Common fixed point theorems in intuitionistic fuzzy metric space

Shams-ur-rahman, 1 Bhadra Man Tuladhar, 2 Ismat Beg 3

¹²Department of Natural Sciences, Kathmandu University, Nepal ³Department of Mathematics, Lahore University of Management Studies, Pakistan

Abstract: In this paper, we give the Mizoguchi-Takahashi's theorems into intuitionistic fuzzy metric space.

Keywords: Common fixed point, Fuzzy metric space, Intuitionistic fuzzy metric space.

I. Introduction

The notion of fuzzy sets was introduced by A. Zadeh [11] in 1965. George and Veeramani [5] introduced the fuzzy metric space. Mihet [7] obtained some new results of modifying the notion of convergences in fuzzy metric space. Park [9] used the idea of intuitionistic fuzzy sets with the help of t-norm and t-conorm as a generalization of fuzzy metric space and introduced the notion of Cauchy sequences in an intuitionistic fuzzy metric space and also proved the Baire's theorem.

Alaca et al. [1] using the idea of intuitionistic fuzzy sets, defined the notion of intuitionistic fuzzy metric space similar to Park [9] with the help of continuous t-norms and continuous t-conorms as a generalization of fuzzy metric space due to Kramosil and Michalek [6]. Further, they introduced the notion of Cauchy sequences in intuitionistic fuzzy metric spaces and proved the well-known theorems of Banach [2] and Edelstein [3]. Many authors have studied the concept of intuitionistic fuzzy metric space and its applications [4, 10, 12, 13, 14].

The purpose of this paper, is to prove the Mizoguchi-Takahashi's [6] theorems in intuitionistic fuzzy metric space.

- **Definition 1.1**: A binary operation $*:[0,1] \times [0,1] \rightarrow [0,1]$ is continuous *t*-norm if $*$ satisfy the following conditions:
- (1) * is commutative and associative;
- (2) * is continuous;
- (3) $a * 1 = a$ for all $a \in [0, 1]$;

(4) $a * b \leq c * d$ whenever $a \leq c$ and $b \leq d$ for all *a, b, c, d* $\in [0, 1]$.

Definition 1.2: A binary operation \Diamond : $[0, 1] \times [0, 1] \rightarrow [0, 1]$ is continuous *t*-conorm if \Diamond satisfy the following conditions: (1) \Diamond is commutative and associative;

- (2) \Diamond is continuous;
- (3) $a \, \Diamond \, 0 = a$ for all $a \in [0, 1]$;

(4) $a \Diamond b \leq c \Diamond d$ whenever $a \leq c$ and $b \leq d$ for all *a, b, c, d* \in [0, 1].

Definition 1.3: (Alaca et al.) [1] A 5-tuple $(X, M, N, *, \Diamond)$ is said to be an intuitionistic fuzzy metric space if *X* is an arbitrary set, * is a continuous *t*-norm, \Diamond is a continuous *t*-conorm and *M*, *N* are fuzzy sets on $X^2 \times [0, \infty)$ satisfying the following conditions:

- (1) *M* (*x, y, t*) + *N* (*x, y, t*) \leq 1 for all *x, y* \in *X* and *t* > 0;
- (2) $M(x, y, 0) = 0$ for all $x, y \in X$;
- (3) $M(x, y, t) = 1$ for all $x, y \in X$ and $t > 0$ if and only if $x = y$;
- (4) *M* (*x, y, t*) = *M* (*y, x, t*) for all *x, y* \in *X* and t > 0;
- (5) *M* (*x, y, t*) * *M* (*y, z, s*) $\leq M$ (*x, z, t* + *s*) for all *x, y, z* \in *X* and *s, t* > 0;
- (6) for all *x*, $y \in X$ and *M* (*x*, *y*, .) : [0, ∞) \rightarrow [0, 1] is left continuous;
- (7) $\lim_{t \to \infty} M(x, y, t) = 1$ for all $x, y \in X$ and $t > 0$;
- (8) $N(x, y, 0) = 1$ for all $x, y \in X$
- (9) $N(x, y, t) = 0$ for all $x, y \in X$ and $t > 0$ if and only if $x = y$;
- $(10)N(x, y, t) = N(y, x, t)$ for all $x, y \in X$ and $t > 0$;
- (11) *N* (*x, y, t*) \Diamond *N* (*y, z, s*) \geq *N* (*x, z, t* + *s*) for all *x, y, z* \in *X* and *s, t* > 0;
- (12) for all *x*, $y \in X$ and N(x, y, .) : [0, ∞) \rightarrow [0, 1] is right continuous;
- (13) lim_{$t\to\infty$} $N(x, y, t) = 0$ for all $x, y \in X$

