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Abstract: The present paper is the first part of investigations devoted to analysis of lossy transmission lines terminated by 

nonlinear parallel connected GC loads and in series connected L-load (cf. Fig. 1). First we formulate boundary conditions 

for lossy transmission line system on the base of Kirchhoff’s law. Then we reduce the mixed problem for the hyperbolic 

system (Telegrapher equations) to an initial value problem for a neutral system on the boundary. We show that only 

oscillating solutions are characteristic for this case. Finally we analyze the arising nonlinearities.  
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I. INTRODUCTION 
The transmission line theory is based on the Telegrapher equations, which from mathematical point of view 

presents a first order hyperbolic system of partial differential equations with unknown functions voltage and current. The 

subject of transmission lines has grown in importance because of the many applications (cf. [1]-[9]). 

In the previous our papers we have considered lossless and lossy transmission lines terminated by various 

configuration of nonlinear (or linear) loads – in series connected, parallel connected and so on (cf. [10]-[16]). The main 

purpose of the present paper is to consider a lossless transmission line terminated by nonlinear GCL-loads placed in the 

following way: GC-loads are parallel connected and a L-load is in series connected (cf. Fig. 1).  

The first difficulty is to derive the boundary conditions as a consequence of Kirchhoff’s law (cf. Fig.1) and to 

formulate the mixed problem for the hyperbolic system. The second one is to reduce the mixed problem for the hyperbolic 

system to an initial value problem for neutral equations on the boundary. The third one is to introduce a suitable operator 

whose fixed point is an oscillatory solution of the problem stated. In the second part of the present paper by means of by 

fixed point method [17] we obtain an existence-uniqueness of an oscillatory solution. 

The paper consists of four sections. In Section II on the base of Kirchhoff’s law we derive boundary conditions and 

then formulate the mixed problem for the hyperbolic system or transmission line system. In Section III we reduce the mixed 

problem to an initial value problem on the boundary. In Section IV we analyse the arising nonlinearities and make some 

estimates which we use in the second part of the present paper.  

 
Fig. 1. Lossy transmission line terminated by circuits consisting of RC-elements in series connected to L-element 

 

II. DERIVATION OF THE BOUNDARY CONDITIONS AND FORMULATION OF THE MIXED PROBLEM 
In order to obtain the boundary conditions we have to take into account that if   is the length of the transmission 

line then, LCLCT  )/1/(  where L is per unit length inductance and C – per unit-length capacitance  

Lossy Transmission Lines Terminated by Parallel Connected 

RC-Loads and in Series Connected L-Load (I) 
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In accordance of Kirchhoff’s V-law (cf. Fig. 1) we have to collect the currents of the elements pG  and pC  after 

that to collect the voltage of ppCG  with the voltage of )1,0( pLp . But we deal with nonlinear elements, that is, 
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     Here we consider the following lossy transmission line system: 
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Where ),( txu  and ),( txi  are the unknown voltage and current, while L, C, R and G are prescribed specific 

parameters of the line and  > 0 is its length.  

For the above system (3) might be formulated the following mixed problem: to find ),( txu  and ),( txi  in   such 

that the following initial conditions 

  ,0),()0,(),()0,( 00 xxixixuxu                         (4) 

And boundary conditions (1) and (2) to be satisfied. 

 

III. REDUCING THE MIXED PROBLEM TO AN INITIAL VALUE PROBLEM ON THE BOUNDARY 

First we present (3) in the form: 
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And then write it in a matrix form  
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In order to transform the matrix A in a diagonal form we have to solve the characteristic equation: 0
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0
11

0
11

21

21









LCC

LLC
 And 

0
11

0
11

21

21









LCC

LLC
. 

Hence        LCLC ,,,,, )2(
2

)2(
1

)1(
2

)1(
1    

Denote by  the matrix formed by eigen-vectors 

















LC

LC
H  and its inverse one






















LL

CC
H

2

1

2

1

2

1

2

1

1 . It is known 

that 1can  HAHA , where

















LC

LC
A

/10

0/1can . 
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Replacing ),(),( 1 txZHtxU   in (6) we obtain 
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Since 1H  is a constant matrix we have 
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After multiplication from the left by H we obtain     011 
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Applying Heaviside condition 
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The new initial conditions we obtain from (4): 
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     Substituting in (8) we obtain 
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     Then with respect to the variables ),( txW  and ),( txJ  (10) looks like: 
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The mixed problem for (1) - (4) can be reduced to an initial value problem for a neutral system. The neutral system 

is a nonlinear one in view of the nonlinear characteristics of the RGLC-elements. 

From now on we propose two manners to obtain a neutral system for unknown voltage and current functions. 

First manner: The solution of (15) is a pair of functions  vtxtxW W ),(  and  vtxtxJ J ),( , where W  and ФJ 

are arbitrary smooth functions. From (14) we obtain 
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     For x  we obtain 
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Let us put  vTTtvttvtvt /'/''   and then replacing t by Tt '  in the first equation of (18) we get  
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Substituting )( vtW   and )(vtJ  from (19) and (20) into (21) we obtain: 
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     Substitute the above expressions into the boundary conditions (1), (2) we have 
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Let us put Tt   .Then we arrive at a system that we cannot formulate an initial value problem. 

 

Second manner 
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Substituting in (2.1) and (2.2) we obtain 
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We notice that if (22) has a periodic solution 
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IV. ANALYSIS OF THE ARISING NONLINEARITIES 
First we precise the definition domains of the functions: 
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V. CONCLUSION  

Here we have investigated lossy transmission lines terminated by circuits different from parallel or in series 

connected RGLC-elements. It turned out that in this case one obtains more number of equations which leads to more 

complicated boundary conditions at both ends of the line. First difficulty is to find independent unknown functions − 

voltages and currents and to obtain a system of neutral differential equations. We show that just oscillatory solutions are 

specific for the lossy transmission lines and in the second part of the paper we formulate conditions for existence-uniqueness 

of an oscillatory solution. They can be easily applied to concrete problem because they are explicit type conditions − just 

inequalities between specific parameters of the line and characteristics of the circuit. 
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