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l. INTRODUCTION, DEFINITIONS AND NOTATIONS
Let, P(2) = ay + a1z + a,z*> + azz° +......+ a,_1z" ' + a,z"; la,| # 0

Be a polynomial of degree n. Datt and Govil [2] ; Govil and Rahaman [5] ; Marden [9] ; Mohammad [10] ; Chattopadhyay,
Das, Jain and Konwar [1] ; Joyal, Labelle and Rahaman [6] ; Jain {[7], [8]}; Sun and Hsieh [11] ; Zilovic, Roytman,
Combettes and Swamy [13] ; Das and Datta [4] etc. worked in the theory of the distribution of the zeros of polynomials and
obtained some newly developed results.

In this paper we intend to establish some of sharper results concerning the theory of distribution of zeros of entire
functions of order zero.

The following definitions are well known :
Definition 1 The order p and lower order A of a meromorphic function f are defined as

p= limsupM and 2 = liminf 2.
r— o log r r - o log r
If f is entire, one can easily verify that
log M (r ) log2lmM@rf)

p = limsup and A = liminf
r— o og T r — o log r
where log! x = log(log® " x) for k = 1,2,3, .....and log® x = x .
If p < oothen fis of finite order. Also p = 0 means that f is of order zero. In this connection Datta and Biswas [3]
gave the following definition :
Definition 2 Let f be a meromorphic function of order zero. Then the quantities p* and 1* of f are defined by :

pr= limsupT(T'f) and A* = liminf 222
1"—>0010gr T‘—)OOlOgr

If f is an entire function then clearly

. log M(r,f) L.
pt = llmsupu and A" = liminf
F = oo og r— o log r

log M(r,f) .

1. LEMMAS
In this section we present a lemma which will be needed in the sequel.
Lemmal If f(z)is an entire function of order p = 0, then for every £ > 0 the inequality N(+) < (log )P te
Holds for all sufficiently large r where N(r) is the number of zeros of f(z)in |zl < logr.

Proof. Letus suppose that f(z) = 1. This supposition can be made without loss of generality because if f(z) has a zero of

order 'm’ at the origin then we may consider g(z) = c.’;(TZ)Where ¢ is so chosen that g(0) = 1. Since the function g(z) and

f (z) have the same order therefore it will be unimportant for our investigations that the number of zeros of g(z) and f(z)
differ by m.

We further assume that f(z) has no zeros on |zl = log2r and the zeros z,’s of f(z)in |zl <logr are in non
decreasing order of their moduli so that |z, < |z, ,,]. Also let p* suppose to be finite where p = 0'is the zero of order of

f@).
Now we shall make use of Jenson’s formula as state below
n 2
loglf () = - X 1log% + [ loglf(Re)|d¢ . (1)

i= ! 0
Let us replace R by 2r and n by N(2r) in (1).

N(2r) . L 2 ‘

~ loglf(O)l=—- X logm +;f log|f(2re‘¢)|d¢.
i=1 ‘ 0

Since £(0) =1, = loglf (0)| =log1 = 0.
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N(2r)
Z_r_ L 9| d 2
Y logp f log|f (2r e'*)| d¢p (2
i=1
N(Zr) . N(r)
LHS.= ¥ logi—2 ¥ log >N(r) log 2 (3)
i=1 o=

because for large values of r,

2r
log| X > log2.

RH.S. = j f log|f (2r €'*)| d¢p

21
< — [ logM(2r) d¢ = logM (2r). @)
0

Adgain by definition of order p* of f(z) we have for every € > 0,

log M(2r) < {log(2r)}r +¢/2 . (5)
Hence from (2) by the help of (3), (4) and (5) we have

N(@) log 2 < {log(2r) }p +e/2

. (log 2)P “+e/2 (log r)P e
£ < pite
ie, N(r) < log 2 Qlog r)e/2 — < (logr)

This proves the lemma.

