Vol. 3, Issue. 3, May.-June. 2013 pp-1731-1738 ISSN: 2249-6645

Power Quality Improvement Of Grid Interconnected 3-Phase 4-Wire System Of Distribution Generation

A.Sumalatha¹, K.Ravi Sankar²

Department of Electrical and Electronics Engineering, JNTUA College of Engineering And Technology Pulivendula, Kadapa dist., Andhra Pradesh, INDIA

Academic Assistant Professor of Department of Electrical and Electronics Engineering JNTUA College of Engineering And Technology Pulivendula, Kadapa dist., Andhra Pradesh, INDIA

Abstract: Small distributed generation (DG) systems provide standby service during utility outages and, when operated during peak load hours, potentially reduce energy costs. Renewable energy sources (RES) are being increasingly connected in distribution system utilizing power electronic converters. This paper presents a novel control strategy for achieving maximum benefits from this grid -interfacing inverters when installed in 3-phase 4- wire distribution systems. The inverter is controlled to perform as multi-function device by incorporating active power filter functionality. The inverter can thus be utilized as:1) power converter to inject power generated from RES to the grid, and 2) shunt APF to compensate current unbalance, load current harmonics, load reactive power demand and load neutral current. All of these functions may be accomplished either individually or simultaneously. With such a control, the combination of grid- interfacing inverter and the 3-phase 4wire linear/non -linear unbalanced load at the point of common coupling appears as balanced linear load to the grid. This new control concept is demonstrated with extensive MATLAB/ Simulink simulation studies.

Keywords: Active power filter (APF), distributed generation (DG), distribution system, grid interconnection, power quality (PQ), renewable energy.

I. Introduction

ELECTRIC utilities and end users of electric power are becoming increasingly concerned about meeting the growing energy demand. Seventy five percent of total global energy demand is supplied by the burning of fossil fuels. But increasing air pollution, global warming concerns, diminishing fossil fuels and their increasing cost have made it necessary to look towards renewable sources as a future energy solution. Since the past decade, there has been an enormous interest in many countries on renewable energy for power generation. The market liberalization and government's incentives have further accelerated the renewable energy sector growth. Distributed generation (DG) systems are presented as a suitable form to offer high reliable electrical power supply [1]. The concept is particularly interesting when different kinds of energy resources are available, such as photovoltaic panels, fuel cells, or speed wind turbines [2], [3]. Most part of these resources need power electronic interfaces to make up local ac grids [4], [5]. This way, inverters or ac-to-ac converters are connected to an ac common bus with the aim to share properly the disperse loads connected to the local grid [6].

Most sustainable energy sources supply energy in the form of electrical power. Distributed generation (DG) systems are often connected to the utility grid through power electronic converters. A grid-connected inverter provides the necessary interface of the DG to the phase, frequency and amplitude of the grid voltage, and disconnects the system from the grid when islanding. Such a DG system can be designed to operate in both stand-alone and grid-connected modes flexibly according to grid conditions [1], [2]. When the utility grid is not available or the utility power is accidentally lost, the DG is used as an on-site power or standby emergency power service, effectively being an extended uninterruptible power supply (UPS) that is capable of providing long-term energy supply.

The non-linear load current harmonics may result in voltage harmonics and can create a serious PQ problem in the power system network. Active power filters (APF) are extensively used to compensate the load current harmonics and load unbalance at distribution level. This results in an additional hardware cost. However, in this paper authors have incorporated the features of APF in the, conventional inverter interfacing renewable with the grid, without any additional hardware cost. Here, the main idea is the maximum utilization of inverter rating which is most of the time underutilized due to intermittent nature of RES. It is shown in this paper that the grid-interfacing inverter can effectively be utilized to perform following important functions: 1) transfer of active power harvested from the renewable resources (wind, solar, etc.); 2) load reactive power demand support; 3) current harmonics compensation at PCC; and 4) current unbalance and neutral current compensation in case of 3-phase 4-wire system. Moreover, with adequate control of grid-interfacing inverter, all the four objectives can be accomplished either individually or simultaneously. The PQ constraints at the PCC can therefore be strictly maintained within the utility standards without additional hardware cost.

The paper is arranged as follows: Section II describes the system under consideration Section III describes the controller for grid-interfacing inverter. A digital simulation study is presented in Section IV and, finally, Section V concludes the paper.

