
International 

OPEN      ACCESS                   Journal 

Of Modern Engineering Research (IJMER) 

 

 
| IJMER | ISSN: 2249–6645 |                          www.ijmer.com                       | Vol. 4 | Iss. 1 | Jan. 2014 |9| 

Continuum Modeling Techniques to Determine Mechanical 

Properties of Nanocomposites 
 

Sonali Gholap
1
, Dr. Dhananjay R. Panchagade

1
, Vinay Patil

2
 

1
Mechanical Engg. Dept, D.Y.Patil College of Engineering,Akurdi,Pune,University of Pune,India 

2
Vaftsy CAE, Pune-411028, India, University of Pune,India 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I. INTRODUCTION 
Nanoscience and nanotechnology refer to the understanding and control of matter at the atomic, 

molecular or macromolecular levels, at the length scale of approximately 1 to 100 nanometers, where unique 

phenomena enable novel applications Although experimental based research can ideally be used to determine 

structure-property relationships of nanostructured composites, experimental synthesis and characterization of 

nanostructured composites demands the use of sophisticated processing methods and testing equipment; which 

could result in exorbitant costs. To this end, computational modeling techniques for the determination of 

mechanical properties of nanocomposites have proven to be very effective. Computational modeling of  

nanocomposite mechanical properties renders the flexibility of efficient parametric study of nanocomposites to 

facilitate the design and development of nanocomposite structures for engineering applications. This review 

article will discuss the major modeling tools that are available for predicting the mechanical properties of 

nanostructured materials. Analytical and computational approaches to continuum-mechanics based modeling are 

discussed. 

 

II. MODELING METHOD OVERVIEW 
The importance of modeling in understanding of the behavior of matter is illustrated in Fig. 1. The earliest 

attempt to understanding material behavior is through observation via experiments. Careful measurements of 

observed data are subsequently used for the development of models that predict the observed behavior under the 

corresponding conditions. The models are necessary to develop the theory. The theory is then used to compare 

predicted behavior to experiments via simulation. This comparison serves to either validate the theory, or to 

provide a feedback loop to improve the theory using modeling data. Therefore, the development of a realistic 

theory of describing the structure and behavior of materials is highly dependent on accurate modeling and 

simulation techniques 
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Fig. 1: Schematic of the process of developing theory and the validation of experimental data 

 

Mechanical properties of nanostructured materials can be determined by a select set of computational 

methods. These modeling methods span a wide range of length and time scales, as shown in Fig. 2.  

 
Fig. 2. Various length and time scales used in determining mechanical properties of polymer nanocomposites. 

 

As indicated in Fig. 3, each modeling method has broad classes of relevant modeling tools.  The 

continuum-based methods primarily include techniques such as the Finite Element Method (FEM), the 

Boundary Element Method (BEM), and the micromechanics approach developed for composite materials. 

Specific Micromechanical techniques include Eshelby approach, Mori-Tanaka method, Halpin- Tsai method. 
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Fig. 3. Diagram of material modeling techniques. 

III. CONTINUUM MTHODS 
3.1. Analytical continuum modeling 

The popular micromechanical models for prediction of modulus of elasticity are summarized and 

discussed in the following: 

 

3.1.1 Voigt upper bound and Reuss lower bound (V-R model) 

Assumed aligned fibers, and fibers and matrix are subjected to the same uniform strain in the 

fiber direction, Voigt got the effective modulus in the fiber direction as: 

    El =φEf + (1−φ )Em                                                                                                              

  (3.1) 

Reuss  applied the same uniform stress on the fiber and matrix in the transverse direction (normal to the 

fiber direction), and got the effective modulus in the transverse direction as: 

    1 =  φ   +   1−φ 

   Et     Ef         Em                                                                                                               

  (3.2) 

Where φ is the volume fraction of fiber in the two-phase composite system, and subscripts “f” and “m” 

respectively refer to the fiber and matrix, whereas the subscripts “L” and “T” refer to the longitudinal and 

transverse directions, respectively. Equation (3.1) is the parallel coupling , and it is also called the “rule of 

mixtures”, whereas (3.2) is the series coupling formula, and it is also called the “inverse rule of mixtures”. 