1. THEOREMS
In this section we present the main results of the paper.
Theorem 1 Let P(z) be an entire function having order p = 0 in the disc |z| < logr for sufficiently large 7. Also let the
Taylor’s series expansion of P(z) be given by
P(2) = ay + a, 2" +.....+a, z'm +ay,yz" 7, ay # 0, ay;y =0
withl<p <p, <...... < pn < N@) — 1, p,’s are integers such that for some p* > 0,
lagl (o W > |a, [ WO > > g, [(p VPP > gy,
Then all the zeros of P(z) lie in the ring shaped region
—— e <l < L (14 (o).
1P an (r
P <1+Ia0|@*)p1) g "o
Proof. Given that
P(Z)=a0+a P14 ta, ZPm A+ ay 2N
where p;’s are integers and 1 <p; <p, <...... T < N(@) — 1. Then for some p* >0,
lagl(p" V™) > |a,, |(p L N P [V LGN PN §
Let us consider

0@ = (7P (%)

— (L ND LI m 20
= (p") {aO Ay ooy T Y Gopm TN | *)N(r)}
=ay(p )V 4+ apl(p*)N(r)_plzpl +onta, (p T =pm zpm 4 ay 2"
Therefore
| Q@ > |ay 2" @] - lag(p V™ + apl(p*)N(T)_plz”1+ ...... +a,. (p W@ =P zpm | (6)
Now using the given condition of Theorem 1 we obtain that
lag(p I + a, (e WOPizpip g, (oW Pm gom |
< layl(p )N + |a |(p*)1\’(r)7”1|z|”1 +o + |a | (o V=P |z|Pm
N@) | N (—— e
< lag (=)@ 2] (| T+ + ) for 12l % 0.

Using (6) we get for |z| # 0 that

1 1
N *)N N T I —
| Q(Z)l = |aN(T)||Z| ™ — |a0|(p ) (T)|Z| ) (l IN(r)_pm + + IZlN(T))

1
> ay o 121V = lagl (p* )N(r>|Z|N(r)(H(r_)M+...... +W+"")
oo
1
=l "yl ko ( T ). 0

The geometric series X
k=1

1 .
T2 is convergent for
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1

—<1
|zI
i.e, for |zl > 1
and converges to
1 1 1

Izl _ 1 " ld -1
Z

Therefore
(o.e]

Y = for il > 1
T =11 . lor > 1.
lzlk |zl — 1 “

Using (7) we get fromabove that for |z| > 1
N(r * )N (r N(r 1
101 = lay o, 121V = lagl (p IV M (=)

lagl(p®N @)
= |zI¥® (|aN(r)| - —aolz‘;—l ) .

Now for |z > 1,

. (pHNE)
Q@120 if ay,| -2

|z|-1
. . |a0|(p*)N(T)
le., if |aN(T)| > lzl-1
. lagl(pN @)
ie., if lzl —1 > —0

|aN(r)|( )
. . (pONC
ie.,if |zl =1 4 ool

|‘1N(r)|

Therefore | Q(2) | > 0 if

(pHNC)
|zl > 1 4 laole)
|aN(r)|

Therefore Q(2) does not vanish for

( *)N(r)
Izl > 1 4 et
|aN(r)|

So all the zeros of Q(z) lie in
lagl(IN )
|aN(r)|
Let z =z, be any zero of P(2).Therefore P(z,) = 0. Clearly z, + 0asa, # 0.
Putting z = p*z, in Q(z) we get that

Izl <1+

0(p*zy) = (WD . P(z,) = (p V.0 = 0.
So z =p*z,is azeroof Q(z).Hence
lagl(eV )

|aN(r)|
|a0|(p*)N(r)>

|aN(r)|
Since z, is an arbitrary zero of P(z), therefore all the zeros of Q(z) lie in

(N
IzI<[%<1 +M). (8)

lan ¢l

lp*zol < 1+

. 1
ie, lzgl<—= (1 +
p

Again let us consider
R — *)N(r) N(T)P L .
(@) = (pINz (p*z)

Therefore
R(2) = (pIN@ ZN®) {a ta — it —Y 4 ;}
p 70 P1(p*)P1 zP1 o (p®)Pm zPm N (p)NG) ;N @)
— ao(p*)N(r)ZN(r) + apl(p*)N(r)—p1ZN(r)—p1 + o + apm (p*)N(r)—meN(r)—pm +aN(r) .
Now
IR(2)| = |ag(p IV 2V®) | - |ap1(p*)N(r)_plzN(r)_p1 +onta, (p W =P ZN T =pm Ayl - (9)
Also
|a (,0 )N(r) PlZN(T) Py a, (,0 )N(r) meN(r) Pm +aN(r)|
|ap1(p W@ =prpNE—py| 4 +|a, (o W =pm ZNE=pm | |ay |
<la,,| G’ W@ =p1|g| N1y + |ap | (V@ =pm | gV =pm 4 |ay
< |a I(p W@ =p1 (| NP1 s |2 V=P g 1), (10)

