
International

 OPEN ACCESS Journal

Of Modern Engineering Research (IJMER)

| IJMER | ISSN: 2249–6645 | www.ijmer.com | Vol. 4 | Iss. 1 | Jan. 2014 |146|

Data Leakage Detectionusing Distribution Method

Anis Sultana Syed, Mini
Dept of CS, Nimra College of Engineering and Tech...

I. INTRODUCTION
Demanding market conditions encourage many companies to outsource certain business processes (e.g.

marketing, human resources) and associated activities to a third party. This model is referred as Business Process
Outsourcing (BPO) and it allows companies to focus on their core competency by subcontracting other activities

to specialists, resulting in reduced operational costs and increased productivity. Security and business assurance

are essential for BPO. In most cases, the service providers need access to a company's intellectual property and

other confidential information to carry out their services. For example a human resources BPO vendor may need

access to employee databases with sensitive information (e.g. social security numbers), a patenting law firm to

some research results, a marketing service vendor to the contact information for customers or a payment service

provider may need access to the credit card numbers or bank account numbers of customers.

The main security problem in BPO is that the service provider may not be fully trusted or may not be

securely administered. Business agreements for BPO try to regulate how the data will be handled by service

providers, but it is almost impossible to truly enforce or verify such policies across different administrative

domains. Due to their digital nature, relational databases are easy to duplicate and in many cases a service
provider may have financial incentives to redistribute commercially valuable data or may simply fail to handle it

properly. Hence, we need powerful techniques that can detect and deter such dishonest.

We study unobtrusive techniques for detecting leakage of a set of objects or records. Specifically, we

study the following scenario: After giving a set of objects to agents, the distributor discovers some of those same

objects in an unauthorized place. (For example, the data may be found on a web site, or may be obtained through

a legal discovery process.) At this point the distributor can assess the likelihood that the leaked data came from

one or more agents, as opposed to having been independently gathered by other means. We develop a model for

assessing the “guilt” of agents. We also present algorithms for distributing objects to agents, in a way that

improves our chances of identifying a leaker. Finally, we also consider the option of adding “fake” objects to the

distributed set.

ABSTRACT: Modern business activities rely on extensive email exchange. Email leakages have

become widespread, and the severe damage caused by such leakages constitutes a disturbing problem

for organizations. We study the following problem: A data distributor has given sensitive data to a set

of supposedly trusted agents (third parties). If the data distributed to third parties is found in a
public/private domain then finding the guilty party is a nontrivial task to distributor. Traditionally, this

leakage of data is handled by water marking technique which requires modification of data. If the

watermarked copy is found at some unauthorized site then distributor can claim his ownership. To

overcome the disadvantages of using watermark [2], data allocation strategies are used to improve the

probability of identifying guilty third parties. The distributor must assess the likelihood that the leaked

came from one or more agents, as opposed to having been independently gathered by other means. In

this project, we implement and analyze a guilt model that detects the agents using allocation strategies

without modifying the original data. The guilty agent is one who leaks a portion of distributed data. We

propose data allocation strategies that improve the probability of identifying leakages. In some cases

we can also inject “realistic but fake” data record to further improve our changes of detecting leakage

and identifying the guilty party. The algorithms implemented using fake objects will improve the

distributor chance of detecting guilty agents. It is observed that by minimizing the sum objective the
chance of detecting guilty agents will increase. We also developed a framework for generating fake

objects.

Keywords: Sensitive Data, Fake Objects, Data Allocation Strategies

Data Leakage Detectionusing Distribution Method

| IJMER | ISSN: 2249–6645 | www.ijmer.com | Vol. 4 | Iss. 1 | Jan. 2014 |147|

II. PROBLEM DEFINITION
Suppose a distributor owns a set T = {t1,tm } of valuable data objects. The distributor wants to share

some of the objects with a set of agents U1,U2,… ,Un but does wish the objects be leaked to other third parties. An

agent Ui receives a subset of objects Ri which belongs to T, determined either by a sample request or an explicit

request,

Sample Request Ri = SAMPLE (T,mi) : Any subset of mi records from T can be given to Ui. Explicit

Request Ri = EXPLICIT (T,condi) : Agent Ui receives all the T objects that satisfy condi .

