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ABSTRACT: This paper deals with the experimental investigation of energy losses and turbulence characteristics through 

hydraulic structures in a rectangular channel using Laser Doppler, measurements include turbulence intensity components 

and mean velocity components. Experiments were conducted with different contraction ratios at different expansion angles 

for different bed slopes. The results show that, the rate of variation of the energy loss increases till expansion angle about 

30°. This rate of increase decreases above this value of angle of expansion. The energy loss is quite high at a contraction 

ratio of 0.7. Also, the results clearly show that, gradual expansion decrease the turbulence intensities in the wall and free 

surface regions compared to the sudden expansion. The maximum values of the turbulence intensities occur either close to 

the bed or at the free surface, with minimum values occurring within the core region. The turbulence intensities, however 

increases sharply at the free surface due to the free surface waves effect, and is the largest in sudden expansion.  

 

KEY WORDS: Energy losses-Turbulence characteristics-Hydraulic structures-Laser Doppler velocimery-Contraction 

ratio-Free surface-Froude number-Expansion angle.  

 

I. INTRODUCTION 

The information regarding the turbulence characteristics in the transitional structures is somewhat scanty. 

Paradoxically enough, the problem of separation of the main stream of flow at open channel transitions or at an abrupt 

change of the boundary attracted the attention of investigators since the earliest time and yet it remains one of the least 

understood and the most critical problems of fluid dynamics today. Open channel transitions are commonly used in hydraulic 

structures in variety of situation to serve as link with minimum possible energy loss. Open channel transitions have been 

studied extensively because of their use in water resources engineering and their efficacy in reducing the energy loss in 

hydraulic structures. Transitions are provided, whenever the size or the shape of the cross section of an open channel 

changes. Such changes are often required in natural and artificial channels for water structures economically as well as for 

practical reasons. The transitions may be vertical or horizontal, contracting or expanding, sudden or gradually which are 

required for subcritical or supercritical flows. The change in the cross section disturbs the flow in the contracted reach and 

near it from both upstream and downstream. The change in the cross section, slope, and/or alignment over a specified reach 

is termed local transition, such channel transition is used mainly to avoid or minimize the excessive energy loss, to eliminate 

the cross waves, the resulting turbulence and to ensure safety of both the structure and the downstream channel reach. In the 

design of hydraulic structures, designers do their best to avoid sudden transition of the flow by sudden contractions to ensure 

smooth flow with minimum energy loss and to reduce turbulence pattern. As the flow passes through a bridge, a channel 

transition in the form of contraction and subsequent expansion is involved. Since these transitions are meant for continuous 

use, their role in minimization of the energy loss and attenuation of turbulence assumes significance. It is indispensable in 

hydraulic engineering to investigate structures of turbulence behind of multi vents water structures in the expansion zone in 

order to control turbulent flows and to design hydraulic structures properly. In designing of channel transitions, it is 

necessary to avoid excessive energy loss, to eliminate cross waves and the turbulence, to ensure smooth streamlined flow, to 

minimize standing waves, and to prevent the transition from acting as a choke influencing upstream flow. Free surface has a 

unique role in governing the turbulence in open channel flows. The phenomenon is usually so complicated that the resulting 

flow pattern is not readily subjected to any analytical solution. So, a practical solution is possible, however, through 

experimental investigation. The turbulent flow models in open channel flows were discussed by Garde [5,6], Rodi [12]; 

Nezu [10]. Measurements of turbulence characteristics in open channel flows using LDA have been pointed by several 

investigators [7, 9, 13, 14]. Experimental investigation of turbulent structure of back facing step have been reported by 

several investigators. [1, 8, 11, 3]. The main results of Formica were reported in Chow [2]. The present study of the how 

characteristics and turbulence structure behind of multi vents water structures, is a typical case of separation at an abrupt 

change of boundary. Thus, one of the purposes to study the turbulence behind of water structures in the expansion zone is to 

gain in sight into the properties and interactions of these turbulent structures. Much less information is available regarding 

the turbulence characteristics in the expansion zone of water structures.  

