
International 

OPEN      ACCESS                                                                   Journal 

Of Modern Engineering Research (IJMER) 

 

| IJMER | ISSN: 2249–6645 |                                 www.ijmer.com                                  | Vol. 4 | Iss. 6| June. 2014 | 54| 

Heuristics for the Maximal Diversity Selection Problem 
 

S.R. Subramanya 
1(School of Engineering and Computing, National University, San Diego, USA) 

 

 

 

 

 

 

 

 

 

 

 

I. INTRODUCTION 
The problem of selecting a subset of elements from a given set, so that the “diversity” among the 

selected elements is the maximum possible, has been well studied. It arises in numerous applications across 

highly diverse areas such as in public administration, bio diversity measures, plant breeding, social problems, 

economics, experimental design, pollution control, ecological preservation, capital investment, curriculum 

design, the design of VLSI circuits etc. Some representative examples are, the selection of a governing body of 

an organization from among a given set of nominations, the selection of jury to hear a case in a city, the 

selection of people from a population to take part in a survey, the selection of persons for testing a product, the 

selection of companies stocks  to invest for a diverse investment portfolio, etc. This is a computationally hard 

problem, and the optimum solution is practically impossible. Numerous approximation algorithms, probabilistic 

algorithms, and heuristics have been proposed. We present two heuristics for this problem as applied to an 

application using a part of the census data, and the experimental results of their implementation. 

 

1.1 Problem statement 

Informally, given a set of N elements, and a set of attributes and corresponding values for each of the 

elements, the problem is to select a subset M (M < N) such that the selected elements are as diverse as possible 

under a given diversity measure. The diversity measure between any two elements is usually a measure of 

distance defined over the set of attributes of the two elements.  

Note that the total number of all possible selections of K items from among N items (which is the 

number of possible K -element subsets of N elements) is given by: 

 

For each selection, the diversity of the elements needs to be computed, and the best subset (with the 

maximum diversity) is to be selected. Using the naïve exhaustive search and determining the optimal solution 

is not practical. Even for relatively moderate sizes of N, the time complexity is enormous. Therefore 

approximation algorithms, probabilistic algorithms, and heuristics are possible recourses which yield good 

enough solutions fairly quickly. 

First, we will give the terminology and definitions used in the formal problem statement and in the 

Pseudocode used in the heuristics. 

S: Original Set  

D: Set of maximally diverse elements selected 

N: Number of elements in the set = |S| 

K: Number of elements to be selected = |D| 

R: Number of relevant attributes of interest of each element 

Sik: State or value of attribute k of element i 

dij: Diversity measure between elements i and j 

δmi : Sum of the distances between the median of cluster i and the medians of all the other clusters. 

Abstract: The problem of selecting k items from among a given set of N items such that the ‘diversity’ 

among the k items is maximum, is a classical problem with applications in many diverse areas such as 

forming committees, jury selection, product testing, surveys, plant breeding, ecological preservation, 

capital investment, etc. A suitably defined distance metric is used to determine the diversity. However, 

this is a hard problem, and the optimal solution is computationally intractable. In this paper we present 

the experimental evaluation of two approximation algorithms (heuristics) for the maximal diversity 

selection problem. 
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δik : Sum of the distances between point i of cluster k and the medians of all the other clusters. 

∆ : Sum of the pairwise distances between all pairs of the medians of the clusters 

The diversity between two elements may be defined to be a normalized distance between them. There 

have been several distance measures defined, and the choice of a distance measure depends on the application. 

One of the most commonly used distance measure is the Euclidean distance. For any two elements i and j, with 

vectors of attribute states (Si1, Si2, …… SiR) and (Sj1, Sj2, …… SjR), respectively, the Euclidean distance 

between them dij is given by: 

 
A measure of the diversity of a set of N elements could be the sum of the Euclidean distances between each 

distinct pair of elements, which is: 

 
 

Letting xi = 1 if element i is selected and 0 otherwise, the maximum diversity problem can then be formulated 

as the following quadratic zero–one integer program. 

Maximize 

 
subject to 

 

The general maximum diversity problem is intractable [1]. Thus, the optimal solution for the problem, 

even for moderate problem sizes, is beyond reach, and it is unlikely to find an algorithm for the optimal 

solution computation in reasonable (polynomial) time. Therefore, numerous heuristics and approximation 

algorithms have been proposed in the literature. 