The objects in T could be of any type and size, e.g., they could be tuples in a relation, or relations in a

database. After giving objects to agents, the distributor discovers that a set S of T has leaked. This means that

some third party called the target has been caught in possession of S. For example, this target may be displaying S

on its web site, or perhaps as part of a legal discovery process, the target turned over S to the distributor. Since

the agents U1,U2,… ,Un, have some of the data, it is reasonable to suspect them leaking the data. However, the
agents can argue that they are innocent, and that the S data was obtained by the target through other means.

2.1 Agent Guilt Model
Suppose an agent Ui is guilty if it contributes one or more objects to the target. The event that agent Uiis

guilty for a given leaked set S is denoted by Gi | S. The next step is to estimate Pr {Gi | S }, i.e.,the probability

that agent Gi is guilty given evidence S.

To compute the Pr {Gi| S}, estimate the probability that values in S can be “guessed” by the target. For

instance, say some of the objects in t are emails of individuals. Conduct an experiment and ask a person to find

the email of say 100 individuals, the person may only discover say 20, leading to an estimate of 0.2. Call this

estimate as Pt, the probability that object t can be guessed by the target.

The two assumptions regarding the relationship among the various leakage events.

Assumption 1: For all t, t ∈ S such that t ≠ ťthe provenance of t is independent of the provenance ofť.The term

provenance in this assumption statement refers to the source of a value t that appears in the leaked set. The source

can be any of the agents who have t in their sets or the target itself.

Assumption 2: An object t ∈ S can only be obtained by the target in one of two ways.A single agent Ui leaked t

from its own Ri set, or

The target guessed (or obtained through other means) t without the help of any of the n agents.

To find the probability that an agent Ui is guilty given a set S, consider the target guessed t1 with probability p

and that agent leaks t1 to S with the probability 1-p. First compute the probability that he leaks a single object t to

S. To compute this, define the set of agents Vt = { Ui| t_Ri } that have t in their data sets. Then using Assumption

2 and known probability p, we have
Pr {some agent leaked t to S} = 1- p ………..…1.1

Assuming that all agents that belong to Vt can leak t to S with equal probability and using Assumption 2 obtain,

Pr { __ leaked _ to _} =

____|__|, __ __ ∈ __ $ …1.2

0, __ !"_#

Given that agent Ui is guilty if he leaks at least one value to S, with Assumption 1 and Equation 1.2 compute the

probability Pr { Gi| S}, agent Ui is guilty,

 …..1.3

2.2 Data Allocation Problem

The distributor “intelligently” gives data to agents in order to improve the chances of detecting a guilty

agent. There are four instances of this problem, depending on the type of data requests made by agents and

whether “fake objects” [4] are allowed. Agent makes two types of requests, called sample and explicit. Based on

the requests the fakes objects are added to data list. Fake objects are objects generated by the distributor that are
not in set T. The objects are designed to look like real objects, and are distributed to agents together with the T

objects, in order to increase the chances of detecting agents that leak data.

Data Leakage Detectionusing Distribution Method

| IJMER | ISSN: 2249–6645 | www.ijmer.com | Vol. 4 | Iss. 1 | Jan. 2014 |148|

The Fig. 1 represents four problem instances with the names EF, E%, SF an&S%& , where E stands for

explicit requests, S for sample requests, F for the use of fake objects, and % for the case where fake objects are

not allowed.

The distributor may be able to add fake objects to the distributed data in order to improve his

effectiveness in detecting guilty agents. Since, fake objects may impact the correctness of what agents do, so they

may not always be allowable. Use of fake objects is inspired by the use of “trace” records in mailing lists. The

distributor creates and adds fake objects to the data that he distributes to agents. In many cases, the distributor

may be limited in how many fake objects he can create.