Therefore, precise and accurate measurements of the energy loss are carried out to study the variation of the energy 

loss upstream, within and downstream of the multi vents water structures. Also, the present research involves measurements 

of mean and fluctuating flow characteristics such as streamwise and vertical turbulence intensities, and streamwise and 

vertical mean velocity components in the expansion zone behind the multi vents water structures. The measurements are 

carried out using a Laser Doppler Velocimetry(LDV)a non-intrusive Fiber Optic state of the art technique, in the expansion 

zones of water structures at different contraction ratio b/B of 0.9, 0.8, 0.7, 0.6, 0.5 and 0.4 at different expansion angles Ө  of 

15°, 30°, 45°, 60°, 75°, and 90° for various bottom slope So of 0.005, 0.01, 0.015, 0.02, and 0.025. Also, the objectives of the 

present research are: to use LDV, which includes the data acquisition system, data processing to measure mean and 

fluctuating flow characteristics at different locations in the expansion zones of the water structures; to conduct a comparative 

study of the depthwise variation of streamwise and vertical turbulence intensities at different cross sections in the expansion 
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zones of water structures, to make a comparative study of the depthwise variation of water structures, to make a comparative 

study of the depthwise variation of streamwise and vertical mean velocity components. Similarly, the measurements were 

made in the expansion zones along the centerline at relative depth ratio y/yo of 0.5 to study the variation of mean and 

fluctuating flow characteristics.  

 

II. THEORETICAL STUDY 
In the flow over the water structure through a channel, part of pressure head will lost partly due to dissipation of 

energy in separation zones, and partly due to friction between fluid and the channel wetted parameter. On the other hand, the 

constriction of flow by contraction will result in a corresponding backwater build up. Figure.3 shows a definition sketch of 

flow through contraction in sloping channel. The variables affecting the flow through the multi vents water structure are 

shown on the figure and explained at the notation section. The functional relationship of the energy loss through the water 

structure could be written as follows:  

 f1  g, Vu , Yu , b, B, Yd  , Vd , ∆E, ∆Eu  , ∆Ed  , So , Ө = 0 (1)       
Using the dimensional analysis, the following dimensionless relationship is obtained:  

   
∆E

Yu
= f2    Fu  ,

b

Yu
  ,

B

Yu
 , So  , Ө                (2)  

Keeping in mind the properties on the non-dimensional quantities, the following expression could be obtained from 

Eq. (2) 

 
∆E

Yu
= f3    Fu  ,

b

B
  , So  , Ө                        (3)  

It may appear better to analyze the energy loss through the water structures as a ratio related to the upstream energy, 

Eu. Therefore, the Eu is used instead of Yu in the left hand side of equation (3) which becomes:  

 
∆E

Eu
= f4    Fu  ,

b

B
  , So  , Ө        (4)  

The energy loss through the transition is equal to the difference in specific energies before and after the transition. 

From Fig.3, applying specific energy equation between sections (1-1) and (3-3) 

        ∆E =  Eu −  Ed =  yu +  
Vu

2

2g
 −   yd +  

Vd
2

2g
  (5)   

And relative energy loss is expressed as  

 
∆E

Eu
= 1 −  

Ed

Eu
          (6) 

Similarly to equation (6), from Fig.3, applying the specific energy equation between sections (1-1) and (2-2) also 

between sections (2-2) and (3-3).  

 
∆Eu

Eu
= 1 −  

Et

Eu
 , and         (7) 

 
∆Ed

Ed
=

Et

Ed
 −  1         (8) 

Where;  

Eu, Et and Ed, specific energy upstream, within and downstream the water structure respectively, ΔE= total energy 

loss between sections (1-1) and (3-3), ΔEu = upstream energy loss between sections (1-1) and (2-2), ΔEd = downstream 

energy loss between sections (2-2) and (3-3).By knowing either the value of velocity or water depth upstream, within and 

downstream the multi water structure, the energy loss can be calculated by using equations (6), (7) and (8) for the known 

values of discharges and different contraction ratios b/B at different expansion angles Ө .  

