributes involved in formula.

1.2.4. Metamorphic Relation4

Like Metamorphic Relation3, first, form a new spreadsheet as MR4spreadsheet by copying the Real Spreadsheet. In

MR4spreadsheet, apply “descending sort” as an operation on the values of an attribute. The operation produces result sorting

the values in descending order. Then compare the Total of both spreadsheets i.e. Real Spreadsheet and MR4spreadsheet. If

there is no equivalence between both Totals, it means, there is an error in Real Spreadsheet; otherwise perform the operation

on second attribute and check the equivalence between Totals and so on until error is detected or this process is not applied

for all the attributes involved in formula.

1.2.5. Metamorphic Relation5

If in Real Spreadsheet, more than one attribute involved in formula contain same values i.e. Aj.Vi = α, Then

Metamorphic Relation5 can be very effective to detect error. First, create a new spreadsheet as Additive Increase (as shown

in Fig.5) by copying the Real Spreadsheet. In Additive Increase, add consecutive integer with value α, for all the attributes

which have same values and also involved in formula. Suppose, A3 and A5 have same values in Real Spreadsheet, then

addition of consecutive integer has been also shown in Additive Increase in Fig.5.

Fig.5: Additive Increase

Finally, Additive Increase is copied and paste to make a new spreadsheet as MR5spreadsheet. Then apply any one

of Metamorphic Relations like (Metamorphic Relation1, Metamorphic Relation2, Metamorphic Relation3, and Metamorphic

Relation4) on the MR5spreadsheet. Finally, compare the Totals (AddInc. Total = MR5.Total) of Additive Increase and

MR5spreadsheet to check the error.

1.2.6. Metamorphic Relation6

Create a new spreadsheet as MR6spreadsheet by copying the Additive Increase.

Fig.6: MR6spreadsheet

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.3, Issue.2, March-April. 2013 pp-990-995 ISSN: 2249-6645

www.ijmer.com 995 | Page

In MR6spreadsheet as shown in Fig.6, calculate the total of all the values of A3, A4, and A5 which are involved in

formula, in the cells C8, D8 and E8 respectively. Apply real formula on the values of the cells C8, D8 and E8. Calculate

the result in cell D10. If the A4.V7 ≠ A6.V6, then Real Spreadsheet has error; otherwise it has no error.

V. Conclusion
In this paper, metamorphic testing is employed for spreadsheet due to lack of test oracle. Test oracle for

spreadsheet is very difficult to use, as a spreadsheet contains huge amount of data. Apply oracle for spreadsheet containing

large range of data is very time consuming, this may result of being costly. Therefore, we use MT for spreadsheet, which is

very simple and easy to implement. It also addresses the oracle problem by generating the metamorphic relations according

to the expected properties of the target function. MT is very effective for end-users because end-user have domain

knowledge of spreadsheet that helps to generate good metamorphic relations. Finally, we concluded that MT can be used to

check the spreadsheet effectively and quickly.

References
[1] B. Beizer. Software Testing Techniques. Van Nostrand Reinhold, New York, 1990.

[2] Manolache, L. I. and Kourie, D. G. Software testing using model programs, Software: Practice and Experience, 31 (13), 2001, pp.

1211-1236.

[3] R. Panko. Finding spreadsheet errors. InformationWeek, Issue 529, page 100, May 1995.

[4] B. Boehm, C. Abts, A. Brown, S. Chulani, B. Clark, E. Horowitz, R. Madachy, D. Reifer, and B. Steece. Software Cost Estimation

with Cocomo II. Prentice Hall PTR, Upper Saddle River, NJ, 2000.

[5] Ballinger, D., Biddle, R., and Noble, J. Spreadsheet Structure Inspection Using Low Level Access and Visualization. In Proceedings

of the Fourth Australasian Conference on User Interfaces (Darlinghurst, Australia, 2003), Australian Computer Society, Inc., pp. 91-

94.

[6] G. Rothermel, M. Burnett, L. Li, C. Dupuis, and A. Sheretov. A methodology for testing spreadsheets. ACM Transactions on

Software Engineering and Methodology, 10(1):110-147, 2001.

[7] T.Y. Chen, S.C. Cheung, and S.M. Yiu. Metamorphic testing: a new approach for generating next test cases. Technical Report

HKUST-CS98-01, University of Science and Technology, Hong Kong, 1998.

[8] Chen, T. Y., Tse, T. H., Zhou, Z. Q.: Fault-based testing without the need of oracles. Information and Software Technology 45

(2003), pp. 1-9.

[9] G. J. Myers. The Art of Software Testing. Wiley, New York, 1979.

[10] J. Mayer, and R. Guderlei, “An empirical study on the selection of good metamorphic relations”, In Proc. of the 30th Annual

International Computer Software and Applications Conference (COMPSAC), 2006, pp. 475-484.

[11] M. Burnett, C. Cook, and G. Rothermel. End-user software engineering. Communications of the ACM, 47(9), 2004, pp. 53-58.

[12] Panko, R. R. Spreadsheet Errors: What We Know. What We Think We Can Do. In Proceedings of the European Spreadsheet Risk

Interest Group Symposium (2000).

[13] Z. Q. Zhou, D. H. Huang, T. H. Tse, Z. Yang, H. Huang, and T. Y. Chen. Metamorphic testing and its applications. In Proceedings

of the 8th International Symposium on Future Soft- ware Technology (ISFST 2004), Xian, China, October 20-22 2004.

[14] Chen TY, Kuo FC, Zhou ZQ. An Effective Testing Method for End-User Programmer. In Proceedings of the First Workshop on

End-User Software Engineering. 2005. pp. 1-5.

[15] Obrenović, Gašević, D., "End-User Service Computing: Spreadsheets as a Service Coordination Interface," IEEE Transactions on

Services Computing, Vol. 1, No. 4, 2008, pp. 229-242.

[16] T. Y. Chen, D. H. Huang, T. H. Tse, and Z. Q. Zhou. Case studies on the selection of useful relations in metamorphic testing. In

Proceedings of the 4th Ibero-American Symposium on Software Engineering and Knowledge Engineering (JIISIC 2004),

Polytechnic University of Madrid, Madrid, Spain, 2004, pp. 569-583.

[17] Rajalingham, K., Chadwick. D., and Knight, B. (2000). "Classification of Spreadsheet Errors." Proceedings of the European

Spreadsheet Risks Interest Group Annual Conference, Greenwich, UK. pp. 23-34.

[18] Wilson, A., Burnett, M., Beckwith, L., Granatir, O., Casburn, L., Cook, C., Durham, M., and Rothermel, G. Harnessing Curiosity to

Increase Correctness in End-User Programming. In Proceedings of the SIGCHI Conference on Human Factors in Computing

Systems (New York, NY, USA, 2003), ACM, pp. 305-312.

[19] E.J. Weyuker. On testing non-testable programs. The Computer Journal, 25(4), 1982, pp. 465-470.

[20] “What we know about spreadsheet errors, Human Error Website, Honolulu, HI: University of Hawai„i”, Retrieved May 15, 2005

http site, “http://panko.cba.hawaii.edu/ HumanErr/”

[21] Hamlet, D. Predicting dependability by testing, In Proceedings of the ACM SIGSOFT International Symposium on Software Testing

and Analysis (ISSTA 1996), ACM Press, New York, 1996, pp. 84-91.

�http:/panko.cba.hawaii.edu/%20HumanErr/�

