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ABSTRACT: As a starting point of this paper we present a problem from mammographic image processing. We show how 

it can be formulated as an optimal control problem for PDEs and illustrate that it leads to penalty t erms which are non-

standard in the theory of optimal control of PDEs. To solve this control problem we use a generalization of the conditional 

gradient method which is especially suitable for non-convex problems. We apply this method to our control problem and 

illustrate that this method also covers the recently proposed method of surrogate functional from the theory of inverse 

problems. Graphics processing units (GPUs) are becoming an increasingly popularplatform to run applications that require 

a high computation throughput.They are limited, however, by memory bandwidth and power and, assuch, cannot always 

achieve their full potential. This paper presents thePUMA architecture - a domain-specific accelerator designed 

specificallyfor medical imaging applications, but with sufficient generality to makeit programmable. The goal is to closely 

match the performance achievedby GPUs in this domain but at a fraction of the power consumption. Theresults are quite 

promising - PUMA achieves upto 2X the performance of a modern GPU architecture and has up  to a 54X improved 

efficiency on a floating-point and memory-intensive MRI reconstruction algorithm. 

 

KEYWORDS: generalized conditional gradient method, surrogate functional, image processing, optimal control of PDEs  

 

I. INTRODUCTION 
 For many years medical imaging has aimed at developing fully automatic, software based diagnostic systems. 

However, the success of those automatic systems is rather limited and the human expert is as much responsible for the final 

diagnosis as in prev ious years. Hence, growing effort  has been devoted to enhancing the techniques for presenting the 

medical images as well as additional informat ion. In Germany a particular effort  is made in  mammography, i. e. X-ray  scans 

of the female breast for early detection of b reast cancer. The process of examination  by the medical experts is d ivided into a 

very short recognition phase (< 1 sec.) and a second verification phase (≈ 1 min.). During the recognition phase, the expert 

first recognizes the coarse features, then more and more fine features. Tests have shown, that the experts usually form their  

decisions during this very short recognition phase. Nevertheless, the verificat ion phase is the more critical one. The crit ical 

and difficu lt cases, where the recognition phase does not end with a preliminary diagnosis, most often applies to women in 

the early stages of cancer. During the verification phase the expert shifts forwards and backwards, thereby alternating in 

examining small details and in catching an overall impression of the location of crit ical patterns within the organ. The advent 

of programmable graphics processing units, or GPUs, for general-purpose computing is one of the major steps taken in 

computing over the last few years. These GPGPUs which, in the past, have been predominantly used for gaming and 

advanced image and video editing are now being used by many developers to accelerate inherently parallel programs in 

several other domains. Indeed, considerable amounts time  and engineering effort are often spent in order to modify programs 

so that they may run effectively on GPUs.Several d ifferent application domains observe remarkable speedups  when using 

GPUs, including the following [18]:• 4X to 100X speedup on medical applications, such as biomedical  image analysis, 3D 

reconstruction of tissue structures for large sets  of microscopic images and accelerating MRI reconstructions.• 8X to 260X 

speedup on electronic design automation, such as  power grid analysis and statistical static timing analysis.• 4X to 327X 

speedup on physics applications, such as weather prediction and astrophysics.• 11X to 100X speed up financial applications 

such as instrument pricing using Monte-Carlo methods. 

 

II. MOTIVATION FROM MEDICAL IMAGING 
 This process can be supported by presenting the expert d ifferent versions of the o rig inal image during close up and 

normal sub phases. More precisely, the expert sees a version with contrast enhanced small details in a close up phase („fine 

scale‟), while he sees an image which preserves all major edges  but smoothes within regions („coarse scale‟) during the 

normal phase. For enhancing fine details in mammography images a variety of algorithm have been proposed. Many of them 

are based on the wavelet transform due to its property of dividing an image into different scale representations; see for 

example [7] and references therein. In this work we deal with the development o f an optimized presentation for one cycle of 

the verificat ion phase. To put the problem in mathematical terms, we start with a given image y0 assumed to be a function 

defined on . The fine scale and the coarse scale image are denoted yf and yc respectively. Under the 

natural assumption of finite energy images wemodel them as functions in The goal is, to produce a movie (i. e. 

atime dependent function) y: , from the given images y0, yfand yc such that• the movie starts in 

y0, i. e . y(0) = y0, 
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 the movie sweeps to the fine scale image and to the coarse scale image,e. g. y(t) ≈ yffor t∈[.2, .4] and y(t) ≈ ycfor 

t∈[.6, .8],• the movie sweeps in a “natural” way.An example for a mammography image, a fine scale, and coarse scale 

imageis shown in Fig 1. As a first guess one could try to make a linear interpolationbetween the fine scale and the coarse 

scale representation. Thismethod has one serious drawback: It  does not take the scale sweep into account,i. e. all fine details 

are just faded in rather than developing one afteranother. 