Using (10) we get from (9) that for [z # 0
IR(2)| = lag| ("N ||V — la,,| (WO =P1(|2V=P1 e 4|2 + 1)

— * YN (r) N(r) _ N(G)— 14 N(r) 1 ;
= lag| (oY@ 121" — |a, | (IO PN (s 4 e+ —)
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ANG) | NG NG NG (L 1 1 .
> lagl (o W12V —a, | ( IV =Palg|Nt (W,1 R s TR ).
Therefore for |z| # 0,
(0.0)
R > lagl (G 1AV g, | (p*)N<r>m|z|~<r>< ) ﬁ). (1)
k=1"
(0]
Now the geometric series % T is convergent for
k=1"
1
— <1
|zl

i.e., for |zl > 1

And converges to
1 1 1

lzl 1 7l —1
Z
So

(0]

Y e for il > 1
—_—=— > 1.
lZIk "1 —1 O 7

k=1

Therefore for lz| > 1,
R > lag] (oI @1V — |, | (o INOpalne) (L)

|z|-1
|ap |
= |Z|N(T) (p )N(r) P1 (laol (p*)p] 1 ).

|z] -1
ie,forlzl > 1
lap, |
R > 1217 G W21 (lag| (oIt — 2 ).
Now
|ap1|
i W1 —
RG) >0 if (lagl (o)t =) 2 0
a
. - *\p1 &
ie., if lagl (p*) Zl =
. . Apq
- 1> ——-
ie., if |zl —1> PRI
: . 4pq
> ——
ie., if [zl > 1+ ol > L
Therefore o |
. Apq
> _—.
R@ >0if |zl =1+ T
Since R(z) does not vanish in
Izl > 14—l
= lagl (*P1
all the zeros of R(z) lie in
) < 14—l
|a0|(p*)p1

Let z = z, be any zero of P(z). Therefore P(z,) = 0. Clearly z, # 0 as a, # 0.
Putting z = p*z, in R(z) we obtain that

R(=2) = (v (=) pl2y)

p*zg
NG
=(+) o=o.
Z0
So
1 |ap1|
p* 29 lagl (p)P1
e, |—| < *(1 +|a+1|)
B P p lagl (p*IP1

. 1
ie., lzyl > ——F——F—-
*(Hﬂ:'_)
P lagl (o P1

As z, is an arbitrary zero of f(z),all the zeros of P(z) lie in
1

|Z| > W
*(1+—”1—)
P lagl (o HP1

So from (8) and (12) we may conclude that all the zeros of P(z) lie in the proper ring shaped region

: (12)
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<l < (14 Bl (),
* N
g <1+Iaol (p*)P1> ()

This proves the theorem.
Corollary 1l Inviewof Theorem 1 we may conclude that all the zeros of

P(2) =ay+a, z’ +...... +a, z'm+a,z"
of degree nwith 1 <p, <p,...... < p, <n-—1,p’s are integers such that forsome p* > 0,
|a0|2|ap1|2 ....... 2|ap |2|an|
m

lie in the ring shaped region

|+A| <lzl < (1 + :ZOD
(“ lag| ) "
on putting p* = 1 in Theorem 1.
Theorem 2 Let P(z) be an entire function having order p = 0. For sufficiently large r in the disc |z| < logr , the Taylor’s
series expansion of P(z)begivenby P(2) = ay + a;z +...... + ay (2", ay # 0. Further for some p* > 0,

lag 1o V™ > 1a (D=1 > > Jay .
Then all the zeros of P(z) lie in the ring shaped region
% <lz < %t0

, Pty P
where t, and t, are the greatest roots of
g® = |aye [tV = (Jay o | + N Plag DY T + (o IV gyl = 0
and
F@® = laglp t"O+1 — (lagl p* + la; DEV T + la, | = 0.
Proof. Let
P2 =ay+az+..... + ayyz"®

by applying Lemma 1 and in view of Taylor’s series expansion of P(z).Also

lag1(o V™ > 1a, (D=1 > > |ay.
Let us consider

0() = (p*)N(T)P(/%)

2 N ()
— (NG z Z_ 4. ~Z
=(p*) {ao tay Tt a o et ang (p*)N(r)}

=ay (o'W 4, (p W14 L+ Ay 2V,

Now
le@| > |aN(r) |IzI V) — |ao(p*)N(r) +a, (V14 +ay)-1 ZN(T)_ll .
Also applying the condition lay [(p )V > la,1(p* NP1 > .. > |ay | we get from above that
|a0 (P*)N(r) + aq (P*)N(T)_lz + . + ayGy—1 ZN(T)_1|
< lagl(p WO + g [(p VP2 z| + ... + | ayyq |12V