II. System Descrption

The proposed system consists of RES connected to the Dc-link of a grid-interfacing inverter as shown in Fig. 1.and the simulink design of distribution system is shown in Fig. 2. The voltage source inverter is a key element of a DG system as it interfaces the renewable energy source to the grid and delivers the generated power. The RES may be a DC source or an

www.ijmer.com 1731 | Page

ISSN: 2249-6645

www.ijmer.com Vol. 3, Issue. 3, May.-June. 2013 pp-1731-1738

AC source with rectifier coupled to dc-link. Usually, the fuel cell and photovoltaic energy sources generate power at variable low dc voltage, while the variable speed wind turbines generate power at variable ac voltage. Thus, the power generated from these renewable sources needs power conditioning (i.e., dc/dc or ac/dc) before connecting on dc-link [6]–[8]. The dc-capacitor decouples the RES from grid and also allows independent control of converters on either side of dc-link. Simulink design of wind energy is shown in Fig. 3.

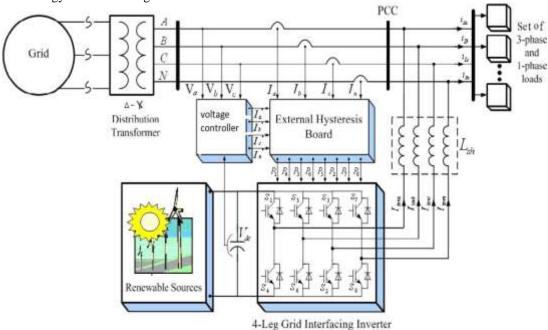


Fig. 1. Schematic of proposed renewable based distribution generation system.

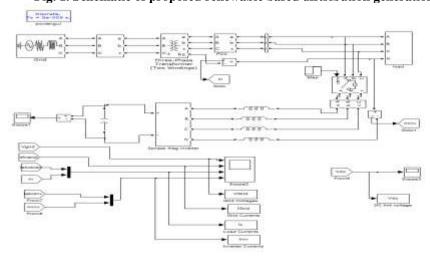


Fig. 2. Simulink Design of Distributed system.

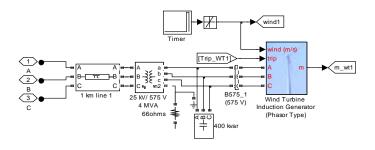


Fig. 3. Simulink Design of Wind Energy system.

Vol. 3, Issue. 3, May.-June. 2013 pp-1731-1738

III. Proposed Control Strategies

A. DC- Link voltage and Power Control Operation: Due to the intermittent nature of RES, the generated power is of variable nature. The dc-link plays an important role in transferring this variable power from renewable energy source to the grid. RES are represented as current sources connected to the dc-link of a grid-interfacing inverter. Fig. 4 shows the systematic representation of power transfer from the renewable energy resources to the grid via the dc-link. The current injected by renewable into dc-link at voltage level $V_{\rm dc}$ can be given as

$$I_{dc1} = P_{res} / V_{dc}$$
 (1)

ISSN: 2249-6645

where P_{res} is the power generated from RES. The current flow on the other side of dc-link can be represented as,

$$I_{dc2} = P_{inv} / V_{dc} = P_G + P_{Loss} / V_{dc}$$

$$\tag{2}$$

where P_{inv} , P_G and P_{Loss} are total power available at grid-interfacing inverter side, active power supplied to the grid and inverter losses, respectively. If inverter losses are negligible then

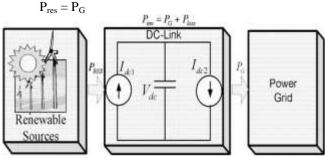


Fig. 4. DC- Link equivalent diagram.

B. Control of Grid Interfacing Inverter

The control diagram of grid- interfacing inverter for a 3-phase 4-wire system is shown in Fig. 5. The fourth leg of inverter is used to compensate the neutral current of load. The main aim of proposed approach is to regulate the power at PCC during: 1) Pres=0; 2) Pres < total load power (P_L); 3) Pres > total load power. While performing the power management operation, the inverter is actively controlled in such a way that it always draws/ supplies fundamental active power from/ to the grid. If the load connected to the PCC is non-linear or unbalanced or the combination of both, the given control approach also compensates the harmonics, unbalance, and neutral current. The duty ratio of inverter switches are varied in a power cycle such that the combination of load and inverter injected power appears as balanced resistive load to the grid.

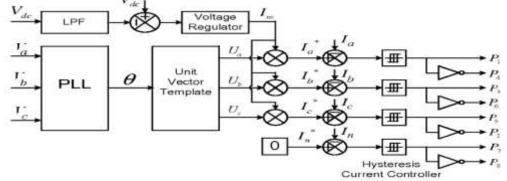


Fig. 5. Block diagram representation of grid-interfacing inverter control.

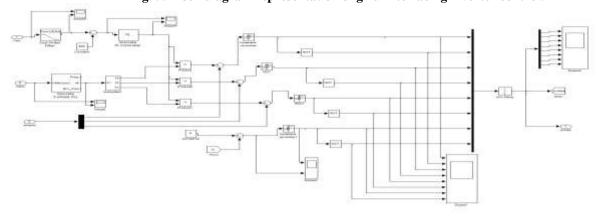


Fig.6. Simulink Design of Grid Interfacing Inverter Control.

The regulation of dc-link voltage carries the information regarding the exchange of active power in between renewable source and grid. Thus the output of dc-link voltage regulator results in an active current (I_m) . The multiplication of active

www.ijmer.com Vol. 3, Issue. 3, May.-June. 2013 pp-1731-1738 ISSN: 2249-6645

current component (I_m) with unity grid voltage vector templates (U_a , U_b , and U_c) generates the reference grid currents (I_a^* , I_b^* , and I_c^*). The reference grid neutral current (I_n^*) is set to zero, being the instantaneous sum of balanced grid currents. The grid synchronizing angle (θ) obtained from phase locked loop (PLL) is used to generate unity vector template as [9]–[11]

$$U_{a} = Sin(\theta) \tag{3}$$

$$U_b = \sin(\theta - 2\Pi/3) \tag{4}$$

$$U_c = Sin (\theta + 2\Pi/3). \tag{5}$$

The actual dc-link voltage is sensed and passed through a first-order low pass filter (LPF) to eliminate the presence of switching ripples on the dc-link voltage and in the generated reference current signals. The difference of this filtered dc-link voltage and reference dc-link voltage (V_{dc}^*) is given to a discrete-PI regulator to maintain a constant dc-link voltage under varying generation and load conditions. The dc-link voltage error $V_{dcerr(n)}$ at nth sampling instant is given as:

$$\mathbf{V_{dcerr\,(n)}} = \mathbf{V_{dc(n)}}^* - \mathbf{V_{dc(n)}}. \tag{6}$$

The output of discrete-PI regulator at nth sampling instant is expressed as

$$I_{m(n)} = I_{m(n-1)} + K_{PVdc} \left(V_{dcerr (n)} - V_{dcerr (n-1)} \right) + K_{IVdc} V_{dcerr (n)}$$

$$(7)$$

where $K_{PVdc} = 10$ and $K_{IVdc} = 0.05$ are proportional and integral gains of dc-voltage regulator. The simulink design of grid interfacing inverter using PI controller is shown in Fig. 6. The instantaneous values of reference three phase grid currents are computed as

$$\mathbf{I}_{\mathbf{a}}^{*} = \mathbf{I}_{\mathbf{m}} \cdot \mathbf{U}_{\mathbf{a}} \tag{8}$$

$$\mathbf{I}_{\mathbf{b}}^{*} = \mathbf{I}_{\mathbf{m}} \cdot \mathbf{U}_{\mathbf{b}}$$
 (9)

$$\mathbf{I}_{\mathbf{c}}^{*} = \mathbf{I}_{\mathbf{m}} \cdot \mathbf{U}_{\mathbf{c}}. \tag{10}$$

The neutral current, present if any, due to the loads connected to the neutral conductor should be compensated by forth leg of grid-interfacing inverter and thus should not be drawn from the grid. In other words, the reference current for the grid neutral current is considered as zero and can be expressed as

$$\mathbf{I_n}^* = \mathbf{0}. \tag{11}$$

The reference grid currents $(I_a^*, I_b^*, I_c^*, \text{ and } I_n^*)$ are compared with actual grid currents $(I_a, I_b, I_c \text{ and } I_n)$ to compute the current errors as

$$\mathbf{I}_{\operatorname{aerr}} = \mathbf{I}_{\operatorname{a}}^{*} - \mathbf{I}_{\operatorname{a}} \tag{12}$$

$$\mathbf{I_{berr}} = \mathbf{I_{b}}^* - \mathbf{I_{b}} \tag{13}$$

$$\mathbf{I}_{cerr} = \mathbf{I}_{c}^{*} - \mathbf{I}_{c} \tag{14}$$

$$\mathbf{I}_{\text{nerr}} = \mathbf{I}_{\mathbf{n}}^* - \mathbf{I}_{\mathbf{n}}. \tag{15}$$

These current errors are given to hysteresis current controller. The hysteresis controller then generates the switching pulses $(P_1 \text{ to } P_8)$ for the gate drives of grid-interfacing inverter. The average model of 4-leg inverter can be obtained by the following state space equations

$$d\mathbf{I}_{Inva}/dt = (\mathbf{V}_{Inva} - \mathbf{V}_{a}) / \mathbf{L}_{sh} \tag{16}$$

$$dI_{Invb}/dt = (V_{Invb} - V_b) / L_{sh}$$
(17)

$$d\mathbf{I}_{\text{Invc}}/d\mathbf{t} = (\mathbf{V}_{\text{Invc}} - \mathbf{V}_{\text{c}}) / \mathbf{L}_{\text{sh}}$$
(18)

$$dI_{Invn}/dt = (V_{Invn} - V_n) / L_{sh}$$
(19)

$$dV_{dc}/dt = (I_{Invad} + I_{Invbd} + I_{Invrd})/C_{dc}$$
(20)

Where V_{Inva} , V_{Invb} , V_{Invc} , and V_{Invn} are the three-phase ac switching voltages generated on the output terminal of inverter. These inverter output voltages can be modeled in terms of instantaneous dc bus voltage and switching pulses of the inverter as

$$V_{\text{Inva}} = (P_1 - P_4)V_{\text{dc}}/2$$
 (21)

$$V_{\text{Invb}} = (P_3 - P_6) V_{\text{dc}} / 2$$
 (22)

$$V_{Invc} = (P_5 - P_2)V_{dc}/2$$
 (23)

$$V_{Invn} = (P_7 - P_8) V_{dc} / 2$$
 (24)

Similarly the charging currents I_{Invad}, I_{Invbd}, I_{Invcd} and I_{Invnd} on dc bus due to the each leg of inverter can be expressed as

$$\mathbf{I}_{\mathbf{Invad}} = \mathbf{I}_{\mathbf{Inva}} \left(\mathbf{P}_1 - \mathbf{P}_4 \right) \tag{25}$$

$$I_{Invbd} = I_{Invb} (P_3 - P_6)$$
(26)

$$I_{Inved} = I_{Inve} (P_5 - P_2)$$
 (27)

$$\mathbf{I}_{\text{Invnd}} = \mathbf{I}_{\text{Invn}} \left(\mathbf{P}_7 - \mathbf{P}_8 \right) \tag{25}$$

C. Switching Control Of IGBTs

The switching pattern of each IGBT inside inverter can be formulated on the basis of error between actual and reference current of inverter, which can be explained as:

If $\mathbf{I_{Inva}} < (\mathbf{I_{Inva}}^* - \mathbf{h_b})$, then upper switch S_1 will be OFF (P_1 =0) and lower switch S_4 will be ON (P_4 =1) in the phase "a" leg of inverter.

If $\mathbf{I_{Inva}} > (\mathbf{I_{Inva}}^* - \mathbf{h_b})$, then upper switch S_1 will be OFF ($P_1 = 0$) and lower switch S_4 will be ON ($P_4 = 1$) in the phase "a" leg of inverter.

where h_b is the width of hysteresis band. On the same principle, the switching pulses for the other remaining three legs can be derived.