Then (M, N) is called an intuitionistic fuzzy metric space on X. The functions $M(x, y, t)$ and $N(x, y, t)$ denote the degree of nearness and the degree of non-nearness between *x* and *y* with respective to *t*, respectively.

Definition 1.4: Let $(X, M, N, *, \Diamond)$ be an intuitionistic fuzzy metric space, then

- (a) a sequence $\{x_n\}$ in X is said to be Cauchy sequence if, for all $t > 0$ and $p > 0$ $\lim_{n \to \infty} M(x_{n+p}, x_n, t) = 1$ and $\lim_{n \to \infty} N(x_{n+p}, x_n, t)$ *x_n*, *t*) = 0
- (b) a sequence $\{x_n\}$ in X is said to be convergent sequence if, for all $t > 0$ and $p > 0$ $\lim_{n \to \infty} M(x_n, x, t) = 1$ and $\lim_{n \to \infty} N(x_n, x, t)$ *x, t* $) = 0$
- **(c)** An intuitionistic fuzzy metric space (*X, M, N*, *, ◊) is said to be complete if and only if every Cauchy sequence in *X* is convergent.
- **(d)** An intuitionistic fuzzy metric space (*X, M, N*, *, ◊) is said to be compact if every sequence in *X* contains a convergent subsequence.

Example 1.1: Let (X, d) be a metric space. Define *t*-norm $a * b = \min \{a, b\}$ and *t*-co-norm $a \Diamond b = \max \{a, b\}$ and for all *a*, $b \in X$ and $t > 0$.

Let us define *M* (*x, y, t*) = *t*/ (*t* + *d*(*x, y*)) and *N* (*x, y, t*) = *d* (*x, y*)/ (*t* + *d*(*x, y*)).

Then $(X, M, N, *, \Diamond)$ is an intuitionistic fuzzy metric space.

conorm \Diamond defined by $t * t \geq t$ and

II. Main Results

In 1989, Mizoguchi and Takahashi [8] proved the following fixed point theorem.

Then above theorem can be proved in an intuitionistic fuzzy metric space as follows.

Theorem2.1: **(Mizoguchi and Takahashi)** Let (X, d) be a complete metric space and *T* a map from *X* into CB (X) , where CB(*X*) is the class of all nonempty closed bounded subsets of *X*. Assume that

H $(Tx, Ty) \leq \alpha$ $(d(x, y)) d(x, y)$

For all $x, y \in X$, where α is a function from [0, ∞) into [0, 1) satisfying $\limsup_{s \to t+0} \alpha(s) < 1$ for all $t \in [0,\infty)$. Then there exists $z \in X$ such that $z \in Tz$.

In fact, Mizoguchi-Takahashi's fixed point theorem is a generalization of Nadler's fixed point theorem [13] which extended the Banach contraction principle to multivalued maps, but its primitive proof is different.

Theorem 2.2: Let $(X, M, N, *, \lozenge)$ be a complete intuitionistic fuzzy metric space with continuous t-norm $*$ and continuous t-