In the next section we present some background and work related to maximum diversity selection 

problem. Section 3 presents the two proposed heuristics. Section 4 describes the results of the implementation 

of the heuristics and their performance. This is followed by conclusions. 

 

II. BACKGROUND AND RELATED WORK 
The maximal diversity problem (MDP) was introduced by [2]. Considerable work has been done in 

the solution of the maximum diversity selection (MDS) and related problems, many of them being 

approximation algorithms and heuristics.  We give below a few representative ones. 

The formulation of the maximum diversity selection problem as a quadratic zero-one model is given 

in [3]. It also presents situations and their handling where some attributes take precedence over others in the 

measurement of diversity. Five heuristics to find groups of students with the most diverse characteristics such 

as nationality, age, and graduation level, their implementation and testing on real data is presented in [4].  

An iterative technique, called a greedy, randomized, adaptive search procedure (GRASP) has been 

proposed in [5]. Each iteration in the process consists of two phases namely, construction and local search. A 

feasible solution is built in the construction phase, and exploration of the neighborhood is performed by the 

local search. The application of this technique to the maximal diversity selection problem has been the subject 

of numerous studies, with implementations, and some examples are [6, 7, 8]. A Tabu search-based solution to 

the MDP is presented in [9]. 

Conceptual issues such as qualitative versus quantitative diversity and choice of an index suitable for 

describing the degree of inhomogeneity or diversity in a group of people or computer agents is discussed in 

[10]. It also addresses an inverse problem, namely, given a pre–specified degree of inhomogeneity, to 

determine the set of numbers having the desired degree of inhomogeneity. 

A practical application in the manufacturing domain occurs where the number of different 

configurations of a given part far exceeds the acceptable number on the assembly line. In these situations, an 

optimal number of configurations is to be selected for manufacturing such that any required non-produced 

configuration can be replaced by the cheapest produced one that is compatible with it. This is referred to as the 
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Optimal Diversity Management Problem (ODMP) which is given in [11]. In [12], the use of Lagrangean 

relaxation to reduce the size of the problem is presented in order to be able to solve it to optimality via classical 

integer optimization. 

An exact algorithm using a network flow approach for the maximum diversity selection problem as 

applied to finding diverse working groups for a graduate course is presented in [13]. A variant called Reactive 

GRASP, for which a parameter used in the construction phase is self-adjusted for each iteration is proposed in 

[14], where its application to TDMA traffic assignment is presented.  

A review of all the heuristics and metaheuristics for finding near-optimal solutions for the maximum 

diversity problem (MDP) is given in [15]. It also gives a new benchmark library MDPLIB, which includes 

most instances previously used for this problem, as well as new ones. It presents comparison of extensive 

computational experiments of 10 heuristics and 20 metaheuristics for the MDP. Non-parametric statistical tests 

are reported in their study to draw significant conclusions. 

Location of facilities according to distance, accessibility or impacts is given in [16]. Diversity 

maximization which is crucial for establishing viable ecological systems is presented in [17]. A metaheuristic 

framework called scatter search that explores solution spaces by evolving a set of reference points is presented 

in [18]. It is shown to outperform the best approximation procedures reported in [8, 9]. 

For ambiguous or broad queries over large data sets, it is desirable to achieve “diversification” of 

query results. The queries might have different contexts, domains, and applications, and without diversification 

of results, results that could be of use might be missed out. The diversification also reduces redundancy by 

showing more information, thus increasing both the effectiveness of the query as well as user satisfaction 

across a wide variety of users. In this context, the several approximation algorithms have been impractical on 

large data sets. A streaming-based approach which processes items incrementally, maintaining a near-optimal 

diverse set at any point in time is proposed in [19]. This approach has been shown to have linear computation 

and constant memory complexity with respect to input set size, and effective for streaming applications. A 

general machine learning approach to predicting diverse subsets, which is shown to make predictions in linear 

time and training time that scales linearly in the number of queries is presented in [20]. 

In drug discovery process, a subset selection scheme that minimizes the overall compound similarity 

which ensures a wider coverage in terms of compound diversity has been used. A subset can be selected on the 

basis of target-specific, gene family specific or chemical diversity for wider coverage of chemical series. A 

metric that can be used as a measure of the diversity of subsets in the drug discovery domain is defined in [21]. 

It also presents a combinatorial optimization algorithm for selecting or partitioning the collections of subsets. 