<lag I IO (1 + |zl - + 12IV-1)

NG
= la,l(p N llel—_ll for |zl # 1.

|
Therefore it follows fromabove that

NG)_q
1Q@1 = |y 12470 = lag|(p IV - E—.
Now

1z|N g

1Q@1 > 0 if Jay (11" lag (o) -2

12N )_q

>0

e, if Jay oo [1217 > layl(p N - |z|71

e, if Jayq |12V Uzl = 1) > lagl(p VO (12180 — 1)

., if |ayoo |12V P = (Jayo | + lag 1o )Y 121N + gl (p IV > 0.
Let us consider

g® = |ay |tV = (Jayey | + 1agl IV eV 4 gy [(p* V@ = 0. (13)

The maximum number of positive roots of (13) is two because maximum number of changes of sign in g(t) = 0 is two and
if it is less, less by two. Clearly t = 1is a positive root of g(t) = 0. Therefore g(t) = 0 must have exactly one positive
root other than 1. Let the positive root of g(t) be t,. Let us take t, = max {1,t,}.Clearly for t > t,, g(t) > 0. If not for
some t, >t;, g(t,) < 0. Also g(eo) > 0. Therefore g(t) =0 has another positive root in (t, , o) which gives a
contradiction .
Sofort >ty , g(t) > 0.Also t, > 1.Therefore |Q ()| > 0 if |z| >t,.So Q(z) does not vanish in |z| > t, .Hence all the
zeros of Q(z) liein |zl <t,.
Let z = z, be a zero of P(2).S0 P(z,) =0. Clearly z, # 0as a, # 0.
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Putting z = p*z, in Q(z) we get that
0(p*zp) = (W - P(z) = (p IV .0 = 0.
Therefore z = p*z,is a zero of Q(z).S0 Ip*zyl < t, or |zl < ‘%to - As z, is an arbitrary zero of P(z),
all the zeros of P (z) lie in the region |zl < l%to : (14)

In the order to prove the lower bound of Theorem 2 let us consider

R(Z) — (p*)N(r)ZN(r)P (plTZ) .

Then
1
— (W) N ( e S —)
R(z) (p ) z a, + o'z + + ay ) (p*)N(r)ZN(r)
= ay(p W N 4 g (p NP1 N1y +ay) -
Now
IR(2)| = lag 1 VT 2I¥N@ — |a, (oW1 NP1 o ) ]
Also
|a, (p N1 ZNE-1 o 4 g ] < la, | (p N =1 g NP1 4 + layey ] -
So applying the condition lay| (0 )V @ > |a, [(p V@1 > . > |ay | we get fromabove that

_|a1(p*)N(r)—1 ZNG=1 4l 4 aN(T)| > —|a1|(p*)N(T)—1|Z|N(T)—1 - _laN(r)|
_|a1|(p*)N(r)—1(|Z|N(r)—1 +,_,____+1)

\%

ZING)=1_
= —la,[(p V-1 . 2 — for Iz = 1. (15)
Using (15) we get for |zl # 1that
N@)-1_
IR@)| = (01 (lagl p* 121V ~ g, | - Em—=) (16)
Now
ZIN@)=1_
R(z) >0 if (p")V)-1 (|a0 | p*1zIN) — | ayl llll—_ll) >0
ZN@-1_
ie., if lagl p* 121N — la, |- == > 0
ZINE)=1_
ie., if lagl p*12A"® > la| - E——=

ie, if lagl p* 121" Izl = 1) > la, | (I21V®-1 = 1)

ie., if lagl p*1zIV* —(lag| p* + la, D 12I¥® + |a,| > 0.
Let us consider

F@© = laglp™tVO+ — (lag| p* + la, DV + la, | = 0.

Clearly f(t) = 0 has two positive roots, because the number of changes of sign of f(t) is two. If it is less, less by two.
Also t =1 is the one of the positive roots of f(t) = 0. Let us suppose thatt = t, be the other positive root. Also let
t, =max {1,t,}and so t, > 1.Now t > t, implies f(¢t) > 0. If not then there exists some t; > t, such that f(t;) < 0.
Also f(o) > 0. Therefore there exists another positive root in (t;,) which is a contradiction.
So [R(2)l > 0 if |zl >t,. Thus R(z) does not vanish in |z| > t,. In otherwords all the zeros of R(z) lie in |zl < ¢, .
Let z = z, be any zero of P(2).So P(z,) = 0. Clearly z, # 0 as a, # 0.