 
Fig 1: A mammography image. Left: o rig inal image y0, middle: fine scale image yf , right: coarse scale image yc  

Modeling as an optimal control problem 

 

III. PDES AND CONTROL PROBLEMS IN IMAGE PROCESSING 
 Parabolic partial differential equations are a widely used tool in  image processing. Diffusion equations like the heat 

equation [14], the Perona-Malik equation [10] or an isotropic equations [13] are used for smoothing, denoising and edge 

enhancing. The smoothing of a given image with the heat equation isdone by the solution of the 

equation 

(1) 

Where y_ stands for the normal derivative, i. e . we impose homogeneous Neumann boundary conditions. 

 The solution y: gives a movie which starts at the image y0 and becomes smoother with time 

t. This evolution is also called scale space and is analyzed  by the image processing community in  detail since the 1980s. 

Especially the heat equation does not create new features with increasing time, see e. g. [5] and the references therein. 

Thus, the heat equation is well suited to model a sweep from a fine scale image yf to a coarse scale image yc. Hence, we take  

the image yf as in itial value. To make the movie y end at a certain coarse scale image yc instead of its given endpoint y(1) 

we propose the following optimal control problem: 

(2) 

In other words, the diffusion process is forced to end in yc with the help of a heat source u. 

 

III.1: Adaption to image processing: The above described problem is classical in the theory of optimal control of PDEs, 

though not well adapted to image processing. The solution of this problem may have several drawbacks: The control u will 

be smooth due to the regularization and have a large support. This will result in  very s mooth changes in the image sequence 

y and, more worse, in  global changes in the whole image. To overcome these difficu lties, d ifferent norms can beused for 

regularizat ion. A widely  used choice in image processing is to use Besov norms because they are appropriate to model 

images. Besov norms can be defined in different ways, e. g. in terms of moduli of s moothness [12] or in terms of Littlewood -

Paley decompositions [6]. Here we take another viewpoint and define the Besov s paces via norms of wavelet expansions [2, 

9].For a sufficient smooth wavelet  the Besov semi norm of a function f on a set is defined as 

 

(3) 

Where j is the scale index, k indicates translation and i stand for the directions. The Besov space Bsp, q (M) is defined as the 

functions f∈Lp (M) that has a finite Besov semi norm. See [6, 9] for a more detailed  introduction to wavelets and Besov 

spaces. 

 

III.2: The solution of the PDE and the control-to-state mapping: The solution of the heat equation is a classical task. If we 

assume that the init ial value yf is in L2( ) and the control u is in L2([0, 1] ×) the solution y is in  L2(0, 1,H1( )) ∩ C([0, 

1],L2( )). Especially y is continuous with respect to time and the point evaluation y(1) makes sense, see e.  g. [8]. In our 
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case the solution operator is affine linear, due to the nonzeroinitial value. We make the following modifications 

to come back to a linear problem: We split the solution into two parts. The non -controlled part yn is the solution of 

 

and the homogeneous part  is the solution of  

 

(4) 

(Both with homogeneous Neumann boundary conditions). Then the solution operator G : of equation (1) is  

linear and continuous from L2([0, 1],L2( )) to L2(0, 1,H1( )) ∩ C([0, 1],L2( )). With the help of the point evaluation 

operator we have the control-to-state mapping K: yh (1) linear and continuous from L2 ([0, 1],L2( )) to L2( ). 

Then the solution is y = yn + yh and we can focus on the control problem for yh. Together with the tho ughts of the previous 

subsection we end up with the following minimization problem: 

Minimize  

(5) 

 

III.3. Solution of the optimal control problem: The minimizat ion of the functional (2) is not straightforward. The no 

quadratic constraint leads to a nonlinear normal equation which can not be solved explicitly. Here we use a generalization of 

the conditional gradient method for the minimizat ion. 