IV. Simulation Results

In order to verify the proposed control approach to achieve multi-objectives for grid interfaced DG systems connected to a 3-phase 4-wire network, an extensive simulation study is carried out using MATLAB/Simulink. A 4-leg

www.ijmer.com Vol. 3, Issue. 3, May.-June. 2013 pp-1731-1738 ISSN: 2249-6645

current controlled voltage source inverter is actively controlled to achieve balanced sinusoidal grid currents at unity power factor (UPF) despite of highly unbalanced nonlinear load at PCC under varying renewable generating conditions. A RES with variable output power is connected on the dc-link of grid-interfacing inverter. An unbalanced 3-phase 4-wire nonlinear load, whose unbalance, harmonics, and reactive power need to be compensated, is connected on PCC. The system parameter is given in Table I shown.

TABLE I System Parameter

3-phase Supply (r.m.s.) $V_g = 30 \ V, 60 \ Hz$ 3-phase Non-linear Load : $R=26.66\Omega$, $L=10 \, mH$ 1-phase Linear Load (A-N) : $R=36.66\Omega$, $L=10 \ mH$ 1-phase Non-Linear Load (C-N): $R=26.66\Omega$, L=10 mHDC-Link Capacitance & Voltage: C_{dc}=3000 μF, V_{dc}=90 V Coupling Inductance : L_{sh}=2.0 mH

Initially, the grid-interfacing inverter is not connected to the network (i.e., the load power demand is totally supplied by the grid alone). Therefore, before time t=0.72s, the grid current profile in Fig. 7(b) is identical to the load current profile of Fig. 7(c). At t=0.72s, the grid-interfacing inverter is connected to the network. At this instant the inverter starts injecting the current in such a way that the profile of grid current starts changing from unbalanced non-linear to balanced sinusoidal current as shown in Fig. 7(b). Fig. 14. shows the simulation results for load and inverter. It can be noticed that as the inverter also supplies the load neutral current demand, the grid neutral current (In) becomes zero after t=0.72 s. The load neutral current due to single phase loads is effectively compensated by the fourth leg of the inverter such that the current in the grid side neutral conductor is reduced to zero. At t=0.72 s, the inverter starts injecting active power generated from RES (P_{res}=P_{inv}). Since the generated power is more than the load power demand the additional power is fed back to the grid. The negative sign of P_{grid}, after time 0.72 s suggests that the grid is now receiving power from RES. Moreover, the gridinterfacing inverter also supplies the load reactive power demand locally. Thus, once the inverter is in operation the grid only supplies/receives fundamental active power which is shown in Fig. 9.

At t=0.82 s, the active power from RES is increased to evaluate the performance of system under variable power generation from RES. This results in increased magnitude of inverter current. As the load power demand is considered as constant, this additional power generated from RES flows towards grid, which can be noticed from the increased magnitude of grid current as indicated by its profile. At t=0.92s, the power available from RES is reduced. The corresponding change in the inverter and grid currents can be seen from Fig. 7. The active and reactive power flows between the inverter, load and grid during increase and decrease of energy generation from RES can be noticed from Fig. 8. The dc-link voltage across the grid- interfacing inverter (Fig. 8(d)) during different operating condition is maintained at constant level in order to facilitate the active and reactive power flow. Thus from the simulation results, it is evident that the grid-interfacing inverter can be effectively used to compensate the load reactive power, current unbalance and current harmonics in addition to active power injection from RES. This enables the grid to supply/receive sinusoidal and balanced power at UPF.

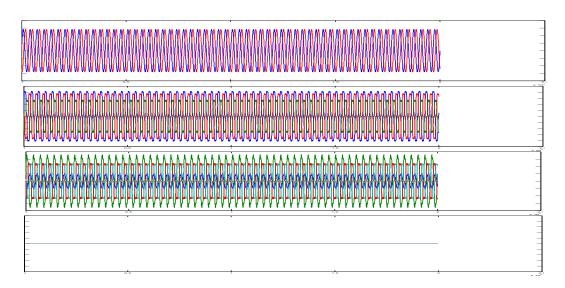


Fig. 7. Simulation results: (a) Grid voltages, (b) Grid currents, (c) Unbalanced load currents, (d) Inverter currents under absence of inverter.

ISSN: 2249-6645

Fig. 8. Simulation results: (a) PQ- Grid, (b) PQ- Load, (c) PQ- Inverter, (d) dc- link voltage under the absence of inverter.