 

           
a. Aligned fibers                                                          b. Randomly oriented fibers 

 

 

            
c. Aligned platelets                                               d. Particulates 

  Fig 4. Schematics of nanocomposites: (a) with aligned fibers; (b) with randomly oriented 

fibers; (c) with aligned platelets; and (d) with randomly oriented particulates 

 

Equations (3.1) and (3.2) can be extended to any two-phase composites regardless the shape of 

the filler, and represent the upper and lower bounds of the modulus of the composite, respectively. 

Note that in these formulas, only three parameters are involved, i.e. modulus of the fiber and the matrix, and the 

fiber volume fraction. 

 

3.1.2  Hashin and Shtrikman upper and lower bounds (H-S model) 

Hashin and Shtrikman assumed macroscopical isotropy and quasi-homogeneity of the composite where 

the shape of the filler is not a limiting factor, and estimated the upper and lower bounds of the composite based 

on variational principles of elasticity. Depending on whether the stiffness of the matrix is more or less than that 

of the filler, the upper and lower bounds of the bulk moduli, Kupper and Klower , and shear moduli, Gupper and 

Glower, of the composite are given as 
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      (3.3) 

Where the subscripts “f” and “m” refer to the filler (fiber) and matrix, respectively. The upper and 

lower bounds of the elastic modulus can then be calculated using the following relation: 

                      E =   9K                                                   

                             1+ 3K /G                        

      (3.4) 

Similar to Voigt and Reuss models, H-S model only involves three parameters. 

 

3.1.3 Halpin-Tsai model (H-T model) 

For aligned fiber-reinforced composite materials, Halpin and Tsai developed the equations for 

prediction of elastic constants based on the work of Hermans and Hill. The H-T model is a semi-empirical 

model, and the longitudinal and transverse moduli are given by: 

                
(3.5) 

                 
(3.6) 

where l and d are the length and diameter of the fiber, and η L  and η T  take the following expressions: 

                       
(3.7) For aligned nanoplatelets as shown in Fig.4 (c), equations (3.7) may still be used by replacing (l/d) with 

(D/t), where D and t are respectively the diameter and thickness of the platelet. H-T model takes the 

consideration of the fiber geometry, and has five independent parameters 

 

3.1.4 Hui-Shia model (H-S model) 

Mori and Tanaka developed analytical expressions for elastic constants based on the equivalent 

inclusion model of Eshelby . Taya and Mura and Taya and Chou used Mori-Tanaka approach to predict the 

longitudinal modulus of fiber-reinforced composites, Weng and Tandon and Weng further developed equations 

for the complete set of elastic constants of composite materials with aligned spheroidal isotropic inclusions. 

Based upon the results of Tandon and Weng, Hui and Shia and Shia et al. derived simplified formulas for 

predicting the overall moduli of composites with aligned reinforcements with emphases on fiber-like and flake-

like reinforcements, and found that their theoretical predictions agree well with experimental results. The H-S 

model presents the Young’s modulus as follows: 
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(3.8) 

 

where 

           
(3.9) 

and α is the aspect ratio of the filler, defined as the ratio of the filler’s longitudinal (with Young’s modulus EL ) 

length to its transverse (with Young’s modulus ET ) length. 

 

3.1.5 Wang-Pyrz model (W-P model) 

For a composite material composed of an isotropic matrix and randomly oriented transversely isotropic 

spheroids, Qiu and Weng and Chen et al.  gave the formulas for the overall bulk and shear moduli using the 

Mori-Tanaka method. These formulas are expressed in terms of the Eshelby tensor, thus are not final. Wang and 

Pyrz  further gave the closed and concise formulas for the overall bulk modulus and shear modulus as follows: 

           
(3.10) 

The expressions for ϕ , ψ , α and β are given in the Appendix. 

 Note that W-P model is based on the Mori-Tanaka approach, and deals with the composite materials reinforced 

with randomly oriented and transversely isotropic spheroids. By varying the aspect ratio, the oblate spheroids 

can be approximate to platelets, and the prolate spheroids can be approximate to fibers. 