 

IV. THE GENERALIZED CONDITIONAL GRADIENT METHOD 
The classical conditional gradient method deals with min imization problems of the form 

(6) 

here C is a bounded convex set and F is a possible non-linear function. One notices that this constrained problem can 

actually be written as an “unconstrained” one with the help of the indicator functional 

 

With  = IC, problem (3) thus can be reformulated as  

(7) 

To illustrate the proposed generalization, we summarize the key properties of F and : F is s mooth while  may contain 

non-differentiable parts. The minimizat ion problem with  alone is considered be solved easily while the min imization of 

F is comparatively hard. The influence of  is rather small in comparison to F. With these assumptions in mind, the 

conditional gradient method can also be motivated as follows. Let u ∈H be given such that _(u) <∞. We like to find an 

update direction by a linearized problem. Since  is not differentiable, we only linearize F: 

 

(8) 

The min imizer of this problem serves as an update direction.So th is “generalized conditional gradient method” in the (n+1)–

st step reads as follows: Let un∈H be given such that  (un) <∞. 
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1. Determine the solution of (5) and denote it vn. 

2. Set sn as a solution of 

 

3. Let  

To ensure existence of a solution in Step 1 we state the following condition:Assumption 1 Let the functional  : H → 

]−∞,∞] be proper, convex, lower semi-continuous and coercive with respect to the norm. Standard arguments from convex 

analysis yield the existence of a min imize in Step 1 of the algorithm [4]. So if F is Gˆateaux-d ifferentiable in H, the 

algorithm is well-defined. The convergence of the generalized conditional gradient method is analyzed  in  detail by the 

authors in [1]. The main result there is the following theorem.  

Theorem 2 Let  satisfy Assumption 1 and let every set Et = {u ∈H | (u) ≤ t} be compact. Let F be continuously 

Fr´echet differentiab le, let F +_  be coercive and u0 be g iven such that (u0) <∞. Denote (un) thesequence generated by the 

generalized conditional g radient method.Then every convergent subsequence of (un) converges to a st ationarypoint of F + 

 At least one such subsequence exists.Two remarks are in o rder: First, we notice that the theorem is also validif the 

functional F is not convex. Second, the theorem only gives convergenceto a stationary point which may seem unsatisfa ctory, 

specially if one wantsto min imize non-convex functions. But this does not have to be a drawback,as we will see in the next 

section: 

 

1. Application: Here we show the application of the above described methodology. Since the effects can be seen more 

clearly in artificial images, we will not use original images. The artificial images we used are shown in Fig 2. 

 
Fig 2: Images used for illustration. Left: fine scale image, right: coarse scale image.  

 

 For illustration we use the values p = 1 and s = 3/2 + " > 3/2 in theminimizat ion problem (2), since this is close to 

the BV -norm and we have  compactly. 

 The results are presented in Figure 3. The figure shows a comparison of the linear interpolation, the pure result of 

the application of the heat equation and the result of the optimal control problem. One sees that the linear interpolation is 

only fading out the details. In the uncontrolled result(middle column) the details are vanishing one after another but the 

process does not end in the desired endpoint. The result of the optimal control p roblem (right column) exh ibits both a nice 

vanishing of the details and end in the given endpoint. 

 

V. THE  ADVANTAGES  OF  GPUs 
 GPUs have many appealing hardware features. Firstly, they lend themselves very well to both thread -level and data-

level parallelis m.Thread-level parallelis m (TLP) is exp loited by having a large numberof independent processing elements 

(PEs) on the GPU, each with itsown set of functional units (FUs) and local storage. Individual threadscan quite cleanly be 

assigned, either statically by the programmer o rdynamically by the hardware, to each of these PEs and inter -

threadcommunication is made possible by some form of interconnect fabricor through local storage such as caches. Programs 

with a large amountof data-level parallelis m (DLP) can make use of vector-SIMD units inthese PEs which  allow a single 

instruction to perform an operationon several data at the same time. DLP can also be extracted inprograms with compute-

intensive loops that have little or no interiteration dependencies by executing operations from different iterationswithin a 

single SIMD instruction.Secondly, GDDR RAM and its increasingly fast successor‟s haveallowed for GPUs to have access 

to an immense amount of memorybandwidth. The AMD Radeon HD 4870 - the first GPU to supportGDDR5 memory - has a 

memory bandwidth of up to 115 GB/s.Above all, GPUs are commodity hardware products commonly availablea s a part of 

many desktop and laptop computers. The tools toprogram them are also easily available; NVIDIA‟s Compute UnifiedDevice 