Algorithms for the diversity problem in the design-variable space of a multi-objective problem 

(maximum design diversity) are presented in [22]. It is applicable in product design, where it is competitively 

advantageous to develop a comprehensive list of the most diverse architectures spanning the design space, and 

to be able to evaluate them to find those with the greatest real value. It also presents a real-world mixed-integer 

non-linear programming model with two objectives, dozens of variables and hundreds of constraints taken 

from the domain of aircraft-engine design. 

A generic formulation of the core problem of optimal biodiversity preservation under a budget 

constraint, called the Noah‟s Ark Problem is presented in [23]. It addresses the main question of how to 

determine basic priorities for maintaining or increasing diversity. It develops a cost-effectiveness criterion 

which can be used to rank priorities among biodiversity-preserving projects. Two restricted, but realistic 

scenarios of the Noah‟s Ark Problem (allowing for variable conservation costs and uncertain survival of the 

taxa) for which a greedy algorithm is guaranteed to produce optimal solutions are presented in [24]. 

 

III. PROPOSED HEURISTICS 
In this section, we present a description of the two heuristics, the Pseudocodes, and the time 

complexity analyses. Both of the heuristics are based on iterative improvement of the solution. In the 

descriptions, the terms “elements” and “points” are used synonymously. In the first heuristic, an initial set of K 

elements which are (approximately) farthest from one another is derived from the original set. Then, the 

elements of the set are iteratively improved. The improvement continues until no more significant 

improvement is reported by the heuristic. In the second heuristic, the well–known K–means algorithm is 

applied to the initial set of points (elements) to derive K clusters. It then proceeds to find iteratively an element 

in each of the K clusters such that the sum of the distances between those elements is as large as possible. 

When no more improvement is possible, the K elements are taken as the diverse set of elements (points). 
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3.1 Heuristics-I 

In this heuristic, an initial set of K (approximately) farthest elements from out of the initial set S of N 

elements is derived, and the process is shown in the flowchart in Fig. 1. First, the element which is farthest 

from all of the remaining (N – 1) elements of S is determined. It is then removed and placed in the set D, the 

set of maximally diverse elements (which is initially empty). Subsequently, the element in S whose total 

distance from the elements of D is the maximum, is removed from S and placed in D. This process continues 

until the number of elements in D reaches K. This is taken as the initial set of the most diverse K elements. 

 

Figure 1. Deriving the initial set of K (approximately) farthest elements 

 

The next stage of the heuristic iteratively improves the elements in the set D. The outline of this 

iterative improvement process is shown in Fig. 2. The iterative improvement is necessary since the initial set D 

is may not contain the maximally diverse elements. This is because, while selecting the element in S to be 

included in D, the element with the largest of the sum of its distances to the elements in D is selected. Thus, it 

is not considering the it‟s sum of the distances to other elements of S, and there are possibilities that points 

which are farther apart in S than are points in D may be missed out to be selected for inclusion in D. 

The iterative improvement process starts by computing DC, the sum of the pairwise distances of the K 

points in D. Then, each point j in S is selected, and it is substituted for a point m selected in D.  Its sum of the 

pairwise distances with (K – 1) points in D (all the original points in D except point m replaced by point j from 

S) is computed. This is done in K times, going round all the points in D. The maximum sum of the “new” 

pairwise distances obtained by replacing each point of D with the given point of S is compared with DC. If it is 

greater than DC, then the points m in D and j in S are swapped. Thus after this iteration, the sum of pairwise 

distances of the elements of D would be greater than before the iteration, and thus there is improvement. This 

is repeated for all points in S, keeping track of whether there has been a swap of points in D and S. If there has 

been no swap, then there has been no improvement and the set D is taken to be the maximally diverse set of 

elements. 



Heuristics for the Maximal Diversity Selection Problem 

| IJMER | ISSN: 2249–6645 |                                 www.ijmer.com                                  | Vol. 4 | Iss. 6| June. 2014 | 58| 

 

Figure 2. The iterative process of heuristics-I to improve the distances (diversity) of the elements of set D 

 

3.1.1 Pseudocode 

The Pseudocode for the derivation of the initial set D is given below. The starting point is the given 

set S of N elements and their pairwise distances, and the output is the initial set D of K (approximate) diverse 

elements.  

Algorithm InitDiversitySet 

(Input: S (set of N elements); output: D (max. diversity subset of K elements of S)) 

begin 

1. Find the sum of distances of every element (point) of S from every other element of S.  

2. Determine the element which is farthest from all the others (one with the largest sum of the distances). 

Add this element into the Diversity Set D, and remove it from S. 