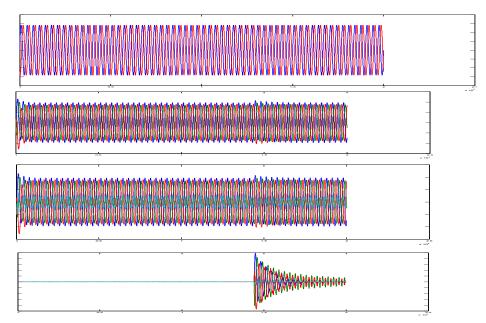


Fig. 9. Simulation results for the active power filtering mode (P_{res} =0) (a) Grid voltages, (b) Grid currents, (c) Load currents, (d) Inverter currents.

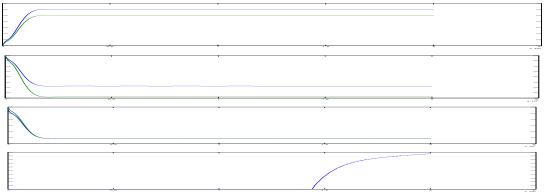


Fig. 10. Simulation results: (a) PQ- Grid, (b) PQ- Load, (c) PQ- Inverter (d) dc- link voltage when there is no power generation from RES

Vol. 3, Issue. 3, May.-June. 2013 pp-1731-1738

ISSN: 2249-6645

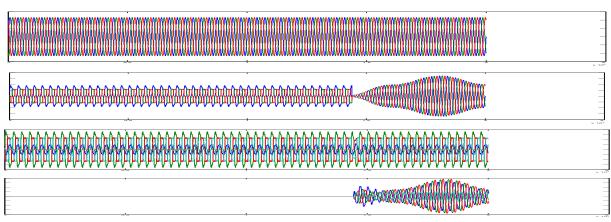


Fig. 11. Simulation results for the active power filtering and renewable power injection mode: (a) Grid voltages, (b) Grid currents, (c) load currents, (d) Inverter currents.

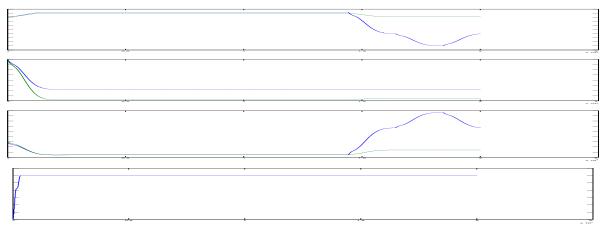


Fig. 12. Simulation results for the active power filtering and renewable power injection mode: (a) PQ- Grid, (b) PQ-Load, (c) PQ- Inverter, (d) dc- link voltage.

V. Conclusion

This paper has presented a novel control of an existing grid interfacing inverter to improve the quality of power at PCC for a 3-phase 4-wireDGsystem. It has been shown that the grid-interfacing inverter can be effectively utilized for power conditioning without affecting its normal operation of real power transfer. The grid-interfacing inverter with the proposed approach can be utilized to:

- i) inject real power generated from RES to the grid, and/or,
- ii) operate as a shunt Active Power Filter (APF).

This approach thus eliminates the need for additional power conditioning equipment to improve the quality of power at PCC. Extensive MATLAB/Simulink simulation approach and have shown that the grid-interfacing inverter can be utilized as a multi-function device.

It is further demonstrated that the PQ enhancement can be achieved under three different scenarios: $1)P_{res}=0$, $2)P_{res} < P_{Load}$, and $3)P_{res} > P_{Load}$. The current unbalance, current harmonics and load reactive power, due to unbalanced and non-linear load connected to the PCC, are compensated effectively such that the grid side currents are always maintained as balanced and sinusoidal at unity power factor. Moreover, the load neutral current is prevented from flowing into the grid side by compensating it locally from the fourth leg of inverter. When the power generated from RES is more than the total load power demand, the grid-interfacing inverter with the proposed control approach not only fulfills the total load active and reactive power demand (with harmonic compensation) but also delivers the excess generated sinusoidal active power to the grid at unity power factor.