In EF problems, objective values are initialized by agent’s data requests. Say, for example, that T = {t1,t2

} and there are two agents with explicit data requests such that R1 = {t1,t2 } and R2 = {t1}. The distributor cannot

remove or alter the R1 or R2 data to decrease the overlap R1\ R2 . However, say the distributor can create one fake
object (B = 1) and both agents can receive one fake object (b1=b2 = 1). If the distributor is able to create more

fake objects, he could further improve the objective.

2.3 Optimization Problem
The distributor’s data allocation to agents has one constraint and one objective. The distributor’s

constraint is to satisfy agents’ requests, by providing them with the number of objects they request or with all

available objects that satisfy their conditions. His objective is to be able to detect an agent who leaks any portion

of his data.

We consider the constraint as strict. The distributor may not deny serving an agent request and may not

provide agents with different perturbed versions of the same objects. The fake object distribution as the only

possible constraint relaxation
The objective is to maximize the chances of detecting a guilty agent that leaks all his data objects.

The Pr {Gj|S =Ri } or simply Pr { Gj| Ri} is the probability that Uj agent is guilty if the distributor

discovers a leaked table S that contains all Ri objects. The difference functions

∆(_,)* is defined as:

∆(_,)*= Pr {Gi|Ri}- Pr {Gj|Ri} ………..1.4

1) Problem definition: Let the distributor have data requests from n agents. The distributor wants to give tables

R1, …..Rnto agents U1 , . . . ,Unrespectively, so that

Distribution satisfies agents’ requests; and

Maximizes the guilt probability differences (i, j) for all i, j = 1. . . n and i = j.
Assuming that the Rt sets satisfy the agents’ requests, we can express the problem as a multi-criterion 2)

Optimization problem:

Maximize (. . . , (i, j), . . .) i ! = j ……….… 1.5

(over R1, . . . ,Rn)

The approximation [3] of objective of the above equation does not depend on agent’s probabilities and

therefore minimize the relative overlap among the agents as

Minimize (. . . , |+,∩+.| , . . .) i != j

 ..…..1.6

 +,

(over R1, . . . ,Rn)

Data Leakage Detectionusing Distribution Method

| IJMER | ISSN: 2249–6645 | www.ijmer.com | Vol. 4 | Iss. 1 | Jan. 2014 |149|

This approximation is valid if minimizing the relative overlap,|+,∩+
+,

.| maximizes (i, j).

2.4 Objective Approximation
In case of sample request, all requests are of fixed size. Therefore, maximizing the chance of detecting a

guilty agent that leaks all his data by minimizing,
|+,∩+

+,
.|
 is equivalent to minimizing (|Ri∩Rj|). The

minimum

value of (|Ri∩Rj|) maximizes Π(|Ri∩Rj|) and (i, j) , since Π(|Ri |) is fixed.

∩

If agents have explicit data requests, then overlaps |R R | are defined by their own requests and

|R∩R | are fixed. Therefore, minimizing | R | j is equivalenti jto maximizing | R | (with the addition of

i j i i ∩

fake objects). The maximum value of | Ri | minimizes Π(Ri) and maximizes (i, j), since Π(RiRj) is fixed.

Our paper focuses on identifying the leaker. So we propose to trace the ip address of the leaker. The file

is send to the agents in the form of email attachments which need a secret key to download it. This secret key is
generated using a random function and send to the agent either on the mobile number used at registration or to the

other global email service account such as gmail.

Whenever the secret key mismatch takes place the fake file gets downloaded. To further enhance our

objective approximation ip address tracking [5][6][7] is done of the system where fake object is downloaded.

