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ABSTRACT: In this paper,two different forms of exponential Diophantine equations namely

nn zyx zyx 
  and  

nmn zyx zyx 
 are considered and analysed for finding positive integer solutions on each of the above two 

equations.some numerical examples are presented in each case. 

 

Keywords: Exponential Diophantine Equation,integral solutions. 

Mathematics subject classification number: 11D61  

 

I. INTRODUCTION 

The exponential diophantine equation 
zyx cba   in positive integers   z,y,x  has been studied by number of 

authors [1-5].In [6-12] the existence and the processes of determining some positive integer solutions to a few special cases 

of an exponential diophantine equation are studied. In this paper, two different representations I and II of the exponential 

diophantine equations namely 
nn zyx zyx    and 

nmn zyx zyx  are studied with some numerical examples. 

 

II. METHOD OF ANALYSIS 
Representation I  

The exponential diophantine equation with three unknowns to be solved for its non-zero 

 distinct integral solutions is     

                            
nn zyx zyx                                                                                       (1) 

where n is a natural numbers  

Introducing the transformations 
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and solving the above two equations, we have   
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Substituting (5) in(3) and (2),the corresponding solutions of (1) are  
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On the Exponential Diophantine Equations 
nn zyx zyx   and   

nmn zyx zyx   
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The numbers 1n  and 2n  can be chosen such that the solutions (6) be natural numbers. 

Now taking  

                                          ,nn 1n
1

   >0  ; ,
n

1
n 2    n>0  in (5) ,the non-zero integral solutions of (2) are found 

to be    
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Numerical Examples 

( )n,  x y z 
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Representation II  

 The exponential Diophantine equation with three unknowns to be solved for its non-zero distinct integral solutions is

     

                            
nmn zyx zyx                                                                                    (7) 

  

where m,n are natural numbers  

Considering the transformations 
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in (7), it can be written as  
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and solving the above two equations, we have                     
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Substituting (11) in(9) and (8),the corresponding solutions of (6) are  
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The numbers  1n  and 2n  can be chosen such that the solutions (11) be natural numbers.  

For illustration, Choosing   

                                            
n

1
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, n>0  in (11) ,the non-zero integral solutions of (6) 

are represented by  
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Numerical examples:  
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(1,3) (2,18) 3518.23  
11818 36
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3518.22318  

 

III. CONCLUSION 
To conclude,one may search for other pattern of integer solutions to the above exponential diophantine equations. 
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