3. Identify the next element of D by calculating the element in S whose sum of the distances from the points 

currently in D is the greatest.  Add this point into Diversity Set D and remove it from S. 

4. Repeat step 2 until the size of D reaches K elements. 

end 

Algorithm IterativeImprovement 

(Input: S (set of N – K elements), D(initial diversity subset of K elements); output: D (improved diversity subset 

of K elements)) 

begin 

1. Compute DC, the pairwise distances among the K elements of D. distances of every element (point) of S 

from every other element of S. 

2. For i = 1 to (N – K) over the elements of S do steps 3 – 6. 

2.1. For j = 1 to K over the elements of D do step 2.1.1. 

  2.1.1. Compute the sum of the distances from i to all the elements of  D, excluding j. Let this be DCi,j‟.  

2.2. Find the maximum of DCi,j‟ for all j. Let this be DCi,m‟, occurring when point m is excluded. 

2.3 If DCi,m‟ > DC, swap i (in S) and m (in D). Replace DC by DCi,m‟. 

3. Check if there was no swap done at all in the (N – K) iterations in step 2. If not go to step 2. Otherwise go 

to step 4. 

4. There has been convergence. Return D as the diversity set. 

end 
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3.1.2 Analysis 

Consider first the derivation of the initial set given in the algorithm InitDiversitySet. It is easy 

to see that step 1 takes N(N – 1)/2 = O(N2) time. Step 2 is essentially finding the maximum among N values, 

which takes O(N) time. In steps 3 and 4, at any step i, the sum of the distances of each of the (N – i) elements 

of S with the i elements of D is computed. Steps 3 and 4 are performed (K – 1) times. Thus, the time taken by 

steps 3 and 4 is: (N – 1) + 2(N – 2) + 3(N – 3) + … … (K – 1) (N  – K + 1)  

= [N + 2N  + 3N + … … (K – 1) N] – [1 + 22 +  32 + … … + (K – 1)2] 

= N [1 + 2 + 3 + … … + (K – 1)] – [1 + 22 +  32 + … … + (K – 1)2] 

= N K(K – 1)/2 – K(K – 1) (2K – 1)/6 

which is O(NK2 – K3). 

Thus, the complexity of InitDiversitySet is O(N2) + O(N) + O(NK2 – K3). Assuming that the 

pairwise distances of the N elements are given, the O(N2) computations are not necessary, and the overall 

complexity would be O(NK2 – K3). 

For the IterativeImprovement, step 1 takes K(K – 1)/2 = O(K2) time. Step 2 is essentially a 

loop going over (N – K) times. The inner loop at step 2.1 goes over K times, and step 2.1.1 within the inner 

loop takes time (K – 1). Thus the steps 2 – 2.1.1 take (N – K) K (K – 1) = O(NK2) time. Step 2.2 takes K units 

of time. Thus the overall complexity of one iteration of the IterativeImprovement is O(K2) + O(NK2) + 

O(K) = O(NK2). Suppose there are I iterations. Therefore, the complexity of IterativeImprovement is 

O(NK2I). 

3.2 Heuristics-II 

An outline of this heuristics is shown in Fig. 3. In this heuristics, the well–known K–means clustering 

algorithm is applied on the initial set S of N elements to derive an initial set of K clusters. Then, the elements 

of the set are iteratively improved. The improvement continues until no more significant improvement is 

reported by the heuristic.  

 

 
 

Figure 3. Outline of heuristics-II and iterative improvement based on K-means clustering 

 

The iterative improvement consists of the following steps. The medians (centroids) of the clusters are 

determined, and  the sum of the pairwise distances among the medians Dk is computed. Then, for each cluster 

i, a point Pj which is sufficiently away from the median (beyond a threshold), is chosen, and the sum of the 

pairwise distances between all the other medians and the selected point is computed. If this distance is more 

than the sum of the pairwise distances of the current median Mi with the rest of the medians, then the median 

Mi is replaced with the point Pj. This is repeated for all clusters. Then the sum of the pairwise distances of the 

(possibly) new set of medians of the clusters D’k is computed. If D’k is greater than Dk, it indicates that there has 

been an improvement. The above process is repeated. When D’k is no longer greater than Dk, it indicates further 
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improvements are highly unlikely. The heuristic stops and returns the medians of the K clusters as the diverse 

set of K elements. 