Architecture (CUDA) package, for example, is free to downloadfrom their website [15]. CUDA is a general purpose parallel 

computingarchitecture which consists of the CUDA instruction set and the computeengine in the GPU. It provides a small set 

of extensions to the C programming language, which enables straightforward implementation of parallel algorithms on the 

GPU. CUDA also supports scheduling the computation between CPU and GPU, such that serial portions of applications run 

on the CPU and parallel portions are mapped to the GPU. Indiv idual cores in Intel‟s up -and-coming Larrabee processor 



International Journal of Modern Engineering Research (IJMER)  

   www.ijmer.com            Vol. 3, Issue. 4, Ju l - Aug. 2013 pp-2205-2214                ISSN: 2249-6645 

www.ijmer.com                                                                          2209 | Page 

implement the ubiquitous x86 ISA [23], allowing users to use a host of already-existing development tools to port their 

applications to it. Server products like Tesla [17] with even more compute power are also  available.  

 

VI. THE QUEST FOR PROGRAMMABLE AND SPECIALIZED HARDWARE 
 A wide range of architectures, in addition to GPUs, have beendesigned before to address the problem of providing 

high performancecomputation efficiently. These solutions maintain or sacrifice programmability to various degrees 

depending on the domain they target. Fig 3 shows the performance (on the y-axis) and programmability (on the x-axis) 

expectations from various architecture styles. The numbers next  to each of the ovals shows the approximate performance -

power ratio o ffered  by each of these solutions.General purpose processors (GPPs) which fall on the lower rightcorner of the 

figure, are highly programmable solutions but are limited in terms of the peak performance they can achieve. Further, 

structureslike instruction decoders and caches that are needed to support programmability consume energy. This results in a 

very low computational efficiency of about 1 MIPS-per-mW, for example, for the Intel Pentium- M processor. On the other 

end of the spectrum are Application-specific Integrated Circuits (ASICs). ASICs are custom-designed specifically for a 

particular problem, without extraneous hardware structures. Thus, ASICs havea high computational density with hardwired 

control, resulting in h igh computation efficiency up to 1,000 to 10,000 times more than that of GPPs. The space between 

these two extremes is populated by different solutions that have varying degrees of programmability. Application specific 

instruction-set processors (ASIPs) are p rocessors with custom extensions for a particular applicat ion or applicationdomain . 

They can be quite efficient when running the applications for which they are designed, and they are also capable of running 

any other application, though with reduced efficiency. Examples include processors from Tensilica and ARC, transport 

triggered architectures [3] and custom-fit processors [9]. Domain loop accelerators are designed to execute computation 

intensive loops present in media and signal processing domains. Their design is close to that of VLIW processors, but with a 

much h igher number of function units, and consequently, a higher peak performance. Very long instruction words in  a 

control memory direct all FUs every cycle. However, domain loop accelerators (LAs) have less flexib ility than GPPs 

because only highly computationally -intensive loops map well to them. Some examples of arch itectures in this design space 

are RSVP [1] and CGRAs [14]. Coarse-grain adaptable architectures have coarser-grain build ing blocks compared to 

FPGAs, but, like FPGAs, still maintain b it-level reconfigurability. The coarser reconfiguration granularity improves the 

computation efficiency of these solutions. However, non-standard tools are needed to map computations onto them and their 

success has been limited to the multimedia domain. PipeRench [10], RaPiD [6] are some e xamples of coarse-grain adaptable 

architectures. 

 

 
Fig. 3.Comparison of peak performance, power efficiency, and programmability of di fferent architecture design 

styles. 

 

1. Programmable Loop Accelerators: The programmable solutions shown in Figure 1 are all 

“universally”programmable, allowing any loop to be mapped on to them, although atvarying degrees of efficiency. 