Putting z = —p*lz in R(z) we get that
0
) N(r)
1 AN 1
R = ()" P(z) =(=) -0=0.
(p*z ) (p ) (p*zo) (ZO) ( )

0 Z0

1 .

Therefore s a root of R(z).So |ﬁ| <t, implies |z,| > # - As z, is an arbitrary zero of P(z) =0,
0 0
allthe zeros of P(z) lie in |z| > . (17)

*t

*

i
p*20

From (14) and (17) we have all the zeros of P(z) lie in the ring shaped region given by
L <l <L,
Pty p
where t, and t, are the greatest positive roots of g(t) = 0 and f(t) = 0 respectively.
This proves the theorem.
Corollary 2 From Theorem 2 we can easily conclude that all the zeros of
P@) =ay+a;z+.... + a,z"
of degree n with property la,l = la;| >....... > |a, | lie in the ring shaped region
js Izl < ¢,
where t, and t, are the greatest positive roots of

g@® =la,[t"! = (a,| + lag Dt™ + lagl =0
and
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@ =laylt™! — (ayl + la;Dt™ + la; | =0
respectively by putting p* = 1.

Remark 1 The limit of Theorem 2 is attained by P(z) = a?z2 —az —1,a > 0.Here P(z) = a®?z? —az — 1, ay = —1,
a; = —a, a, = a®. Therefore lag| = 1, la;| = a, la,| = a®. Let p* = a. S0 lag|(p*)? = la; | p* = la, | holds. Hence
g@® = la,lt? — (a,| + alagDt? +lagla® =0
ie, a?(-2t2+1 =0.
Now g () = 0 has two positive roots which are t;, = 1and t, = % -S0 t, = max (t,t,
@) = laylp*t® = Uayl p* + la;Dt? + a1 =0
ie, at’ —l.a+Dt*?’+a =0
ie, a(t?—2t2+1) =0

V5 +1
) =Ex.

. V541
ie, t=1 and t=T+-
Again
t, = max (positive roots of f(t) = 0)
_ 5+t
o T2
Hence by Theorem 2, all the zeros lie in
1 1
— < |zl <=t
Pty P\/_
1 1vV5+1
ie, 5 <ld ===
a3
- V-1 VE+1
ie., < lzl < =2
2a 2a
Now
Pz =0
ie, a2z’ —az—1=0
. 1+V5
ie, z= .
2a
Let
1++V5 1-+5
zy = and z,=—-

a 2a
Clearly z, lie on the upper bound and z, lie on the lower bound of the boundary. Also here the order p = 0 because

M) = la®|r? = a*r? for large r in the circle |zl = r. Therefore

i loglogM(r) logloga®r?
p = limsup——— = limsup———
r — o 1logr1 r—oo logr
. log a2r2 q2r2 -2a’r . 2
= limsup T = llmsup1 pr i 0.

T — o0 T T —
Also p* = 2and N(r) = 2 < (logr)?*¢ for £ > 0 and sufficiently large 7 in |z| <logrand a, =0forn* NG).

Corollary 3 Under the conditions of Theorem 2 and
P(2) = ay +a, z° +...... +a, zPm + ayyz" "

with

1<p <py...... <pn <N(r)—1,
where p;’s are integers ag, @, ... , @y are non vanishing coefficients with

lag I WO > |a, [ WOP1 > >la, [ WP Pm >ay,|
then we can show that all the zeros of P(z2) lie in
<z < 2¢,
, Pty P
where t, and t, are the greatest positive roots of
g(t) = |aN(r)|tN(r)+1 _ (|aN(r)| + |a0| (p*)N(r))tN(r) + |a0| (p*)N(r) =0
and
F@ = lagl (1 ¢¥P+1 — (lagl (o)1 +|a,, NtV — |a, | = 0 respectively.
Corollary4 If we put p* =1 in Corollary 3 then all the zeros of
P(2) =ay+a, 7’1 +...... +a, z'm+a,z"

lie in the ring shaped region

1
—<lzl < ¢,
to

where t, and t, are the greatest positive roots of
g® =la,lt"*? — (la,| + lagDt™ + lay| =0
and
f@® = lagl e = (lag| + |a,, [)t" - |a,, | = 0 respectively
provided
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