 

III. EXPERIMENTAL SET UP AND PROCEDURE 
The experiments were carried out in a rectangular open channel that is 8.0m long, 0.3m width and 0.5m height with 

glass wall 6 mm thick and a steel plate bed Fig.1 shows layout of the test facility. The water is supplied from a constant head 

overhead tank to the flume at a desired discharge that is continuously monitored with an on-line orifice meter. The 

discharges were measured using a pre-calibrated orifice meter in the feeding pipeline. And in-line discharge control valve 

that is fitted into the main supplying pipeline was used to regulate the flow rate. Depth measurements were taken using a 

needle point gauge with a reading accuracy of ± 0.10 mm. The flume side walls are made up of 6 mm glass sheets. A tail 

gate is provided at the downstream end of the flume to maintain a required water depth of the channel flow. The water is 

finally collected in a sump placed in the basement from where it is pumped back to the overhead tank by a 15 Hp pump. The 

experiments were carried out using six different lateral contraction ratios, b/B of 0.9, 0.8, 0.7, 0.6, 0.5, and 0.4 and five 

different expansion angles, Ө  of 15°, 30°, 45°, 60°, 75°, and 90°. Five different channel bottom positive slopes, So of 0.005, 

0.01, 0.015, 0.02, and 0.025 were used to illustrate the effect of bottom slope on the flow characteristics due to contraction. 

The slopes were selected based on the flume facilities. For each combination of lateral contraction ratio, b/B, expansion 

angles, Ө , and bottom slope, five different flow rates ranging from about 15 Lit/sec to 40 Lit/sec were used. The upstream 

water depth was adjusted to produce a Froude number of approach ranging from 0.10 to 0.4. The flow through the transition 

was always subcritical but it may changed to supercritical state just at the end of the transition or away from it, depending 

upon the incoming flow rate, the applied flume bottom slope, the expansion angle and the contraction ratio. The effect of the 

expansion angle Ө  on the energy loss and turbulence intensities was also studied, for a different lateral contraction ratios b/B 

and a different bottom slope So. Channel transitions were fabricated from transparent prespex sheets. One type of 

construction at the inlet was sudden and different expansions at the outlet were at expansion angles Ө  of 15°, 30°, 45°, 60°, 

75°, and 90° downstream of two vents water structure.  
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IV. LASER DOPPLER TECHNIQUE 
The experimental data were collected using the two color back scatter Laser Doppler Velocimetry (LDV) system. 

Fig.2 shows a block diagram of the two component LDV set up used for the measurements. A 5 Watt Argon-ion laser with 

two laser beams; one blue (488nm) and one green (514.5nm), were focused at a measuring point from one side of the 

channel through an optical lens. Two Burst Spectrum Analyzers (BSA) were used to evaluate the Doppler frequencies. 

Subsequent computer analysis consisted of velocity bias averaging and outlier rejection. The number of samples taken at 

every point was 5000 bursts. This correspond to a simple averaging time of about 100 seconds. The data rate was about (50-

60) per second. Before acquiring the data, the LDV signal was checked for its quality on a 100 MHz Gold storage 

oscilloscope. The signal display as regular Doppler burst that correspond to a particle passing through the measuring volume. 

The measurements were taken at different cross sections in the expansion zones downstream of two vents water structure for 

different flow rate (Q). Fig.3 shows the location grid of the measuring stations.  

With reference to the origin fixed at the channel bed and in the centre of lower vent as shown in Fig.3, transverse of 

measuring volume was run to obtain the profiles of both the RMS of the streamwise and vertical turbulence intensities, and 

streamwise and vertical mean velocity components. The measuring points were closely spaced in the region of high velocity 

gradient. All the measurements were made for a constant free steam water depth of 31cm irrespective of the flow rate. To 

obtain the vertical profiles of the mean and fluctuating flow quantities, the measurements were conducted in the vertical 

plane at z/b= 0 and 0.3 at different cross sections at different flow rates. In the vertical direction at every profile, 30 

measurements at 5mm intervals up to 60 mm from the bed boundary and 15mm for the rest were taken. Similarly, the 

measurements were done in the expansion zones along the centerline at relative water depth y/yo= 0.5 to study the variation 

of mean and fluctuating flow characteristics.  

 

V. RESULTS AND DISCUSSION 
The relative total energy loss with regard to the energy upstream of the multi water structure ΔE/Eu is plotted as a 

function of downstream expansion angles Ө  of 15°, 30°, 45°, 60°, 75°, and 90° at different contraction ratios b/B of 0.9, 0.8, 