There is a wide gap between the efficiency that can be achieved by ASICs and the efficiency  that can be achieved 

by these programmable solutions. There are, for example, instances where there is a narrow requirement of 

flexib ility. Using any of these above solutions is overkill for these instances as these solutions sacrifice too much 

efficiency for the needed flexib ility. Further, most of the middlegroundsolutions listed above do not offer any 

support for fast floatingpoint computation, which limits the number of applicat ions that they can be used for. This 

work advocates an open area in the des ign space where a non-trivial amount of programmability is provided in 

terms of intraprocessor communication, functionality and storage, but the application and domain -specific design, 

as a whole, resembles an ASIC more than a processor. The design point is labeled Programmable Loop Accelerator, 

or PLA (not to be confused with programmable logic array).  

 

TABLE 1.Medical application characteristics 
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VII. TARGETING MEDICAL APPLICATIONS 
 Medical imaging devices are generally large, bulky and expensivemachines that  have very limited portability and 

consume large amountsof power. There is an increasing focus on reducing the power ofthese medical imaging devices [20]. 

In order to address this issue,this work focuses on principle components of Computed Tomography  

 (CT) and Magnetic Resonance Imaging (MRI) image processing andreconstruction. A CT scan involves capturing a 

composite image from a series of X-Ray images taken from various angles around a subject. It produces a very large amount 

of data that can be manipulated using a variety of techniques to best arrive at a diagnosis. Oftentimes, this involves 

separating different layers of the captured image based on their radio  densities. A common way of accomplishing this is by 

using a well known image-processing algorithm known as “image segmentation”. In essence, image segmentation allows one 

to partition a g iven image into multiple reg ions based on any of a number of different criteria such as edges, colors, textures, 

etc. Being able to partition images in this manner allows for studying of isolated sections of the image rather than of all the 

informat ion that was captured.The segmentation algorithm used in this work has three main  floating-point- intensive 

components: Graph segmenting (CT.segment), Laplacian filtering (CT. Lap lace) and Gaussian convolution (CT.  gauss). 

 aplacian filtering highlights portions of the image that exhib it a rap id change of intensity and is used in the 

segmentation algorithm for edge detection. Gaussian convolution is used to smooth textures in an image to allow for better 

partitioning of the image into different regions. An MRI scan, instead of using X-Rays, uses a strong magnetic and rad io 

frequency fields to align, and alter the alignment of, hydrogen atoms in  the body. The hydrogen atoms t hen produce a 

rotating magnetic field that can be detected by the MRI scanner and converted to an image. The main computational 

component of reconstructing an MRI image is calculating  the value of two  different vectors, known here as MRI.FH and 

MRI.Q, respectively (exp lained in  more detail in  [13], [24]). Table I shows some characteristics of the benchmarks in 

consideration. All of these benchmarks are floating-point-intensive and require large amounts of data for the computation 

they perform, especially  when compared to the 0.15 bytes/instruction supported by the GTX 280 GPU mentioned earlier. 

 The main  loops in these benchmarks are “do-all” loops - there are no inter-iterat ion dependences. Prior work in this 

field has predominantly focused on using commercial products to accelerate medical imaging. For instance, in [11], the 

authors port “large-scale, biomedical image analysis” applications to mult i-core CPUs and GPUs, and compare different 

implementation strategies with each other. In [21], the authors study image registration and segmentation and accelerate 

those applications by using CUDA on a GPU. In [24], the authors use both the hardware parallelism and the special function 

units available on an NVIDIA GPU to d ramatically  improve the performance of an advanced MRI reconstruction algorithm. 

 There are several other such examples of novel work in this field. In  contrast with such research, this work focuses 

on designing a new, highly efficient, microarch itecture and architecture with the specific hardware  requirements of medical 

imaging in consideration. 

 

VIII. PUMA 
 PUMA, Parallel micro-arch itecture for Medical Applications, is a  tiled arch itecture as shown in Fig 4. It  is 

specifically designed to maximize power-efficiency when executing medical imaging applications while still retaining fu ll 

programmability. Each t ile  in PUMA is an instance of a specialized  PLA - a generalized  loop accelerator. The PLA t iles are 

connected to their neighboring tiles and to the external interface through a high -bandwidth mesh of on-chip routers. 

 

1. Background: Fig. 5 shows the hardware schema for the single-function loop accelerator [7], [5]. The LA is designed 

to efficiently  execute a modulo  scheduled loop [19] in hardware. The lengths of the schedule, and the corresponding 

run-time of the loop, are determined by the initiationinterval (II) - the number of cycles between the beginnings of 

successive iterations of the loop. Thus, a lower II corresponds to a shorter schedule and increased performance. The 

modulo schedule contains a kernel that repeats every II cycles and may include operations from multip le loop iterat ions. 