Various commands are available for getting ip address information. Ping, tracert, nslookup, etc anyone may be

used to get it. The ip address is traced with the time so as to overcome problem of dynamic ip addressing. But as

we are doing this for an organisation there is no problem of dynamic ip. Or else if looking for the ip address

universally it is unique for that period of time therefore it can be traced to unique system of the leaker.

III. ALLOCATION STRATEGIES
In this section the allocation strategies [1] solve exactly or approximately the scalar versions of Equation

1.7 for the different instances presented in Fig. 1. In Section A deals with problems with explicit data requests

and in Section B with problems with sample data requests.

3.1 Explicit Data Request
In case of explicit data request with fake not allowed, the distributor is not allowed to add fake objects to

the distributed data. So Data allocation is fully defined by the agent’s data request.

In case of explicit data request with fake allowed, the distributor cannot remove or alter the requests R

from the agent. However distributor can add the fake object. In algorithm for data allocation for explicit request,

the input to this is a set of request R1,R2,……,Rn from n agents and different conditions for requests. The e-

optimal algorithm finds the agents that are eligible to receiving fake objects. Then create one fake object in
iteration and allocate it to the agent selected. The e-optimal algorithm minimizes every term of the objective

summation by adding maximum number bi of fake objects to every set Ri yielding optimal solution.

Step 1: Calculate total fake records as sum of fake records allowed. Step 2: While total fake objects > 0

Step 3: Select agent that will yield the greatest improvement in the sum objective

i.e. i =

Step 4: Create fake record

Step 5: Add this fake record to the agent and also to fake record set. Step 6: Decrement fake record from total

fake record set.

Algorithm makes a greedy choice by selecting the agent that will yield the greatest improvement in the sum-

objective.

3.2 Sample Data Request

With sample data requests, each agent Ui may receive any T from a subset out of different ones.

Hence, there are different allocations. In every allocation, the distributor can permute T objects and
keep the same chances of guilty agent detection. The reason is that the guilt probability depends only on which

agents have received the leaked objects and not on the identity of the leaked

objects. Therefore, from the distributor’s perspective there / |T| are different allocations. An object
allocation that satisfies requests and ignores the distributor’s objective is to give each agent a unique subset of T

of size m. The s-max algorithm allocates to an agent the data record that yields the minimum increase of the

maximum relative overlap among any pair of agents. The s-max algorithm is as follows.

Data Leakage Detectionusing Distribution Method

| IJMER | ISSN: 2249–6645 | www.ijmer.com | Vol. 4 | Iss. 1 | Jan. 2014 |150|

Step 1: Initialize Min_overlap←1, the minimum out of the maximum relative overlaps that the

allocations of different objects to U

i
Step 2: for k∈ {k |tk∈Ri} do

Initialize max_rel_ov ← 0, the maximum relative overlap between Ri and any set Rj that the

allocation of t toU

Step 3: for allkj = 1,i..., n : j = i and tk∈RjdoCalculate absolute overlap as

abs_ov ← |Ri∩Rj | + 1 Calculate relative overlap as rel_ov ← abs_ov / min (mi ,mj)

Step 4: Find maximum relative as max_rel_ov ← MAX (max_rel_ov, rel_ov) If max_rel_ov ≤ min_overlap then

min_overlap ← max_rel_ov

ret_k ← k Return ret_k

It can be shown that algorithm s-max is optimal for the sum-objective and the max-objective in problems where

M ≤ |T| and n < |T|. It is also optimal for the max-objective if |T| ≤ M ≤ 2 |T| or all agents request data of the same

size.

It is observed that the relative performance of algorithm and main conclusion do not change. If p approaches to 0,

it becomes easier to find guilty agents and algorithm performance converges. On the other hand, if p approaches

1, the relative differences among algorithms grow since more evidence is needed to find an agent guilty.

The algorithm presented implements a variety of data distribution strategies that can improve the distributor’s

chances of identifying a leaker. It is shown that distributing objects judiciously can make a significant difference

in identifying guilty agents, especially in cases where there is large overlap in the data that agents must receive.

