www.iimer.com Vol. 3, Issue. 5, Sep - Oct. 2013 pp-3041-3041

An Introductory Comment on Wave Relativity

Umasankar Dolai

Assistant Teacher, Dwarigeria Pry. School, Garhbeta South C.L.R.C., Satbankura-721253, West Bengal, India

ABSTRACT: Wave criterion of special and general relativity can be introduced in this paper. A report can be drawn; about wave mechanical relativistic idea in it.

Keywords: Four-Dimensional wave Equation, Invariant Quantity, Special and General Relativity, Riemannian and Euclidean metrics, Summary.

I. **INTRODUCTION**

When a wave can travel in a four-dimensional time space continuum, then its wave equation is $\partial^2 \psi = 0$; where ∂^2 is a mechanical operator and ψ is wave function. Here operator $\partial^2 = \frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2} + \frac{\partial^2}{\partial x_3^2} + \frac{\partial^2}{\partial x_4^2} = \frac{\partial^2}{\partial x_4^2} + \frac{\partial^2}{\partial y_4^2} + \frac$ - $1/c^2 \partial^2/\partial t^2$; where c is the velocity of light.

INVARIANT OPERATOR II.

The special theory of relativity shows that operator δ^2 is invariant under Lorentz transformation i.e. $\delta^2 = \partial^2/\partial x^2 + \partial^2/\partial y^2 + \partial^2/\partial z^2 - 1/c^2 \partial^2/\partial t^2 = \partial^2/\partial x'^2 + \partial^2/\partial y'^2 + \partial^2/\partial z'^2 - 1/c^2 \partial^2/\partial t'^2$; where the equations of Lorentz transformation are : $x' = \gamma(x-v), y'=y, z'=z$ and $t'=\gamma(t-vx/c^2)$; here $\gamma = (1-v^2/c^2)^{-1/2}$. Thus operator δ^2 be called invariant operator. Obviously the operator δ^2 can develop a new mode of relativity; then δ^2 may be defined as relativistic operator of this new way of relativity. So now relativity can be expressed by operator δ^2 in a new mode of algebraic operation.

III. WAVE INVARIANT QUANTITY If the both sides of relation $\delta^2 = \partial^2/\partial x_1^2 + \partial^2/\partial x_2^2 + \partial^2/\partial x_3^2 + \partial^2/\partial x_4^2$ can be multiplied by wave function ψ , then the formulation $\delta^2 \psi = \partial^2 \psi/\partial x_1^2 + \partial^2 \psi/\partial x_2^2 + \partial^2 \psi/\partial x_3^2 + \partial^2 \psi/\partial x_4^2$ is obtained. Now the quantity $\delta^2 \psi$ may be called wave invariant quantity. This relation can reveal wave interpretation of Special relativity.

INTRODUCTORY WAVE RELATIVITY IV.

However it is known that $\partial^2 \psi = \partial^2 \psi / \partial x_1^2 + \partial^2 \psi / \partial x_2^2 + \partial^2 \psi / \partial x_3^2 + \partial^2 \psi / \partial x_4^2 = 0$. Moreover this equation can reveal an idea about special wave relativity. Actually the above formulation can give a real meaning or a real situation of fourdimensional continuum even if $\delta^2 \psi$ does not vanish. Moreover this situation can make $\delta^2 \psi$ as a physically meaningful quantity. It can be done by concept of particular procedure of operator algebra such a way that $\delta^2 \psi$ is not equal to zero. This is the actual reality of wave relativity especially general wave relativity.

GENERAL FORM OF WAVE RELATIVITY V.

If the unit of time can be considered such a way that c=1 and the time t = x₄, then the formulation $\partial^2 \psi = \partial^2 \psi / \partial x^2 + \partial^2 \psi / \partial x^2$ $\partial^2 \psi / \partial y^2 + \partial^2 \psi / \partial z^2 - 1/c^2 \partial^2 \psi / \partial t^2$ gives the form $\partial^2 \psi = \partial^2 \psi / \partial x_1^2 + \partial^2 \psi / \partial x_2^2 + \partial^2 \psi / \partial x_3^2 - \partial^2 \psi / \partial x_4^2$. It is written in this way that $\delta^2 \psi = \partial/\partial x_1 \partial \psi/\partial x_1 + \partial/\partial x_2 \partial \psi/\partial x_2 + \partial/\partial x_3 \partial \psi/\partial x_3 - \partial/\partial x_4 \partial \psi/\partial x_4$. Now the above metric may be assumed as a general Riemannian metric of the form $\partial^2 \psi = \sum_{i,j=1}^{n=4} g_{ij} \partial \psi / \partial x_i \partial \psi / \partial x_j$, where g be a symmetric tensor. Here $g_{ij} = \langle \partial / \partial x_i, \partial / \partial x_j \rangle$ being the coefficients of the above metric form.

VI. CONCLUSION

Thus the wave invariant $\delta^2 \psi$ can suggest perfect wave criterion of gravity as well as general wave relativity. The situation may be expressed by invention of a new proposed operator algebraic system in four-dimensional continuum to reveal a real and general meaning of $\delta^2 \psi$ and to define wave relativity. Here special wave relativity is nothing but a specific situation of general wave relativity where $\delta^2 \psi = 0$. i.e. $\delta^2 \psi = \sum^{n=4}_{i,j=1} g_{ij} \frac{\partial \psi}{\partial x_i \partial \psi} \frac{\partial x_j}{\partial x_j}$ for general wave relativity and $\delta^2 \psi = \sum^{n=4}_{i,j=1} g_{ij} \frac{\partial \psi}{\partial x_i \partial \psi} \frac{\partial x_j}{\partial x_j} = 0$ for special wave relativity. However the latter metric form may be considered as a form of Euclidian metric.

ACKNOWLEDGEMENT

I indebt to thank Mr. Sujoy Pandit, Computer Operator, Sweet Heart, Daspur for his helps to type this paper and to search information from internet for me.

REFERENCES

- [1] U.Dolai, Proposal of New Operator in Four-Dimensional Wave Equation, IOSR journal of Applied Physics (IOSR-JAP), vol.4, Issue 2, PP 31-32 (Jul.-Aug. 2013).
- S. Banerji and A. Banerjee, The Special Theory of Relativity, chapter-2, PP 73,74,75, Published by Asoke K. Ghosh, Prentice -[2] Hall of India Private Limited, M-97, Connaught Circus, New Delhi-110001 (Third Printing - June, 2006).
- A. Einstein, ideas and opinions, PP 283, 284, 308, 309, 350, Rupa Paperback (1979), Twenty Second Impression (2006). [3]