The LA is designed to exploit  the high degree of parallelis m availab le in modulo scheduled loops with a large number of 

function units (FUs).Each  FU performs  a specific set of functions that is tailored for the part icular loop. Each FU writes 

to a dedicated shift register file (SRF); in each cycle, the contents of the registers shift downwards to the next register. 

Point-to-point wires from the registers to FU inputs allow data transfer from producers directly to consumers. Multip le 

registers may be connected to each FU input; a mult iplexer (MUX) is used to select the appropriate one. Since the 

operations executing in a modulo scheduled loop are periodic, the s elector for this MUX is essentially  a modulo counter. 

In addition, a central register file (CRF) holds static live-in register values that cannot be stored in the SRFs. The schema 

described is a template that is customized for the particular loop being accelerated. The number, types, and widths of the 

FUs, the widths and depths of the SRFs, and the connections from the SRFs to the FUs are all determined from the loop. 

During synthesis, the loop is first modulo scheduled to meet a g iven performance requireme nt, and then the details of 

the LA datapath are determined from the communication patterns in the scheduled loop.The control path for the single -

function LA consists of a finite state machine with II states corresponding to each of time slots in the kernel of the 

modulo schedule. In each state, control signals direct the execution of FUs (for FUs capable o f multip le operat ions) and 

control the MUXes at the FU inputs. Finally, a Verilog HDL realization of the accelerator is generated by emitting 

modules with pre-defined behavioral Verilog descriptions that correspond to the datapath elements. A simulation 

environment is used to verify that the Verilog properly implements the loop. Finally, gatelevel synthesis, placement, 

routing, power analysis and post-synthesis verification are performed on the design. 
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Fig. 4. PUMA. Each tile comprises of a programmable loop accelerator (template pictured) and the control and data 

memories required for its  operation. On-chip routers transfer data between each tile and the externalinterface. 

 
Fig. 5.Template for single-function loop accelerator. 

 

2. PUMA Architecture 
2.1. Base line PLA Design: A PLA is generalized loop accelerator,created by modifying the template datapath shown in 

Figure 5. A generic datapath template for the PLA is illustrated on the right side of Figure 4 The accelerator is designed 

for a specific loop at a specific throughput, but contains a more general datapath than the single -function LA to allow for 

different loops to be mapped onto the hardware [8]. These generalizations provide the LA with flexib ility in 

functionality, storage, control and communication. To provide functionality, simple modifications were made to FUs 

inorder for them to support more operations; adders (both integer andfloating-point) are generalized to adder/subtracter 

units, left-shift unitsare generalized to left/right rotators, every FU can execute an identityoperation to act like a move 

instruction, etc. Even load-store units canbe generalized to integer adder/subtracter units if they already had 

thefunctionality to compute indirect addresses. Further, the input -muxes toFUs are redesigned to allow for operand-

swapping as well.The SRFs used in the LA have limited addressability and fixed  lifet imesfor variables. To ove rcome 

these constraints and provide moregenerality, these SRFs are rep laced with rotating -register files (RRs).To improve 

controllability, the LA‟s fin ite state machine is replacedwith a control memory, the contents of which can be changed 

based onthe loop that needs to be executed. Further, numerical constants whichwere hard -coded in the LA are instead 

stored in a literal register file.To generalize communication, the PLA has a bus (in addition to thepoint -to-point 

connections) that connects all the RRs to all the FUs. Toreduce the hardware cost of having a potentially long bus, its 

width islimited to one operand, but has a predictable latency of one cycle. 