IV. RELATED WORK
The presented guilt detection approach is related to the data provenance problem [8]: tracing the lineage

of S objects implies essentially the detection of the guilty agents. Suggested solutions are domain specific, such

as lineage tracing for data warehouses [9], and assume some prior knowledge on the way a data view is created

out of data sources. Our problem formulation with objects and sets is more general and simplifies lineage tracing,

since we do not consider any data transformation from Ri sets to S.

As far as the allocation strategies are concerned, our work is mostly relevant to watermarking that is

used as a means of establishing original ownership of distributed objects. Watermarks were initially used in

images, video and audio data [2] whose digital representation includes considerable redundancy. Our approach
and watermarking are similar in the sense of providing agents with some kind of receiver-identifying information.

However, by its very nature, a watermark modifies the item being watermarked. If the object to be watermarked

cannot be modified then a watermark cannot be inserted.

In such cases methods that attach watermarks to the distributed data are not applicable. Finally, there are

also lots of other works on mechanisms that allow only authorized users to access sensitive data. Such approaches

prevent in some sense data leakage by sharing information only with trusted parties. However, these policies are

restrictive and may make it impossible to satisfy agents’ requests.

V. CONCLUSION
In doing a business there would be no need to hand over sensitive data to agents that may unknowingly

or maliciously leak it. And even if we had to hand over sensitive data, in a perfect world we could watermark

each object so that we could trace its origins with absolute certainty. However, in many cases we must indeed

work with agents that may not be 100% trusted, and we may not be certain if a leaked object came from an agent

or from some other source. In spite of these difficulties, we have shown it is possible to assess the likelihood that

an agent is responsible for a leak, based on the overlap of his data with the leaked data and the data of other

agents, and based on the probability that objects can be “guessed” by other means.

Our model is relatively simple, but we believe it captures the essential trade-offs. The algorithms we

have presented implement a variety of data distribution strategies that can improve the distributor’s chances of

identifying a leaker. We have shown that distributing objects judiciously can make a significant difference in

identifying guilty agents, especially in cases where there is large overlap in the data that agents must receive.
Our future work includes the investigation of agent guilt models that capture leakage scenarios that are

not studied in this paper. For example, what is the appropriate model for cases where agents can collude and

identify fake tuples? A preliminary discussion of such a model is available in. Another open problem is the

Data Leakage Detectionusing Distribution Method

| IJMER | ISSN: 2249–6645 | www.ijmer.com | Vol. 4 | Iss. 1 | Jan. 2014 |151|

extension of our allocation strategies so that they can handle agent requests in an online fashion (the presented

strategies assume that there is a fixed set of agents with requests known in advance).

REFERENCES
[1]. Rudragouda G Patil, “Development of Data leakage Detection Using Data Allocation Strategies International

Journal of Computer Applications in Engineering Sciences [VOL I, ISSUE II, JUNE 2011, [ISSN: 2231-4946].
[2]. S. Czerwinski, R. Fromm, and T. Hodes. Digital music distribution and audio watermarking.

[3]. L. Sweeney. Achieving k-anonymity privacy protection using generalization and suppression, 2002.
[4]. S. U. Nabar, B. Marthi, K. Kenthapadi, N. Mishra, and R. Motwani. Towards robustness in query auditing. In

VLDB ’06.
[5]. Stevens Le Blond, Chao Zhang Arnaud Legout, Keith Ross, Walid Dabbous, Exploiting P2P Communications to

Invade Users’ Privacy
[6]. How to Trace an IP Address http://www.wikihow.com/Trace-an-IP-Address
[7]. P. Buneman, S. Khanna, and W. C. Tan. Why and where: A characterization of data provenance. In J. V. den

Bussche and V. Vianu, editors, Database Theory - ICDT 2001, 8th International Conference, London, UK, January
4-6, 2001, Proceedings, volume 1973 of Lecture Notes in Computer Science, pages 316-330. Springer, 2001