www.ijmer.com 1337 | Page $(1-t)\lozenge(1-t) \le (1-t)$ for all $t \in [0, 1]$ and $T: X \to CB(X)$ is multivalued map and φ : $[0, \infty) \rightarrow [0, 1)$ is continuous function. There exists $0 < k < 1$ such that for all $x, y \in X$ $M(Tx, Ty, kt) \ge M(x, y, t) * M(x, y, t)$ and $N(Tx, Ty, kt) \le N(x, y, t) \lozenge N(x, y, t)$, then T has fixed point in X. **Proof:** Let $\{X_n\}$ be a sequence in X and $X_{m-1} = X_m$ for some m, T has a fixed point X_m . Suppose that $X_{n-1} \neq X_n$ then M (x_n, x_{n+1}) , kt) = *M* (*Tx*_{*n+1}</sub>, <i>Tx*_{*n+2*}, *kt*)</sub> $\geq M(x_{n+1}, x_{n+2}, t/k) * M(x_{n+1}, x_{n+2}, t/k) \geq M(x_{n+1}, x_{n+2}, t/k^2)$ and $N(x_{n+1}, x_{n+2}, kt) \leq N(x_{n+1}, x_{n+2}, tk^2)$ Hence for any positive integer *p M* (*x_n, x_{n+p}, kt*) ≥ *M* (*x_{n+1}, x_{n+2}, t/k*)^{*} … p-times … * *M* (*x_{p+1-n}, x_{p+2-n}, t/kⁿ*) $N(x_n, x_{n+p}, k t) \leq N(x_{n+1}, x_{n+2}, t/k) \lozenge ...$ p-times... $\lozenge N(x_{p+1-n}, x_{p+2-n}, t/k^n)$ When $n \to \infty$ then $\lim_{n \to \infty} M(x_n, x_{n+1}, k) \ge 1^* 1^* ... * 1 = 1$ and $\lim_{n\to\infty} N(x_n, x_{n+1}, kt) \leq 0$ \Diamond 0 \Diamond ... \Diamond 0 = 0 It shows that $\{x_n\}$ is Cauchy sequence in *X* and so, by the completeness of *X*, $\{x_n\}$ converges to a point *x*, then *M* (x_n , x , kt) \ge *M* $(x_n, x, t/k^2)$ and *N* (x_n , *x*, *kt*) $\leq N$ (x_n , *x*, t/k^2). Let *y* be another fixed point in *X* and $x \neq y$ then *M* (*x_n*, *y*, *kt*) = *M* (*Tx_n*, *Ty*, *kt*) ≥ *M* (*x_n*, *y*, *t*/ k^2) and $N(x_n, y, kt) = N(Tx_n, Ty, kt) \le N(x_n, y, t/k^2)$ when $n \to \infty$ gives that $M(x_n, y, t/k^2) = 1$ and $N(x_n, y, t/k^2) = 0$ for all $t > 0$, therefore it shows that $x = y$ so x is the fixed point of T . **Theorem 2.3**: Let $(X, M, N, * , \lozenge)$ be a compact intuitionistic fuzzy metric space with continuous t-norm $*$ and continuous tconorm \Diamond defined by $t * t \geq t$ and $(1-t)\Diamond (1-t) \le (1-t)$ for all $t \in [0, 1]$ and $T: X \rightarrow CB(X)$ is multivalued map and φ : $[0, \infty) \rightarrow [0, 1)$ is continuous function. There exists $0 \le k \le 1$ such that for all $x, y \in X$ $M(Tx, Ty, kt) \ge M(x, y, t) * M(x, y, t)$ and $N(Tx, Ty, kt) \le N(x, y, t) \lozenge N(x, y, t)$, then T has fixed point in X. **Proof:** Let $\{X_n\}$ be a sequence in X and $X_{m-1} = X_m$ for some m, T has a fixed point X_m . Suppose that $X_{n-1} \neq X_n$ then M (x_n, x_{n+1}) , kt) = *M* (*Tx*_{*n+1}</sub>, <i>Tx*_{*n+2}*, *kt*)</sub></sub> $\geq M(x_{n+1}, x_{n+2}, t/k) * M(x_{n+1}, x_{n+2}, t/k) \geq M(x_{n+1}, x_{n+2}, t/k^2)$ and *N* (x_{n+1} , x_{n+2} , kt) $\leq N$ (x_{n+1} , x_{n+2} , t/k^2) Hence for any positive integer *p* $M(x_n, x_{n+p}, k) \geq M(x_{n+1}, x_{n+2}, t/k)^* \dots$ p-times $\ldots M(x_{p+1-n}, x_{p+2-n}, t/k^n)$

 $N(x_n, x_{n+p}, kt) \leq N(x_{n+1}, x_{n+2}, t/k) \lor ...$ p-times … $\lor N(x_{p+1-n}, x_{p+2-n}, t/k^n)$

When $n \to \infty$ then $\lim_{n \to \infty} M(x_n, x_{n+1}, k) \ge 1 * 1 * ... * 1 = 1$

And $\lim_{n\to\infty} N(x_n, x_{n+1}, kt) \leq 0$ \Diamond 0 \Diamond ... \Diamond 0 = 0.