 

3.2.1 Pseudocode 

The Pseudocode for the heuristics using the K–means clustering algorithm is given below. At the start 

the K–means clustering algorithm is applied to the given set S of N elements (points) to derive K clusters. Then 

an iterative improvement process is applied on the K clusters to derive one element from each cluster such that 

the collection of the K elements is expected to be as diverse as possible. 

 

Algorithm K-Means-Based-Diversity-Set 

(Input: S (set of N elements); output: D (max. diversity subset of K elements of S)) 

begin 

1. Apply the K–means clustering algorithm on the given set S of N elements. 

2. Determine the median element (point) Mi for each of the clusters 1 ≤ I ≤ K. 

3. Compute ∆, the sum of pairwise distances between the medians of the K clusters. 

4. For each cluster i = 1 to K do the following: 

4.1. Determine a point Pr which has not already been considered and away from the current median 

beyond a threshold. 

4.2. Compute δri, the total distance between Pr (of cluster i) and the other (K–1) medians Mj,1 ≤ j ≤ K, i ≠ 

j. 

4.3. If δri > δmi, then replace the median of cluster i with the point Pr. 

5. Compute ∆’, the sum of pairwise distances between the „new‟ medians of the K clusters. 

6. If ∆’ > ∆ (there has been improvement), go to step 4. Otherwise, stop. 

end 

3.2.2 Analysis 

The K-means clustering takes O(NKID) time, where N is the number of points, K is the number of 

clusters, I is the number of iterations, and D is the number of attributes. Step 2 works on each of the K clusters. 

Assuming that on the average, each cluster has N/K elements, finding the median element takes (N/K)2. 

Therefore, step 2 requires O(K (N/K)2) = O(N2/K) time. Step 3 takes K(K – 1)/2 = O(K2) time. The loop in step 

4 is done K times. Step 4.1 takes O(1) time, 4.2 takes (K – 1) time, and 4.3 takes O(1)  time. Thus steps 4 – 4.3 

take O(K2) time. Step 5 takes K(K – 1)/2 = O(K2) time. Thus, the complexity of steps 2–5 is O(N2/K + K2) time. 

Assuming I iterations of improvement, the overall complexity of K-Means-Based-Diversity-Set 

O(I(N2/K + K2)). 

 

IV. IMPLEMENTATION AND EXPERIMENTAL RESULTS 
The proposed heuristics I and II given Sections 3.1 and 3.2 have been implemented in Python, and 

leveraged two core Python modules for mathematics and scientific calculations:  Numpy and Scipy.  

Specifically, the initial clustering for the K–means algorithm was done using the kmeans2 algorithm provided 

by the Scipy.cluster.vq module. 

The data used in the experiments is a publicly available dataset from census.gov describing 2012 

average poverty percentage rates and median incomes of 3141 US Counties.  The objective was to determine 50 

counties with the most diverse (a) median incomes and (b) average poverty percentages. The experiment used 

scipy.cluster.vq.kmeans2 to identify 50 cluster centroids for Heuristic–II, and then analyzed each cluster to 

locate the data point closest to this centroid.   

 

4.1 Experimental results 

The results of improvements in the diversity measures starting from an initial set and using the 

iterative improvements of the proposed heuristics on the census data of (a) median incomes (left) and (b) 

average poverty percentages (right) are shown in Fig. 4. It is seen that in both cases, the heuristics give 

improvements in the diversity values. The improvements are around 10% of the initial set of values, where the 

initial values themselves are derived using certain algorithms (as outlined in sections 3.1 and 3.2). 
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Figure 4. Improvements in the diversity measures using the iterative improvements of the proposed heuristics 

 

Figure 5 shows a heat map of the 50 counties with (a) the most diverse median income (left) and (b) the most 

diverse poverty percentage (right). 

 
Figure 5. Heat maps of the results of selection of 50 out of 3141 counties with the most diverse of the specified 

attributes 

V. CONCLUSION 
There have been numerous studies related to the problem of selecting a subset of elements from a 

given set, so that the “diversity” among the selected elements is the maximum possible. It arises in numerous 

applications across highly diverse areas such as in public administration, bio diversity measures, plant 

breeding, social problems, economics, experimental design, pollution control, ecological preservation, capital 

investment, curriculum design, etc. The optimal solution to this problem is intractable, and approximation 

algorithms and heuristic are sought after. This paper proposed two heuristics and presented the results of 

implementing them on a part of the US census data related to median income and average poverty percentages 

in the counties. The complexities of the heuristics are acceptable and the running times are reasonable. The 

iterative improvement processes provide around 10% of improvement to the initial diversity values. 
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