REFERENCES:

- [1] R. H. Lasseter *et al.*, "White paper on integration of distributed energy resources. The CERTS microgrid concept," in *Consort. Electric Reliability Technology Solutions*, 2002, pp. 1–27.
- [2] K. Ro and S. Rahman, "Two-loop controller for maximizing performance of a grid-connected photovoltaic-fuel cell hybrid power plant," *IEEE Trans. Energy Conv.*, vol. EC-13, pp. 276–281, Sept. 1998.
- [3] H. Tao, J. L. Duarte, and M. A. M. Hendrix, "A distributed fuel cell based generation and compensation system to improve power quality," in *Proc. IEEE International Power Electronics and Motion Control Conference (IPEMC'06)*, Shanghai, China, Aug. 2006, pp. 1–5.
- [4] R. Teodorescu and F. Blaabjerg, "Flexible control of small wind turbines with grid failure detection operating in stand-alone and grid-connected mode," *IEEE Trans. Power Electron.*, vol. 19, no. 5, pp. 1323–1332, Sep. 2004.

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol. 3, Issue. 3, May.-June. 2013 pp-1731-1738 ISSN: 2249-6645

- [5] R. H. Lasseter and P. Piagi, "Providing premium power through distributed resources," in *Proc. IEEE 33rd Hawaii Int. Conf. System Sciences (HICSS'00)*, 2000, pp. 1–9.
- [6] S. R. Wall, "Performance of inverter interfaced distributed generation," in Proc. IEEE/PES-Transmission and Distribution Conf. Expo., 2001, pp. 945–950.
- [7] C. Wekesa and T. Ohnishi, "Utility interactive AC module photovoltaic system with frequency tracking and active power filter capabilities," in *Proc. IEEE-PCC'02 Conf.*, 2002, pp. 316–321.
- [8] J. Liang, T. C. Green, G. Weiss, and Q.-C. Zhong, "Evaluation of repetitive control for power quality improvement of distributed generation," in *Proc. IEEE-PESC'02 Conf.*, 2002, pp. 1803–1808.
- [9] F. Blaabjerg, R. Teodorescu, M. Liserre, and A. V. Timbus, "Overview of control and grid synchronization for distributed power generation systems," *IEEE Trans. Ind. Electron.*, vol. 53, no. 5, pp. 1398–1409, Oct. 2006.
- [10] J. M. Carrasco, L. G. Franquelo, J. T. Bialasiewicz, E. Galván, R. C. P. Guisado, M. Á. M. Prats, J. I. León, and N. M. Alfonso, "Powerelectronic systems for the grid integration of renewable energy sources: A survey," *IEEE Trans. Ind. Electron.*, vol. 53, no. 4, pp. 1002–1016, Aug. 2006.
- [11] V. Khadkikar, A. Chandra, A. O. Barry, and T. D. Nguyen, "Application of UPQC to protect a sensitive load on a polluted distribution network," in *Proc. Annu. Conf. IEEE Power Eng. Soc. Gen. Meeting*, 2006, pp. 867–872.
- [12] M. Singh and A. Chandra, "Power maximization and voltage sag/swell ride-through capability of PMSG based variable speed wind energy conversion system," in *Proc. IEEE 34th Annu. Conf. Indus. Electron. Soc.*, 2008, pp. 2206–2211.
- [13] P. Rodríguez, J. Pou, J. Bergas, J. I. Candela, R. P. Burgos, and D. Boroyevich, "Decoupled double synchronous reference frame PLL for power converters control," *IEEE Trans. Power Electron*, vol. 22, no. 2, pp. 584–592, Mar. 2007.
- [14] J. M. Guerrero, L. G. de Vicuna, J. Matas, M. Castilla, and J. Miret, "A wireless controller to enhance dynamic performance of parallel inverters in distributed generation systems," *IEEE Trans. Power Electron.*, vol. 19, no. 5, pp. 1205–1213, Sep. 2004.

AUTHORS

- **A. Sumalatha** born in India. She recevied B.tech degree in Electrical and Electronics Engineering from G.Pullaiah College of Engineering and Technology ,Kurnool, A.P. India in 2011. Doing M.tech in Electrical Power Systems at JNTUA College of Engineering and Technology Pulivendula, Kadapa dist., A.P.India.
- **K. Ravi Sankar** born in India. He is working as a Academic Assistant Professor in JNTUA College of Engineering and Technology Pulivendula, Kadapa dist., A.P. India. He completed his M.tech in Electrical Power Systems.