It shows that $\{x_n\}$ is Cauchy sequence in *X*, since *X* is compact so, $\{x_n\}$ has a convergent subsequence $\{x_{ni}\}$. Let $\lim_{i\to\infty}\{x_{ni}\}$ = y. Now we assume that y, $Ty \notin \{x_n\}$. Since T is continuous for all x, y in X, then $\lim_{i\to\infty}(Tx_{ni}, Ty, t) \ge \lim_{i\to\infty} M(x_{ni}, y, t) = 1$ for each

t > 0, hence $\lim_{i \to \infty} Tx_{ni} = Ty$ similarly $\lim_{i \to \infty} T^2 x_{ni} = T^2 y$

(Now again assume that $Ty \neq Tx_{ni}$ for all *i*). Now we observe that

 $M(x_{n,l}, Tx_{n,l}, t) < M(Tx_{n,l}, T^2x_{n,l}, t) < ... < M(Tx_{n\dot{v}}, T^2x_{n\dot{v}}, t) < ... < M(Tx_{n\dot{v}+l}, T^2x_{n\dot{v}+l}, t) < ... < 1$ for all $t > 0$. Thus $\{M(x_{n\dot{v}}, Tx_{n\dot{v}}, t)\}$ and $\{M(Tx_{n\dot{b}}, T^2x_{n\dot{b}}, t)\}\$ are convergent sequences to a common limit, i.e. $M(y, Ty, t)$. It shows that $\{M(x_{n\dot{b}}, Tx_{n\dot{b}}, t)\} = \{M(Tx_{n\dot{b}}, x_{n\dot{b}}, t)\}$ $T^2 x_{ni}$, *t*) is contradiction. Hence $y = Ty$, is a common fixed point.

References:

- [1] C. Alaca, D. Turkoglu, and C. Yildiz, Fixed points in intuitionistic fuzzy metric spaces, Chaos, Solitons and Fractals, 29 (2006), 1073–1078.
- [2] S. Banach, Theorie les operations lineaires, Manograie Mathematyezne Warsaw Poland, 1932.
- [3] M. Edelstein, On fixed and periodic points under contractive mappings, Journal of the London Mathematical Society, 37 (1962), 74– 79
- [4] V. Gregori, S. Romaguera, and P. Veeramani, A note on intuitionistic fuzzy metric spaces, Chaos, Solitons and Fractals 28 (2006), 902–905.
- [5] A. George and P. Veeramani, on some results in fuzzy metric spaces, Fuzzy Sets and Systems, 64 (1994), no. 3, 395–399.
- [6] I. Kramosil and J. Michálek, Fuzzy metric and Statistical metric spaces, Kybernetica (Prague), 11 (1975), no. 5, 336–344.
- [7] D. Mihet,, on fuzzy contractive mappings in fuzzy metric spaces, Fuzzy Sets and Systems, 158 (2007), 915–921.
- [8] N. Mizoguchi and W. Takahashi, Fixed point theorems for multivalued mappings on complete metric spaces, J. Math. Anal. Appl. 141 (1989), 177–188.
- [9] J. H. Park, Intuitionistic fuzzy metric spaces, Chaos, Solitons and Fractals, 22 (2004), no. 5, 1039–1046.
- [10] R. Saadati and J. H. Park, on the intuitionistic fuzzy topological spaces, Chaos, Solitons and Fractals, 27 (2006), no. 2, 331–344.
- [11] L. A. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338–353.
- [12] T. K. Samanta and Sumit Mohinta, On Fixed-point theorems in Intuitionistic Fuzzy metric Space I, arXiv: 1103.2856v1 [math.GM]. 15 Mar 2011.
- [13] Suziki, Tomonari, Mizoguchi-Takahashi's fixed point theorem is a real generalization of Nadler's, Journal of Mathematical Analysis and Applications, 340 (2008), 752-755.
- [14] Wei-Shih Du, Some Generalizations of Mizoguchi-Takahashi's Fixed Point Theorem, Int. J. Contemp. Math Sciences, Vol 3, (2008), no 26, 1283-1288.