0.7, 0.6, 0.5 and 0.4 at various bottom slope So of 0.005, 0.01, 0.015, 0.02 and 0.025, Fig.4. The total energy loss is the least 

value for channel contraction b/B of 0.9 and a maximum value for channel contraction b/B of 0.4. It is relatively small up to 

the contraction ratio b/B of 0.7. The rate of increase in energy loss, Fig.4, is almost the same between the contraction ratios 

b/B of 0.9 and 0.8; and 0.8 and 0.7. By taking the value of the rate of increase in energy loss between contraction ratios b/B 

of 0.9 and 0.8; and 0.8 and 0.7 as a reference. This rate of increase in energy loss has the double value between the 

contraction ratios b/B of 0.7 and 0.6. Similarly, this rate of increase in energy loss increases to about (5-6) times between b/B 

of 0.6 and 0.5 and almost about (10-12) times between contraction ratios b/B of 0.5 and 0.4 as compared to the increase in 

energy loss between the contraction ratios b/B of 0.9 and 0.8. This trend is almost the same for all other contraction. As the 

expansion angle Ө  increases up to 30°, the rate of increase in the head loss ΔE/Eu is relatively high for all the contraction 

ratios b/B, being very high for the contraction ratio b/B of 0.6. Above expansion angle Ө  of 30°, the increase in the energy 

loss is much slower. Particularly for expansion angle Ө  greater than 45° at which the energy loss is almost constant for all 

the practical purposes. Also, as shown in Fig.4, the energy loss ΔE/Eu increases with the increase of bottom slope So.  

Fig.5 depicts the variation of total relative energy loss ΔE/Eu with regard to the energy upstream with bottom slope 

So at different contraction ratios b/B of 0.9, 0.8, 0.7, 0.6, 0.5 and 0.4 at different expansion angles Ө  of 15°, 30°, 45°, and 

90°. From this figure, it can be observed that for a fixed expansion angle Ө , the trend of variation between relative energy 

loss ΔE/Eu and bottom slope So is increasing with a nonlinear trend. Also, at a particular bottom slope So, relative energy loss 

ΔE/Eu as the channel contraction b/B increases.  

Fig.6 shows the variation of relative total energy loss ΔE/Eu with upstream Froude number Fu for different 

contraction ratios b/B of 0.9, 0.8, 0.7, 0.6, 0.5 and 0.4 for the flow rates Q of 15 Lit/sec and 40 Lit/sec. Several Froude 

numbers respect to upstream depth were generated from these discharges by changing the depths for the given discharges. It 

can be noticed from the figure that the relationship between Fu and  ΔE/Eu is a family of curves. The nature of the trend of 

variation of total energy loss ΔE/Eu is similar in all cases of flow. The curves are extended backward from Fu=0.05 and 0.1 

for comparative purpose. With an increasing Froude number Fu, the energy loss ΔE/Eu increases with a slightly slower rate 

up to Fu = 0.2 say, for contraction ratio b/B > 0.5 , the energy loss ΔE/Eu is small up to say Fu=0.1, after which energy loss 

increases rapidly as Froude number Fu increases above 0.1. The trend of variation of the relative energy loss ΔE/Eu for b/B 

=0.6 occupies an intermediate position between these two trends for contraction ratios b/B less than or equal to 0.7 or greater 

than or equal to 0.5. Again for the same Froude number, Fu, the relative energy loss increases rapidly as the channel 

contraction increases. Especially, this increase is quite significant for the channel contraction greater than 0.7. For higher 

Froude number above 0.2 (in the subcritical range of flow of the present investigation) this in increase is several folds 

compared to the minimum channel contraction  b/B of 0.9. 

As shown in Fig.7, for each plot, the groups of curves representing the relationship between relative upstream 

energy loss ΔEu/Eu and upstream Froude number, Fu, at various contraction ratios b/B of 0.9, 0.8, 0.7, 0.6, 0.5 and 0.4 at a 

fixed value of angle Ө  for different discharges Q of 15 Lit/sec and 40 Lit/sec. It clear that, the trend of variation ΔEu/Eu is 

quite similar in its behavioral characteristics to the one described above for total energy loss ΔE/Eu, but with reduced 

magnitude, as ΔEu constitutes a part of the total energy loss ΔE. The study of each plot show that both ΔEu/Eu and Fu 

increase with the increasing value of contraction ratio b/B. The value of ΔEu/Eu was nonlinear function of Fu. Also, it is clear 

that, with the same value of contraction ratio b/B, the ΔEu/Eu increases with the increasing upstream Froude number Fu. The 

decrease of the channel contraction, reduces separation zone, decreasing the upstream energy loss. It can be observed that by 
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extending the lower sides of curves through the point Fu=0, ΔEu/Eu=0, the hydrostatic condition prevails. An extension of the 

upper limbs of the earlier curves, till it reaches an optimum value of contraction ratio b/B.  