 
Fig. 6.ILP formulation for FU arrangement on the PUMA ring  

 
2.2. PUMA PLA: The PLA bus is not always a viable solution. Onemain d isadvantage with the bus is that it is not a 

scalable solutionfor larger PLAs with many FUs. Further, the bus only carries a singleoperand per cycle, limit ing the amount 

of programmability available inthe PLA and the sequences of opcodes that can be executed in parallel.To overcome these 

limitat ions, the intra-PLA communication fabricin PUMA is changed to a ring. A ring allows for as many operands to 

betransferred as there are connections to FUs. It does  have its limitations,however. The assumed single-cycle latency to 

transfer data betweentwo arbitrary points in the PLA using the bus is no longer valid, asit takes one cycle to transfer an 

operand from one ring connection(or ring stop) to another. Also, the longer the d istance an operandneeds to travel on the 

ring, the more FUs that have to execute moveinstructions to propagate the operand along at each ring stop. Theseadded 

instructions can potentially increase the loop‟s schedule lengthand reduce the accelerator‟s performance. In PUMA, the ring 

architecture actually consists of six rings (three sets of two rings going in opposite directions). The first set of rings ha s a 
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Bus/FU connector (or ring-stop) at every single FU. The second set of rings has a ring-stop at all the odd-numbered FUs, and 

the third set of rings has a ring-stop at all the even-numbered FUs. This effectivelyconnects an FU/RF pair to its two 

neighbors and also to its neighbors‟neighbors; i.e. every  FU can communicate with itself o r with otherFUs one or two 

positions on either side of it on the ring. With thisconfiguration, the number of cycles required to transmit data betweenany 

two arb itrary  FUs is no more than ⌉, and regard less of theordering of FUs on the ring, every possible producer-

consumer pairingcan be executed, provided sufficient time.In order to best maintain generality, we chose to arrange the FUs  

along the ring to allow maximum connectivity and to distribute the varioustypes of FUs as evenly as possible. Th is was done 

by formulatingthe problem as an integer linear program (ILP) as shown in Fig 6.In the objective function, T_  and T_ are two 

different sets of FUs, each set having all and only the FUs of a particu lar type. The subscriptsi and j are FU IDs and Cij is a 

binary variable that is 1 if a connectionexists between FU i and FU j. Essentially, this objective function aimsto maximize 

the number of connections between different types of FUs, subject to the fo llowing constraints: In constraint set (1), Xij is a 

binary variable that is 1 if FU i is“positioned” adjacent to FU j, implying that they are connected bythe ring. Every FU, 

therefore, is “positioned” next  to 5 other FUs:itself, its two  neighbors and the two additional FUs neighboringits neighbors. • 

Constraint sets (2) and (3) specify that every FU is “positioned”next to and connected to itself.• Constraint sets (4) and (5) 

specify that all added connections arebidirect ional.• In constraint set (6), Iij is a binary  number that is 1 if a 

connectionbetween FU i and FU j has already been inserted by the synthesistool. This constraint enforces the rule that a 

connection betweenFU i and FU j can only exist if they are either “positioned” nextto each other or are already connected. A 

7th set of constraints was initially used which specified thatthere must always be a path between any two FUs with exact ly

connections between them This constraint was used toprevent insular sets of 5 FUs or sets of 5 FUs connected 

linearlyrather than in a ring (i.e. without a direct connection between thetwo ends). While this problem might occur in 

theory, the preexistingconnections put in place by the synthesis system preventit from happening in practice and these 

constraints were removedto reduce the size of the ILP. Once the optimal solution is  obtained, the values of the Xij variables 

provide a unique ring arrangement.  

 

IX. EXPERIMENTS AND RESULTS 
1. Setup: All the PLAs in this work were synthesized for (and run at) afrequency of 450 MHz.  The logic synthesis 

was done using SynopsysDesign Compiler 2006-06 and Synopsys Physical Compiler 2006-06,targeting a 65nm process 

technology with a nominal supply voltage of0.9 Volts. Energy numbers were obtained using Synopsys PrimeTime - 

PX 2006-12. For the purposes of this study, we assume that a peakmemory bandwidth of 142 GB/s is available to each 

PUMA system.This is the same amount of bandwidth afforded to the NVIDIA GTX280 processor.  

 

2. PLA Characteristics: PUMA systems were built using PLAs for each of the five benchmarksin considerations 

(five systems, each composed entirely ofmult iple t iles of a single type of PLA). Table II shows variouscharacteristics of 

these accelerators. The “Peak Perf.” columns show 

 
Fig. 7.Normalized performance of benchmarks on LA and PUMA PLA  

designed for MRI.FH 

 

Fig. 8.Normalized  efficiency of benchmarks relative to MRI.FH 

 

 The throughput when executing floating-point operations and integer operations, respectively, in billions of 

operations per second. The nextcolumn shows the minimum bandwidth required by each applicationto prevent starvation. 