 

3.1.6 Cox model (Shear lag model 

 Shear lag model was the first micro-mechanics model for fiber-reinforced composites. Cox analyzed a 

single fiber of length l and radius f r , which is encased in a concentric cylindrical shell of matrix having radius 

R. He derived the longitudinal modulus as  

                    
    (3.11) 

where ηL is a length-dependent efficiency factor, 

                    
    (3.12) 

With 

                   
    (3.13) 
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is a constant that depends on the fiber packing arrangements. For some typical fiber packing arrangements, 

the values of   are given in Table 1 

 

Table 1. Values for  in Eq. (3.13) 

 
 

It is well known that the orientation of the dispersed phase has a dramatic effect on the composite 

modulus. It is apparent from their geometry that flake-like platelets can provide equal reinforcement in two 

directions, if appropriately oriented, while fibers provide primary reinforcement in one direction. If the 

longitudinal modulus ET and the transverse modulus  E T are known, then the effective modulus of the 

composite with randomly oriented fibers and platelets in all three orthogonal directions are given by,  

        
    (3.14) 

3.2. Computational continuum modeling 

 Continuum-based computational modeling techniques include FEM and BEM. While these approaches 

do not always supply exact solutions, they can provide very accurate estimates for a wide range of assumptions. 

These approaches are described in detail below. 

 

3.2.1. Finite element method: FEM can be used for numerical computation of bulk properties based on the 

geometry, properties, and volume fraction of constituent phases In the following, three finite element modeling 

approaches will be discussed. They are multiscale representative volume element (RVE) modeling, unit cell 

modeling, and object-oriented modeling. 

Multiscale RVE modeling: FEM involves discretization of a material representative volume element (RVE) 

into elements for which the elastic solutions lead to determination of stress and strain field. The coarseness of 

the discretization determines the accuracy of the solution. Nanoscale RVEs of different geometric shapes can be 

chosen for simulation of mechanical properties. However, high complexity of models, expensive software, and 

time-consuming simulations limit the utility of this method. 

Unit cell modeling: The conventional unit cell concept is the same as the RVE . Here we define a unit cell as a 

special RVE that it has a relatively big size (usually in micrometers) and contains a significant number of fillers 

(usually in tens to hundreds or more). Such defined unit cell is still the building block of the composite, but as it 

gets more complicated, analytical models are difficult to establish or too complicated to solve, and numerical 

modeling and simulation become a necessity. 

Object-oriented modeling: The object-oriented modeling which is able to capture the actual microstructure 

morphology of the nanocomposites becomes necessary in order to accurately predict the overall properties. It 

incorporates the microstructure images such as scanning electron microscopy (SEM) micrographs into finite 

element grids. Thus the mesh reproduces exactly the original microstructure, namely the inclusions size, 

morphology, spatial distribution, and the respective volume fraction of the different constituents. A 

objectoriented finite element code, developed by National Institute of Standards and Technology (NIST), has 

been extensively used in analyzing fracture mechanisms and material properties of heterogeneous materials and 

mechanical properties of nanocomposites. 

 

3.2.2 Boundary element method 

BEM is a continuum mechanics approach which involves solving boundary integral equations for the 

evaluation of stress and strain fields . This method uses elements only along the boundary, unlike FEM, which 

involves elements throughout the volume; thus making BEM less computationally exhaustive than FEM . BEM 
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can be applied from micro to macro scale modeling . In BEM, it is assumed that a material continuum exists, 

and therefore, the details of molecular structure and atomic interactions are ignored. 

 

IV. CONCLUSION 
The modeling and simulation of polymer-based nanocomposites has become an important topic in 

recent times because of the need for the development of these materials for engineering applications. A review 

of the most widely used modeling techniques used for prediction of mechanical properties of polymer 

nanocomposites has been presented in this paper. Because of the complex interactions between constituent 

phases at the atomic level, a combination of modeling techniques is often required to simulate the bulk-level 

behavior of these composites. The Computational Chemistry techniques assume the presence of a discrete 

molecular structure, and are primarily used to predict the atomic structure of a material. Computational 

Mechanics techniques assume that the matter is composed of one or more continuous constituents, and are used 

to predict the mechanical behavior of materials and structures. These two types of modeling techniques must be 

combined to an overall multiscale mode that is capable of predicting the structure and properties of polymer 

nanocomposites based on fundamental and scientific principles. 
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