Fig.8 demonstrates the relationship between relative downstream energy loss ΔEd/Ed and upstream Froude number 

Fu for different contraction ratios b/B of 0.9, 0.8, 0.7, 0.6, 0.5, and 0.4 at a fixed value of expansion angle Ө  for discharges of 

15 Lit/sec and 40 Lit/sec. Again the resulting curves indicated the same trend as discussed above for ΔE and ΔEu. It is 

observed that, the downstream energy loss, ΔEd (at water structure outlet) are more than the corresponding upstream energy 

losses (at water structure inlet), probably due to the creation of the larger recirculating fluid mass; separated flow at the 

outlet of the water structure in the expansion zones. Fig.9 shows the variation relative energy (efficiency) Ed/Eu with 

upstream Froude number Fu for different contraction ratios b/B of 0.9, 0.8, 0.7, 0.6, 0.5 and 0.4 for discharges of 15 Lit/sec 

and 40 Lit/sec at a fixed values of expansion angle and bottom slope. From this figure, it can be observed that for discharge, 

the trend of variation between Ed/Eu and Fu is decreasing with nonlinear trend. Also, at a particular Fu, Ed/Eu increases as 

channel contraction decreases. It is observed that the effect of Fu on Ed/Eu is significant. The Ed/Eu increases non-linearly 

with the decrease of Fu. Also, the Ed/Eu increases as the discharge decreases. Fig.10 shows the variation of relation water 

depth Yd/Yu as a function of upstream Froude number Fu at different contraction ratios b/B of 0.9, 0.8, 0.7, 0.6, 0.5 and 0.4 

for discharges of 15Lit/sec and 40 Lit/sec at a fixed value of bottom slope and expansion angle. It is clear that, the trend of 

variation Yd/Yu is quite similar in its behavioral characteristics to the one described above for relative energy Ed/Eu. The 

study of each plot shows that Yd/Yu increases as Fu decreases with the decreasing of channel contraction. The value of Yd/Yu 

was nonlinear function of Fu. Fig.11 depicts the variation of relative heading up ΔY/Yu as a function of upstream Froude 

number Fu for different contraction ratios b/B of 0.9, 0.8, 0.7, 0.6, 0.5 and 0.4 for discharges of 15 Lit/sec and 40 Lit/sec at a 

fixed values of expansion angle Ө  and bottom slope So. From this figure, it is observed that the effect of Fu and Yd/Yu is 

significant. The Yd/Yu increases non-linearly with the increase of Fu. Also, at a fixed discharge Q, the trend of variation 

between Yd/Yu and Fu is increasing with a nonlinear trend. Also, at a particular Fu, Yd/Yu increases as the channel contraction 

increases. 

Figs.12 and 13 depict the variation of streamwise and vertical components of turbulence intensities ú/Uo and ύ /Uo 

as functions of channel depths y/yo in the expansion zone of water structure at different expansion angles Ө  of 15°, 30°, 45° 

and 90° at different contraction ratios b/B of 0.7 and 0.5 for discharge of 40 Lit/sec along the depth at different cross 

sections. The trend of variation of ú/Uo and ύ /Uo are similar in all the cases of expansion angles. The trend of ú/Uo and ύ /Uo 

in the expansion zones in all the cases of expansion angles Ө  have higher values close to the bed, following a gradual fall in 

the wall region defined by y/yo<0.2, reaching minima in the core region defined by 0.2<y/yo<0.6. Turbulence intensities ú/Uo 

and ύ/Uo rise gradually and then rapidly in the upper region (free surface region) defined y/yo>0.6, reaching the maximum at 

the free surface. The minimum turbulence intensities ú/Uo and ύ /Uo always lie in the core region. The maximum turbulence 

intensities occur close to the bed or at the free surface depending on the location of the profile station. The nature of these 

variations is similar in all the cases of expansion angles, contraction ratios and discharges. Fig.13 shows the turbulence 

intensities ú/Uo and ύ /Uo at b/B = 0.5 of the expansion angles Ө  of 15°, 30, 45°, and 90°. The profiles of ú/Uo and ύ /Uo in 

the expansion zones of the hydraulic structures, which depict the turbulence behavior more dearly, in expansion angle Ө  of 