Finally, the last column shows the total numberof tiles of each PLA that would be present in a PUMA system. Thenumber of 

tiles was chosen to prevent data starvation, to make the mostefficient use of the resources available. For example, the number 
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of tilesin a system with MRI.FH tiles is   or 9.Fig  8 shows the normalized performance d ifference betweenthe non-

generalized and generalized loop accelerators across various 

 Benchmarks, to illustrate the effects of the modifications made to thebaseline accelerator to increase 

programmability. Each of the different benchmarks were compiled fo r the MRI.FH accelerator.The left column for each 

benchmark shows its normalized performance. The benchmarks MRI.Q, CT. Laplace and CT. gauss suffered a 50% 

reduction in performance; i.e. their II values had tobe doubled, from 1 to 2, in order for them to execute on the baselineloo p-

accelerator. The benchmark CT.segment could not be compiledfor the MRI.FH accelerator at all. For each benchmark, the 

column on the right shows the achieved performance on the generalized accelerator, with the hardware 

modificationsspecified in section III-B1. As shown, these modifications allowedall the benchmarks to run at full 

performance, at min imum II.Fig 8shows a graph similar to that in Fig 7, but showsthe normalized efficiency in terms of the 

accelerator‟s performance to-power ratio. Due to the increase in overall performance providedby the generalizations, the 

benchmarks MRI.Q, CT.laplace andCT.gauss had a significant increase in efficiency despite the poweroverhead of the 

additions. The MRI.FH benchmark, however, whichwould not experience any improved performance from the 

generalizations loses effic iency due to the increase in the accelerator‟s power consumption. On average, the generalizations 

increased the accelerator‟s efficiency increased by approximately 40%.  

 

3. Commodity GPGPU Comparison: While other architectures may certainly be used for this domain,GPGPUs 

are the solutions that are currently in use in many medicalimaging applications and, therefore, the most suitable comparison 

point.For this reason, we assessed the performance and efficiency of fiveNVIDIA GPUs.  

 
Fig. 9.Average energy consumed (per iteration) by each benchmark while running on PUMA systems designed 

around different PLAs 

 
Fig. 10.Achieved performance of the MRI.FH benchmark (in trillions of operations) on the MRI.FH PUMA system 

and on various NVIDIA GPUs based on the GT200 architecture 

 

 Fig9 shows the result of d irect performance comparisons betweenan MRI.FH PUMA system and the GPUs in 

consideration. Thecolumn on the left shows the total compute capability of each of theprocessors. The column on the right 

shows the realized performancewhile e xecuting the MRI.FH benchmark, accounting for bandwidth restrictions. PUMA 

achieves a very small fract ion of the peak performance offered by the GPUs, between 8.6% of the dual-GPU GTX 295 and 

21.8% of the GTS 250. This gap changes dramat ically, however, when  accounting for the bandwidth-intensive nature of the 

application in question. PUMA delivers between 63% (on the dual-GPU GTX 295) and 2X the performance (on the GTS 

250) of the GPUs.The case for PUMA is further underscored by examin ing the GPUs‟powe r efficiency, as shown in Fig  10. 

 This graph shows how manytimes more efficient, in  terms of number of operat ions per Watt, PUMAsystems are 

relative to the GPUs in consideration. These values rangefrom 20X, for the most complex benchmark running on the 

mostefficient GPU, to 54X, for the least complex benchmark running onthe least efficient GPU.  

 

X. CONCLUSION 
 We have seen that the application of the theory of optimal control of PDEs to image processing problems is a 

fruitfu l field of research. Besides promising result, even for easy models like the linear heat equation, new interesting 

mathematical problems arise, like the treatment of non-quadratic penaltyterms. For future research, better adapted PDEs (like 

the anisotropic diffusion equations) could be investigated.The PUMA architecture is a power-efficient accelerator system 

designedspecifically for efficient medical image reconstruction. It consistsof tiles of programmable loop accelerators - 

ASICs with added hardwareto support general-purpose computing - designed around the computation requirements of the 

image reconstruction domain. As applicat ions in this domain  are normally executed on very high -performance GPGPUs, the 

latest NVIDIA GPU arch itecture was used to gauge the performance and efficiency of PUMA. The results are very 

encouraging – PUMA achieves up to 2 times the performance of a modern GPU arch itecture and has up to 54 times the 

power efficiency. 
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