90° indicate large magnitude of turbulence in the wall and free surface regions, with fairly uniform turbulence in the core 

region. However, for expansion angle Ө=15°, turbulence profile is fairly uniform with comparatively less increase of the 

turbulence in wall and free surface regions. In case of expansion angle Ө=90°,as shown in Fig.13, the nature of variation in 

turbulence intensities ú/Uo and ύ /Uo at the entry of expansion zones and subsequent sections downstream is somewhat 

distinct compared to the turbulence profiles in the case of gradual expansion Ө=15°. Herein, in the core region of sudden 

expansion Ө  of 90°, turbulence intensity profiles ú/Uo and ύ /Uo do not exhibit the tendency towards constancy unlike in the 

gradual expansion, Ө=15°. Generally in sudden expansion Ө=90° after reaching the minimum turbulence intensities ú/Uo 

and ύ/Uo as the flow distance increases from the wall, the turbulence tends to increase consistently till the free surface is 

reached. Turbulence intensities are particularly largest ú/Uo = 45%, ύ /Uo = 29% and ú/Uo =55%, ύ/Uo=35% at x/b=2, z/b=0 

and x/b=2, z/b=0.3 closer to the wall region and free surface region respectively. Similarly, both the turbulence intensities 

ú/Uo and ύ /Uo are large at all the sections investigated downstream of the inlet of expansion zone in 90° sudden expansion 

in the wall region and free surface region. The general trend in variation of depthwise turbulence is similar in the expansion 

zone up to x/b=6 observed in this work. Generally, the turbulence intensities ú/Uo and ύ /Uo grows rapidly after the flow 

separation and spreads in vertical direction in all cases of expansion angle. Also, it can be seen that the gradual expansion Ө  

of 15°, is more effective in minimizing the turbulence intensity in the expansion zones compared to the 90° expansion angle. 

Downstream of the inlet of the expansion zone along the centerline, it is noted that, farthest downstream at x/b=6, turbulence 

intensities ú/Uo and ύ /Uo along the axis and z/b=0.3 are lowest for 15° expansion. However increase sharply at the free 

surface. Concluding, gradual expansion decreases the depthwise turbulence intensities ú/Uo and ύ /Uo in wall and free 

surface regions compared to the sudden expansion. This dampening effect could be attributed to the reduced magnitude of 

surface waves observed in the gradual expansion compared to relatively larger surface waves in the 90° sudden expansion. 

Further, the results show the influence of the expansion angle(diversion angle) on the turbulence intensities ú/Uo and ύ /Uo, 

which decrease with reduced diversion angle. Moreover with the increasing expansion and channel contraction, the vertical 

variation in turbulence intensities ú/Uo and ύ  /Uo become more pronounced. Changing rapidly in the wall, core and the free 

surface region. 

Figs.14 and 15 depict the variation of streamwise and vertical components of turbulence intensity fluctuations ú/Uo 

and ύ /Uo along the centerline at relative water depth y/yo = 0.5 above the bed in the expansion zones for the flow of 40 

Lit/sec, at different contraction ratios b/B of 0.5 and 0.7, at different expansion angles Ө  of 15°, 30°, and 90°. Clearly, the 

trend of turbulence intensities ú/Uo and ύ /Uo variation are quite similar in all the cases of expansion angles Ө  and 
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contraction ratio b/B. Following a slight general fall, reaching minima, turbulence rises rapidly to reach maxima with 

subsequent monotonous decrease along the distance away from the outlet of hydraulic structure. Generally, maximum 

turbulence intensities ú/Uo and ύ /Uo occur at the same location with slight shift noticed for gradual expansion Ө=30°. The 

salient feature of the variation observed are as follow. For contraction ratios b/B of 0.7 and 0.5, the minimum values of ú/Uo 

and ύ /Uo occurring at 0˂  x/b˂ 1.5 for all the expansion angles. The maximum values of ú/Uo and ύ /Uo accruing at 

2.2˂ x/b˂  4.5. Similar trends are observed for turbulence intensities ú/Uo and ύ /Uo for all contraction ratios b/B of 0.5 and 

0.7 of the different expansion angles Ө  of 15°, 30°, and 90°. It may be concluded that downstream of the water structures 

beyond specific values of x/b for instance 3.8, turbulence intensities ú/Uo and ύ /Uo are always higher in the case of 90° 

sudden expansion and lower for most gradual expansion of 15°, for all contraction ratios b/B of 0.7 and 0.5. The trend is 

exactly opposite as observed for x/b˂  2.7. Also, it may concluded that turbulence intensity beyond x/b = 4.1 from the centre 

of the hydraulic structure decreases with angle of diversion decreases and is subsequently higher as for sudden expansion 

Ө=90°, the lowest for gradual expansion Ө  of 15° and being the intermediate for gradual expansion Ө=30°. The trend is 

reverse for x/b ˂  2.7where the turbulence intensity is higher for gradual expansion Ө=15° and lower for 90° sudden 

expansion. At x/b of 2.7 up to 4.2, the maximum turbulence intensities ú/Uo and ύ /Uo occur for all the expansion angles at 

different contraction ratios b/B and all different spanwise locations. Also, with increasing channel contraction, the turbulence 

intensities ú/Uo and ύ /Uo increase for all the cases.  

 

VI. CONCLUSIONS 
The conclusions arising out from this study can be summarized as follows:  

Form the evidence of the variation of the total energy loss ΔE/Eu with the expansion angle in the expansion zones 

downstream of the water structures, it appears that up to expansion angle of 30° and decreasing the expansion angle, the head 

loss decreases, but above this expansion angle of 30°, the effect of the boundary is insignificant. The energy loss is quite 

high if the contraction ratio b/B > 0.7. The energy loss increases rapidly up to expansion angle of 30° and tends to remain 

constant above expansion angle of 45°. Thus, expansion angle of 30° appears to be a critical angle defining a border value 

between the maximum energy loss and the value up to which total energy loss increases rapidly as expansion angle increases 

form 0° to 30°. The results indicate that, the most significant differences in energy loss occur with expansion angle in the 

range less than 45°. The total energy loss ΔE/Eu, upstream energy loss ΔEu/Eu, and downstream energy loss ΔEd/Ed of the 

multi vents water structures, increase with the increasing value of both upstream Froude number and channel contraction. 

The downstream energy loss (at hydraulic structure outlet) are more than the corresponding upstream energy loss (at 

hydraulic structure inlet), probably due to the creation of the large recirculating fluid mass, separated flow at outlet of the 

hydraulic structure in the expansion zones.  

The streamwise turbulence intensities ú/Uo and ύ/Uo are higher nearer the bed in the wall region defined by y/yo≤ 

0.2 due to wall effect and the free surface region defined by y/yo˃  0.6 due to free surface effect. In the intermediate core 

region defined by 0.2 ˂  y/yo≤0.6, minimum turbulence intensities ú/Uo and ύ/Uo occur, and consistently correspond to the 

maximum streamwise mean velocity ū/Uo, occurring in the same zone approximately at the same location with the local 

velocity gradient being zero. In the expansion zones, gradual expansion decrease the turbulence intensities ú/Uo and ύ /Uo in 

wall and free surface regions compared to the sudden expansion. The maximum values of turbulence intensities ú/Uo and 

ύ /Uo occur either close to the bed or at the free surface. As a comprehensive observation, it noted that the streamwise 

turbulence ú/Uo is always greater compared to the vertical turbulence ύ /Uo. Also, it is concluded that with the decreasing of 

expansion angle and channel contraction in the expansion zone, turbulence intensities ú/Uo and ύ /Uo decrease at all the 

cases. Along the depth, the trend of variation of  turbulence intensities are similar in all the expansion angles in the 

expansion zone of hydraulic structures, and increase or decrease simultaneously of the all cases of expansion angles.  

 

NOMECLATURE:   

b  Width of hydraulic structure(total width)  

B  Natural channel width 

ū   Streamwise mean velocity in x-direction,  

Uo Streamwise mean free steam, velocity         

      averaged over the cross section. 

ù  Streamwise component of turbulence       intensity in  x- 

direction (RMS), 

v   Vertical mean velocity in y-direction,  

ύ  Vertical component of turbulence intensity in     

    y- direction (RMS),  

x  Longitudinal axis along channel length,  

y  Transverse axis along channel height,  

z  Transverse axis along channel width,  

So  Bottom slope. 

Q  Flow discharge 

Ө    Expansion angle 

RMS Root mean square 
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